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Zusammenfassung

Sei t(H,G) die Wahrscheinlichkeit, dass eine gleichverteile geqählte
Abbildung von einem bipartiten Graphen H in einen Graphen G ein Ho-
momorphismus ist. Sidorenko’s Vermutung [10] sagt aus, dass t(H,G) �
t(K2, G)|E(H)| für jeden Graphen G gilt. Insbesondere bedeutet dies, dass
unter allen Graphen mit der selben Kantendichte der zufällige Graph die
geringste Anzahl an Kopien von H besitzt. Die Vermutung wurde für
verschiedene Klassen von Graphen bewiesen, einschließlich Bäume, gera-
de Kreise, Würfel und bipartite Graphen bei denen ein Knoten mit der
kompletten anderen Seite verbunden ist.

Wir möchten hier zwei Arbeiten im Details untersuchen und deren Be-
standteile präsentieren. Für die erste,

”
On the logarithmic calculus and

Sidorenko’s conjecture“von Li und Szegedy, [9] entwickeln wir eine Er-
weiterung der Methode. In der erst kürzlich erschienene Arbeit

”
Rela-

tive entropy and Sidorenko’s conjecture“von Szegedy [12] wird eine viel
stärkere Methode vorgestellt, die uns ermöglicht Graphen an Wäldern zu-
sammenzukleben, wobei die Ungleichung erhalten bleibt. Wir erweitern
auch diese Methode um die Vermutung für Würfel zu verifizieren und
zum ersten Mal für die 1-subdivision des vollständigen Graphen Km zu
bewiesen. Außerdem untersuchen wir die Beschränkungen der Methode
und beantworten teilweise eine Frage von Szegedy.

Abstract

Let t(H,G) be the probability that a uniformly at random chosen map
from a bipartite graph H to any graph G is a homomorphism. Sidorenko’s
conjecture [10] says that we have t(H,G) � t(K2, G)|E(H)| for all G. In
particular this says that among all graphs with the same edge density
the random graph contains the minimum number of copies of H. The
conjecture was proven for various classes of graphs, including trees, even
cycles, cubes and bipartite graphs where one vertex is complete to the
other side.

In this thesis we carefully examine two papers and give a detailed
presentation of all ingredients. For the first one, ’On the logarithmic
calculus and Sidorenko’s conjecture’ by Li and Szegedy [9], we present an
extension of their method. The more recent paper ’Relative entropy and
Sidorenko’s conjecture’ by Szegedy [12] provides a stronger method, which
allows us to glue graphs on forests preserving Sidorenko’s inequality. We
also extend this method and apply it to reprove the conjecture for cubes
and prove the conjecture for the 1-subdivision of the complete graph Km.
Moreover we analyse the limitations of the method and partially answer
a question of Szegedy.
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1 Introduction

1.1 Sidorenko’s conjecture

Let H be a simple bipartite graph on V (H) = {1, . . . , n} vertices with e edges
and G any simple graph on N vertices with E edges. A map a : V (H) ! V (G) is
a homomorphism if all edges are mapped onto edges, i.e. for all {i, j} 2 E(H)
we have {a(i), a(j)} 2 E(G). We denote the set of homomorphism from V (H) to
V (G) by Hom(H,G). For a uniformly at randomly chosen map the probability
that it is a homomorphism is

t(H,G) =
|Hom(H,G)|

Nn

which we call the homomorphism density of H in G. For a single edge we
call K2 d := t(K2, G) = 2E

N2 the edge density of G. Note that usually the edge

density is E
�
N
2

��1
, but asymptotically it is the same.

Sidorenko’s conjecture can then be stated as:

Conjecture 1.1. For all bipartite graphs H and for all graphs G we have

t(H,G) � t(K2, G)e = de.

If for a graph H the statement is true for all G, then we say that H satisfies
Sidorenko’s conjecture, H has the Sidorenko property or shortly H is Sidorenko.
Observe that for non-bipartite graphs H the conjecture is not true, because odd
cycles can only be mapped to smaller odd cycles and therefore there are graphs,
with any chromatic number, for which Hom(H,G) is empty and d > 0.

