Analysis Aufgaben Lösungshinweise

1.3.ii

Induktion aufwärts für 2^k , eine Wurzel herausziehen und das Produkt bei 2^k aufteilen; dann steht dort wieder $\sqrt{ab} \leq \frac{a+b}{2}$. Rückwärts setze $a_n := \frac{1}{n-1} \sum_{i=1}^{n-1} a_i$.

2.5.ii

Multipliziere das n. Element mit r und rechne $x_n - rx_n$, klammere x_n aus und teile durch 1 - r.

4.16.i

Benutze $\forall \epsilon > 0 \exists N \in \mathbb{N} \forall n \geq N : |a_n - l| < \epsilon$ um die Folge bei N aufzuteilen. Der nach oben beschränkte Teilterm ist Nullfolge, der beschränkte geht beliebig nah an den Grenzwert heran.

5.18.iii

$$\sqrt[n]{n} \le \sqrt[n]{n^2 + n} \le \sqrt[n]{2n^2}$$

5.18.iv

Geht gegen das negative arithmetische Mittel; in ϵ -Definition zeigen.

5.18.vi

Geht gegen 1, wieder einsetzen

5.18.vii

 $nc^n=\frac{n}{(1+h)^n},$ dann Binomische Formel und die Glieder bis h^2 zum Abschätzen.

5.18.viii

Fallunterscheidung $a < b, \, a > b, \, a = b.$ Je abschätzen durch weglassen des kleineren im Zähler.

5.19

Linke Seite beschränkt, denn $a_1 < b^1 \Rightarrow a_n \le b_n$. Setze $b - n := a_n + h$, setze ein - a_n steigt also monoton. Selbiges für b_n machen. Dann zeigen, dass $a_n \le b_1$. Für gleichen GW: $a = \sqrt{ab}$.

6.22

(i) harmonisch abschätzen, (ii) ist immer > 1, (iii) per Quotiententest, (iv) wieder harmonisch.

6.24.ii

 $a_n b_n \leq 0.5(a_n^2 + b_n^2) \leq a_n^2 + b_n^2$ nach binomischer Gl. Damit ist eine Abschätzung möglich.

6.25.i

 $\sqrt[n]{|a_n|} \leq C < 1 \Rightarrow |a_n| \leq C^n$ Majorante, konvergiert gegen $\frac{1}{1-C}$.

7.27

(i) konvergiert nach Leibnitz, bei (ii) ist $\frac{1}{n^2}$ Majorante der absoluten, (iii) divergiert da Folge gegen 1, (iv) Quotientenkriterium

7.30

 $c_n := \sum_{n=0}^n a_k b_{n-k+1}.$ Schätze in (ii) das Produkt mit $\sum_{k=n}^n \frac{1}{n}$ ab.

8.31

In Zweierpotenzen ab $\frac{1}{5}$ zusammenfassen. Dann ist

$$\frac{1}{2^{n}+1} + \frac{1}{2^{n}+3} + \dots + \frac{1}{2^{n+1}-1} \ge \frac{2^{n-1}}{2^{n+1}} = \frac{1}{4}$$

9.36

Nutze $\frac{\sqrt{x^2+c^2}-c}{x} < \frac{\delta}{2c} \ (\Leftarrow |x| < \delta).$

9.37

Bei (i) nutze die Teleskopsumme aus, bei (ii) multipliziere mit $1+\sqrt{1-x^2}$.

10.41.ii

Folgenkriterium: Def. $(y_n) \to y$ und (x_n) mit $f(x_n) = y_n$. Sei x' Grenzwert einer Teilfolge von (x_n) . Dann gilt: $f(x') = \lim f(x_n) = \lim y_n = y$. Da f injektiv, muss x' = x, also stetig.

10.44

In (i) Widerspruch zur Annahme wenn nicht, in (ii) setze $\delta < \frac{\epsilon}{c}$. Bei (iii) schätze Kontraktionseigenschaft für viele Folgenglieder ab $(|x_{m+1}-x_m| \leq c^{m-n}|x_{n+1}-x_n|)$, stelle den Abstand als Reihe dar $(|x_n-x_m| = \sum_{i=n}^{m-1} |x_i-x_{i+1}|)$, finde den Grenzwert und zeige damit Cauchy. Für den Fixpunkt setze den Grenzwert in die Folgendefinition ein.

11.46.iii

Stetigkeit impliziert eine δ -Umgebung mit selbem Vorzeichen. Dann Fallunterscheidung \pm .

TODO

4.17; 3.*; 7/6 die Grenzwerte; Cauchyprodukt; 8.31; 9.38.iii+iv; 9.36