In particular the conjecture says that asymptotically among all graphs with
the same edge density d the random graph has the minimal number of copies
of H. To make this clearer we fix H and take a closer look at t(H,G). Let
sub(H,G) be the number of subgraphs in G isomporhic to H and aut(H) the
number of automorphism of H. Then certainly aut(H) · sub(H,G) counts all
injective homomorphisms of H into G. In all non-injective homomorphisms at
least two vertices are mapped to the same vertex and thus there are at most�
n
2

�
Nn�1 of them. With N tending to infinity this gives us

t(H,G) =
aut(G)sub(H,G)

Nn
+O

✓
1

N

◆
.

The conjecture then implies

sub(H,G) � deNn �O(Nn�1)

aut(H)
,

where the last term is asymptotically

sub(H,G(N, d)) =
N(N � 1) . . . (N � n+ 1)

aut(H)

1



the expected number of copies of H in the random graph on N vertices where
every pair of distinct vertices is an edge with probability d (Erdős-Rényi random
graph [5]).

We can also acquire a statement about the Turán number. For any graph H
the Turán number ex(N,H) is the maximum number of edges in a graph G on
N vertices such that no subgraph is isomorphic to H. For a monograph on the
topic consult [2]. If no subgraph is isomorphic to H then sub(H,G) = 0 and
therefore we obtain from Sidorenko’s conjecture de  O

�
1
N

�
. Using d = 2E

N2 we

get E = O(N
2e�1

e ) and since G was an arbitrary graph on N vertices

ex(N,H) = O(N2� 1
e ).

This bound is to weak to give us anything new about any class of graphs, because
an upper bound proven by Kövari, Sós and Turán is O(N2� 1

s ) where s is the
size of the smaller class in a bipartition of H.

1.2 First example

We do a first attempt to lower bound t(H,G) by expressing it as the expected
value of a random variable on the set of all maps with the uniform distribution.
Let w(i, j) = 1 if and only if {i, j} 2 E(G) and 0 otherwise, then the expected
value with respect to the uniform distribution is the edge density of G

E[N ]2(w) =
X

i,j2[N ]

1

N2
w(i, j) =

2E

N2
= d.

Next we define the random variable W : [N ]n ! {0, 1} by

W (a) =
Y

{i,j}2E(H)

w(a(i), a(j))

and since W (a) = 1 if and only if a 2 Hom(H,G) we get

E[N ]n(W ) =
X

a2[N ]n

1

Nn
W (a) =

Hom(H,G)

Nn
= t(H,G).

Lemma 1.2. The star on n vertices with edges E(H) = {{1, i} : i = 2, . . . , n}
as shown in Figure 1 satisfies Sidorenko’s conjecture.
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Figure 1: The star on n vertices

Proof.

t(H,G) = E[N ]n(W ) =
X

a2[N ]n

W (a)

Nn

=
X

a2[N ]n

1

Nn

nY

i=2

w(a(1), a(i))

=
X

a(1)2[N ]

1

Nn

X

a(2),...,a(n)2[N ]n�1

nY

i=2

w(a(1), a(i))

=
X

a(1)2N

1

N

nY

i=2

X

a(i)2N

1

N
w(a(1), a(i))

=
X

a(1)2N

1

N

 
X

a02N

1

N
w(a(1), a0)

!n�1

�

0

@
X

a(1)2Na02N

1

N2
w(a(1), a0)

1

A
n�1

=
�
E[N ]2(w)

�n�1
= de = t(K2, G)e.

The inequality comes from an easy application of Jensen’s inequality to the
convex function z = zn�1, which we will explain later in Section 1.4. We proved
that the star satisfies Sidorenko’s conjecture.

1.3 More about the conjecture

Long before the conjecture was stated the inequality was proven for paths by
Blackley and Roy [1] in 1965. In the 1990s Sidorenko stated the conjecture and
proved it for trees, even cycles, complete bipartite graphs and bipartite graphs
with one class of size at most three [10]. Hatami proved the conjecture for cubes
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[7]. After that Conlon, Fox and Sudakov [4] proved that all bipartite graphs
with one vertex complete to the other side are Sidorenko, that is there exists
a bipartition V (H) = A[̇B of H into two partitesets and a vertex a 2 A such
that for all b 2 B we have {a, b} 2 E(H).

In the paper from 2011 by Li and Szegedy [9] which we will analyse in Section
2 they give a recursive process for constructing new Sidorenko graphs out of old
ones. The method gives us the possibility to glue certain graphs together on
trees and apply a reflection operation to some subgraphs. This includes trees,
even cycles and the bipartite graphs where one vertex is complete to the other
side. At the end of the section we will give a slight extension which allows us
to glue on tree like graphs containing some double-stars.

Two years later Kim, Lee and Lee [8] published two approaches to the con-
jecture. The first one is partly extending Li’s and Szegedy’s method to tree-
arrangeable bipartite graphs, where a bipartite graph is called tree-arrangeable
if the neighbours of one partiteset have a certain tree-like structure. We explain
this at the end of Section 2. Secondly they show that the Cartesian product
T ⇥H of a tree T and a Sidorenko graph H is again Sidorenko, which we will
state more precisely in Section 5.3. At the end we will partially answer a ques-
tion of Szegedy in Section 5.5 about the relation of this paper to his new method
from [12].

This method is presented in the very recent paper by Szegedy [12], where
he extends the ideas of his previous one and gives us a method that allows us
to glue graphs on independent sets and forests. It uses the relative entropy
of probability distributions on graph homomorphisms and couplings. Roughly
speaking the method gives us three classes of graphs G1 ✓ G2 ✓ G. Starting
from a single edge each of them is obtained via iteratively gluing on independent
sets (G1), forests (G2) or any graph (G) under certain additional conditions. The
main theorem says that all graphs in G2 satisfy Sidorenko’s conjecture. We give
a detailed discussion of the method, with basic examples and analyse all three
sets in Section 4.

In Section 5 we give various new applications for the method. First we verify
the statement by Sidorenko, that all bipartite graphs with one class of size at
most 4 satisfy the conjecture. With a little bit more refined calculation we even
extend the method beyond G2 as suggested by Szegedy in [12]. In particular we
reproduce Hatami’s result and prove Sidorenko’s conjecture for all cubes Qd as
Szegedy suggested in private communication. Furthermore we prove that the
1-subdivision of Km is Sidorenko for all m which was, as far as we know, not
proven before.

The smallest graph for which the conjecture is not know is a K5,5 minus
a 10-cycle or equivalently a Möbious ladder of length 5 as shown in Figure 2.
We prove that this graph is not in G and therefore this method cannot give us
anything new in this direction.

Originally Sidorenko’s conjecture was formulated in a more general setting.
Let g : [0, 1]2 ! R be a bounded non-negative measurable function then with

4



Figure 2: The K5,5 minus C10 or equivalently möbius ladder of length 5.

the Lebesgue measure

t(H, g) := E(
Y

{i,j}2E(H)

g(xi, xj)) =

Z

[0,1]n

Y

{i,j}2E(H)

g(xi, xj)
nY

i=1

dxi.

Now we can state the orginial version of Sidorenko’s conjecture

Conjecture 1.3. For all bipartite graphs H and for all bounded non-negative
measurable functions g we have

t(H, g) � t(K2, g)
e.

Conjecture 1.3 implies Conjecture 1.1. For this take any graph G and define
g(x, y) = 1 if and only if {dx · ne, dy · ne} 2 E(H) and zero otherwise. This can
be seen as the adjacency matrix of G extended to [0, 1]2. Now every homomor-
phisms from H to G corresponds precisely to a cube of measure N�n in [0, 1]n

and thus t(H, g) = |Hom(H,G)|N�n = t(H,G) for all H.
Another related concept is the study of quasi-random graphs and the forcing

property. A sequence of graphs {G}n2N with edge density d is called quasi-
random if for the 4-cycle C4

t(C4, Gn) = (1 + o(1))de,

which is one of many equivalent properties shared by quasi random graphs [3].
Any graph H with which we can replace C4 and get an equivalent condition
for quasi-randomness is called forcing. In [4] it is stated as a conjecture that
all bipartite graphs which contain a cycle are forcing. Equivalently a graph H
which contains a cycle is forcing if the equality case in Conjecture 1.3 is only
achieved by the constant function, i.e.

g constant , t(H, g) = t(K2, g)
e.

We do not give a proof for this here, because it would deviate to much.

5
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Figure 3: Plot of z log(z) and log(z) with tangent z � 1 in 1.

1.4 Finite probability spaces and Jensen’s inequality

All of the following chapters will use concavity and convexity of functions, espe-
cially Jensen’s inequality. Let (X,µ) be a finite probability space consisting
of a finite set X and a probability measure µ. A map f : X ! R with Eµ(f) = 1
is called a density on (x, µ). If not stated otherwise in this thesis all probability
spaces are finite and therefore we do not need to worry about sigma-algebras.

For any interval C a real function � : C ! R is called convex (concave) if for
all c1, c2 2 C and for all t 2 [0, 1] we have �(tc1+(1�t)c2)  t�(c1)+(1�t)�(c2)
(or with � respectively). Examples are z log(z) for a convex and log(z) for a
concave function as shown in Figure 3. Now we can state Jensen’s inequality
for probability spaces.

Lemma 1.4. For an interval C ✓ R let � : C ! R be a convex (concave)
function, W : X ! C a random variable and f a density function on (X,µ), i.e.
Eµ(f) = 1. Then

convex � concave �

Eµ(�(W )) � �(Eµ(W )) Eµ(�(W ))  �(Eµ(W )) (1)

Eµ(f�(W )) � �(Eµ(f W )) Eµ(f�(W ))  �(Eµ(f W )). (2)

In most of the applications the measure µ will be the uniform distribution
and we just leave it.

Proof. We only proof the convex case. Let z0 = Eµ(W ) 2 C, then for convex c
there exist a, b 2 R such that

az + b  �(z) 8z 2 R
azo + b = �(z0).

6



This implies �(W (x)) � aW (x) + b for all x 2 X. Using the linearity of
expectation we get

Eµ(�(W )) � Eµ(aW + b)

= aEµ(W ) + b = az0 + b

= �(z0) = �(Eµ(W )).

The second part follows from the first one by converting µ to a new measure
µ0 on X via the density f . Alternatively for z0 = Eµ(f W ) and the rest as above
we get

Eµ(f�(W )) � Eµ(f(aW + b))

= aE(f W ) + Eµ(f)b = az0 + b

= �(z0) = �(Eµ(f W )).

2 The logarithmic Calculus

This chapter builds on the first paper by Li and Szegedy [9] on the logarithmic
calculus and is not essential for the understanding of the following chapters.
This paper was formulated with the original version of the conjecture, but we
state it in the more combinatorial setting. The logarithmic calculus can be
considered as a symbolic way of proving inequalities between subgraph densi-
ties using conditional expectation and Jensen’s inequality for z = log(z) and
z = z log(z).

2.1 Basic examples

As a first example for the method we will now prove that the star on n vertices
H is Sidorenko for a second time. For a n-variable function h(x1, . . . , xn) on
V (G)n and a subset of the variables S = {x1, . . . , xs} we define the conditional
expectation as the s-variable function ES(h) on V (G)n�s defined by

ES(h)(x1, . . . , xs) =
X

{xs+1,...,xn}2V (G)n�s

Ns�nh(x1, . . . , xn).

Note that E(h) = E(ES(h)). For ease of notation we identify the vertices of the
graph and the variables. Recall the definition of w(xi, xj) as being 1 if {xi, xj}
is an edge and 0 otherwise, d = E(w) and the product over all edges is W .
Then the expected degree of a vertex is d(x) = Ex(w(x, y)). We define a density
function for the star

fn =
nY

i=2

w(x1, xi)d
�1d(x1)

2�n

on Hom(H,G) and extend it to V (G)V (H) by setting all new values to zero.
Subsequently we will always do this and treat all non-defined values as zero.

7



Claim. We have Ex1(f) = d(x1)/d and thus E(f) = 1, i.e. f defines indeed a
density function.

Proof. For n = 1 the statement is clear. Assume the statement is true for n�1,
then

Ex1(fn) = Ex1(E{x1,...,xn�1}(fn))

= E
✓
fn�1E{x1,...,xn�1}

✓
w(x1, xn)

d(x1)

◆◆
= E(fn�1) =

d(x1)

d
.

Throughout the following arguments it will always play a key-role which
functions depend on which variables and which expected value we can pull out.
We can now reprove Sidorenko’s conjecture for the star.

Proof of Lemma 1.2. Taking the logarithm on both sides of the inequality of
the conjecture we have to prove the following for all G

log(t(H,W )) � e log(d). (3)

Then we calculate

log(t(H,W )) = log(E(
nY

i=2

w(x1, xi)))

= log(E(fd d(x1)
n�1)) � E(f log(d d(x1)

n�1))

=E(f log(d)) + (n� 1)E(f log(d(x1)))

= log(d)E(f) + (n� 1)E(Ex1(f log(d(x1))))

= log(d) + (n� 1)E(log(d(x1))Ex1(f))

= log(d) + (n� 1)d�1E(d(x1) log(d(x1)))

� log(d) + (n� 1)d�1E(d(x1)) log(E(d(x1)))

= log(d) + (n� 1)d�1d log(d) = n log(d) = e log(d),

where we used Jensen’s inequality Equation (2) with density f and the concavity
of z = log(z) for the first estimate and Equation (1) with the convexity of
z = z log(z) for the second.

We can easily extend this proof to trees via the following density defined for
a tree T on n vertices by

fT = d�1
nY

i=1

d(xi)
1�degT (xi)

Y

{xi,xj}2E(T )

w(xi, xj),

which can be seen as choosing one edge uniformly at random an then building
the tree starting from this edge vertex by vertex.

8



Claim. The function fT is indeed a density.

Proof. We prove by induction that Exi
(fT ) = d(xi)/d. For n = 1 it is clear.

Assume n > 1 and that the statement is true for n� 1. Consider a leaf xj 6= xi,
let S = {x1, . . . , xn} \ {xj} and let T 0 be the tree obtained from T by deleting
xj . Then

Exi(fT ) = Exi(ES(fT )) = Exi(fT 0) =
d(xi)

d
.

A more complex class of bipartite graphs are those where one vertex is com-
plete to the other side, which were first considered by Conlon, Fox and Sudakov
[4]. Let V (H) = {x, y1, . . . , ym, v1, . . . , vk} be the vertices and x connected to
v1, . . . , vm and every yt to a subset St ✓ {v1, . . . , vm}. With at = |St| we have
for the number of edges e = k +

Pm
t=1 at.

Theorem 2.1. The graphs H defined above satisfies the Sidorenko conjecture.

Proof. We define a density f similar to the of the star by

f =
kY

i=1

w(x, vi)d
�1d(x)1�k.

and

si = ESt
(
Y

vj2St

w(z, vj)).

Then we want to show Equation (3) for H and therefore we start with

log(t(H,W )) = log(E(fd(x)k�1d
nY

i=1

si))

because for every yt only the neighbours St share any dependence we can move
the expected value inside. Using the same calculations as in the last proof we
immediately get

log(E(fd(x)k�1d
nY

i=1

si)) � k log(d) +
mX

t=1

E(f log(si)).

It remains to consider all terms of the last sum. Define a new density

ft = s�1d(x)at�k

t

kY

i=1

w(x, vi)

9



and ht = std(x)1�at . Observe that then f = d�1ftht and using st = htd(x)at�1

we get

E(ft log(st)) = d�1E(ftht log(ht)) + (at � 1)d�1E(Ex(ftht log(d(x))))

�d�1 (E(ftht log(E(ftht))) + (at � 1)E(d(x) log(d(x))))
=at log(d)

using Equation (2) with density ft and the convexity of z = z log(z) for the first
term and Equation (1) with z = z log(z) for the second. Together we get

log(t(H,W )) � (k +
mX

t=1

at) log(d) = e log(e).

A similar argument is possible for even cycles. The interesting observation
is that in fact we obtain stronger inequalities

E(d�1d(x)k�1
kY

i=1

w(xi, vk) log(s)) � |S| log(d).

for any choice of neighbours S ✓ {v1, . . . , vn} for a newly added vertex. This
allows us us to glue various sub-stars onto the original star. This indicates that
inequalities of this type can be used to produce new Sidorenko graphs by gluing.

2.2 Smoothness and gluing

Let Gm be the set of graphs in which m di↵erent vertices are labelled by the
numbers {1, . . . ,m}. IfH1 andH2 are in Gm then there productH1H2 is defined
as the graph obtained by identifying vertices with the same labels and reducing
multiple edges. For a graph H 2 Gm we define the restricted subgraph

density in G as

tS(H,G) = ES(
Y

{i,j}2E(H)

w(xi, xj)).

Definition 2.2. Let H 2 Gm be a bipartite graph on m vertices such that
the spanned subgraph on the labelled vertices S is a tree T . We say that H is
smooth if

E(fT log(tS(H
⇤, G))) � |E(H⇤)| log(d)

where H⇤ is obtained from H by deleting the edges in T .

For an empty tree the statement is equivalent to Sidorenko’s conjecture. An
easy example for a smooth graph are two edges {x, y}, {y, z}, were only two

10



neighbouring vertices x, y are labelled.

E(w(x, y)d�1 log(Ex,y(w(y, z))))

= d�1E(w(x, y)d(y)�1d(y) log(d(y)))

� d�1E(w(x, y)d(y)�1d(y)) log(E(w(x, y)d(y)�1d(y)))

= d�1d log(d) = log(d),

where we used Jensen’s inequality with the convexity of z = z log(z) and the
density w(x, y)d(y)�1. The next two lemmas together show that smoothness is
a strengthening of the Sidorenko property.

Lemma 2.3. Let H 2 Gm be a smooth bipartite graph with tree T spanned on
the labelled vertices and let T 0 be a non-empty sub-tree spanned on a subset of
the labelled vertices. Then the graph H 0 obtained from H by unlabelling the
vertices not in T 0 is again smooth.

Proof. It is enough to prove that unlabelling one leaf inH preserves smoothness.
The general case is then an iteration of this step. Assume that xm is connected
to xm�1 and S0 = S \ {xm}. We have

E(fT 0 log(tS0(H 0⇤,W ))) = E(fT 0 log(Exm
(w(xm�1, xm)tS(H

⇤,W )))))

= E(fT 0 log(Exm
(w(xm�1, xm)d(xm�1)

�1d(xm�1)tS(H
⇤,W ))))

= E(fT 0 log(d(xm�1))) + E(fT 0 log(w(xm�1, xm)d(xm�1)
�1tS(H

⇤,W )))

� E(Exm�1(fT 0 log(d(xm�1))))

+ E(fT 0w(xm�1, xm)d(xm�1)
�1 log(tS(H

⇤,W )))

= d�1E(d(xm�1) log(d(xm�1))) + E(fT log(tS(H
⇤,W )))

� log(d) + |E(H⇤)| log(d) = |E(H 0⇤)| log(d),

where we used Jensen’s inequality with density w(xm�1, xm)d(xm�1)�1 and the
concavity of z = log(z) for the first estimate and the same arguments as in the
basic examples for the second.

Lemma 2.4. Assume that {x1, x2} 2 E(H) and H 2 G2 is smooth. Then H is
Sidorenko.

Proof. Using what we did for the previous graphs we get

log(E(t(H,W ))) = log(E(dw(x1, x2)d
�1

Y

{xi,xj}2E(H⇤)

w(xi, xj)))

� log(d) + E(w(x1, x2)d
�1 log(t(H⇤,W )))

� log(d) + |E(H⇤)| log(d) = |E(H)| log(d).

Since this is Equation (3) for H this graph is Sidorenko.

11



Preserving smoothness we can now unlabel vertices until only two are left
and the resulting graph will be Sidorenko. Therefore these two lemmas imply
that every smooth graph satisfies the Sidorenko conjecture. The next lemma
extends the idea from the proof of Theorem 2.1. We want to glue graphs on there
labelled vertices preserving smoothness and therefore the Sidorenko property.

Lemma 2.5. Let H1, H2 2 Gm be two smooth graphs such that the trees
spanned on the labelled vertices S are identical with T in both graphs. Then
H = H1H2 2 Gm is again smooth.

Proof.

E(fT (tS(H⇤,W ))) = E(fT log(tS(H
⇤
1 ,W )tS(H

⇤
2 ,W )))

= E(fT log(tS(H
⇤
1 ,W ))) + E(fT log(tS(H

⇤
2 ,W )))

= (|E(H1)|�m+ 1) log(d) + (|E(H2)|�m+ 1) log(d)

= (|E(H)|�m+ 1) log(d) = |E(H⇤)| log(d).

We can also extend the smooth part by adding new edges to the tree induced
on the labelled vertices. Starting with the two edges from the beginning, where
one was labelled, this gives us that all trees are smooth if at least on leaf is not
labelled and thus another proof that trees are Sidorenko.

Lemma 2.6. Let H 2 Gm be a smooth graph and let T 0 2 Gm be a tree such
that H and T 0 induce the same tree T on the labelled vertices S. Then the
graph H 0 = HT 0 is again smooth and all vertices of T 0 are labelled.

Proof. It su�ces to prove the statement for the case where a single edge is
added. Let {y} = V (T 0) \ V (T ) be a leaf in T 0 and assume that y is connected
to xm. Then S0 = S [ {y} and

E(fT 0 log(tS0(H 0⇤,W ))) = E(ES(fT 0 log(tS0(H 0⇤,W ))))

=E(fTES(log(tS0(H 0⇤,W ))w(y, xm)d(xm)�1)).

We get rid of the last two terms by taking the expectation over y and then

=E(fT log(tS0(H 0⇤,W )))

=E(fT log(tS(H
⇤,W )))

�|E(H⇤)| log(d) = |E(H 0⇤)| log(d),

because H 0 and H 0⇤ have the same edges of which none contains y.

Now we want to prove that we can reflect a tree on an independent set and
obtain a smooth graph.

Lemma 2.7. Let T 2 Gm be a tree such that the labelled points S are inde-
pendent. Let H be the graph obtained from T 2 by labelling all vertices in one
copy of T . Then H is smooth.

12



Proof. H is a graph on vertices {x1, . . . , x2n�m}. Let T be a tree on vertices
N = {x1, . . . , xn} and the labelled vertices S = {x1, . . . , xm}. Observe that
H⇤ has the same edges as T . Then it su�ces to exclude the vertices in S for
tS(T,W ) and we have to prove the following statement

E(fT log(tS(T,W ))) � |E(T )| log(d).

Let s = ts(T,W ) and q =
Qn

i=1 d(xi)degH(xi)�1, then

E(ft log(s))
= d�1(E(tN (T,W )s�1(sq�1) log(sq�1)) + E(tN (T,W )s�1sq�1 log(q)))

� log(d) +
nX

i=1

d�1(degH(xi)� 1)E(Exi
tN (T,W )s�1sq�1 log(d(xi)))

= log(d) +
nX

i=1

d�1(degH(xi)� 1)E(d(xi) log(d(xi)))

� log(d) +
nX

i=1

(degH(xi)� 1) log(d) = (n� 1) log(d).

To apply this last lemma we can start with any tree and chose an independent
set. Taking a path of length m such that the two endpoints are labelled and
reflecting it we get that even cycles C2m are smooth and therefore Sidorenko.
Furthermore we get that the path of length m is smooth in C2m and therefore
we can glue two even cycles together on any path up to half the length of the
smaller cycle using Lemma 2.7. Another application are the bipartite graphs
were one vertex is complete to the other side. We obtain smooth graphs by
reflecting sub-stars and get the hole graph by gluing everything together.

In the next section we will describe an extension of smoothness beyond trees.
Later we will see a method that allow us to glue on forests and even more general
graphs.

2.3 Extension of the method

In the paper of Li and Szegedy all the previous definitions and lemmas were
stated for graphs H 2 Gm which induce a tree T on the labelled vertices. We
started with choosing one random edge and then building the tree. In principal
this process is possible because d(x) precisely gives us the proportion of the
vertices we can take for the next neighbour of x. Especially there always is a
neighbour for x because x was chosen as the neighbour of some earlier vertex.

We want to extend this idea to stars. If some vertex x has r neighbours S
or more then we can chose a new neighbour for this r vertices. As in the proof
of Theorem 2.1 this corresponds to s = ES(

Q
v2S w(x, v)). We can include this

into the density function of the base graph, which we then can glue with other
graphs or apply the reflection operation.

13
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Figure 4: Tr,q

So we are able to slightly extend the definition of smoothness to graphs
H 2 Gm which induce a graph build in the following way: Start with one edge
and then add as much neighbours as you want. While building this every time a
vertex has at least k neighbours you can give these k vertices another neighbour.
To avoid to much complexity in the expression and proofs we give one example
for this extension.

Let H 2 Gm be a bipartite graph on m vertices such that the spanned
subgraph on the labelled vertices S is a graph Tr,q consisting of a vertex x with
r neighbours V = {v1, . . . , vr} which have another neighbour y which has q
neighbours {w1, . . . , wq} as shown in Figure 4. We get the following density for
Tr,q

fr,q =
rY

i=1

w(x, vi)w(y, vi)
qY

i=1

w(y, wi)d
�1d(x)1�rs�1

r d(y)1�q.

where sr = EV (
Qr

i=1 w(x, vi)). We extend the definition of smoothness 2.2 by
the following:

Definition 2.8. Let H 2 Gm with Tr,q and S as above. Then we say that in
addition to Definition 2.2 H is smooth if

E(fR log(tS(H
⇤, G))) � |E(H⇤)| log(d)

where H⇤ is obtained from H by deleting the edges in R.

Lemmas 2.4 and 2.5 hold with the same proof as before. For Lemmas 2.3,
2.6 and 2.7 we have to take care of the role of y. As a demonstration we want
to show first how unlabelling the vertex y works.

Lemma 2.9. For this let H be a graph which induces the graph Tr,0 on the
labelled vertices S with the density

fr,0 =
rY

i=1

w(x, vi)w(y, vi)d
�1d(x)1�rs�1

r

14



where y is labelled. After unlabelling we get the graphH 0 with a Star Sr induced
on the labelled vertices S0 = S \ {y} and density

f =
rY

i=1

w(x, vi)d
�1d(x)1�r.

Then H 0 is smooth.

Proof. We compute

E(f log(tS0(H 0⇤, G))) = E(f log(ES0(
rY

i=1

w(y, vi)tS(H
⇤, G)))

= E(f log(ES0(
rY

i=1

w(y, vi)s
�1
r sr tS(H

⇤, G)))

� E(f
rY

i=1

w(y, vi)s
�1
r ES0(log(sr tS(H

⇤, G)))

= E(fr,0 log(sr)) + E(fr,0 log(tS(H⇤, G)))

� r log(d) + E(fr,0 log(tS(H⇤, G))) � |E(H 0⇤)| log(d),

where the first inequality comes from Jensen’s inequality Equation 2 with den-
sity

Qr
i=1 w(x, vi)s

�1 and the convexity of z = log(z) and the second is analo-
gously to the proof of Theorem 2.1.

Next we want to show how we can extend the labelled set by increasing r.

Lemma 2.10. Let H 2 Gr+q+2 be a smooth graph such that Tr,q is the induced
graph on the labelled vertices S and let Tr+1,q 2 Gr + q + 2 be such that Tr,q is
labelled. Then H 0 = HTr+1,q is again smooth and all vertices S0 of Tr+1,q are
labelled.

Proof.

E(fr+1,q log(tS0(H 0⇤, G)))

= E(fr+1,qES0(log(tS0(H 0⇤, G))))

= E
✓
fr,qES0

✓
log(tS0(H 0⇤, G))

sr
sr+1

w(x, vr+1)w(y, vr+1)

d(x)

◆◆
,

where we get rid of srw(q,vr+1)
sr+1

by taking the expectation over y and of w(q,vr+1)
d(x)

by taking it over vr+1. Then

= E(fr,q log(tS0(H 0⇤, G)))

= E(fr,q log(tS(H⇤, G)))

= |E(H⇤)| log(d) = |E(H 0⇤)| log(d).
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Lemma 2.7 extends in the natural way to Tr,q and thus we can reflect it
on the independent set consisting of x and the q neighbours of y giving us the
smoothness of the graph Tr,r,q shown in Figure 5 which was originally considered
by Sidorenko in [10]. By Lemma 2.10 we can further increase the labelled part
to get a graph with three vertices and distinct number of common neighbours.
Unfortunately we are not able to produce all bipartite graphs with three vertices
on one side with this method, because we can only add neighbours to the labelled
part afterwords.

Note that our extension also works with more double-stars and thus gives
us the possibility to prove Sidorenko’s conjecture for graphs that were not con-
sidered up to this point like a sequence of double-stars, which we can also glue
to a circle.

Another extension of the method by Li and Szegedy was given by Kim, Lee
and Lee [8] to tree-arrangeable graphs. A bipartite graph H is called tree-
arrangeable if there exists a bipartition A[̇B and a tree T on A such that for
all vertices u, v 2 A

N(u) \N(v) =
\

w2P

N(w)

for any path P in T connecting u and v, where N(u) is the set of neighbours
of u in H. To proof that a graph is tree-arrangeable we need to find a tree T
on an independent set A such that the vertices on a path have at least all the
neighbours which both endpoints have. If we have only two vertices on one side
then the graph is tree-arrangeable by just taking a single edge as T . They prove
that all bipartite tree-arrangeable graphs are Sidorenko. We will prove this with
the new method of Szegedy in Section 5.5.

Further examples for tree-arrangeable graphs are trees and bipartite graphs
where one vertex is complete to the other side. For the latter one just take T
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as the star centered at this vertex. This method really is an extension, because
graphs with vertices a1, a2 2 A such that N(a) ✓ N(ai) for i = 1 or i = 2
are also tree-arrangeable, but this does not seem to follow from the method
of Li and Szegedy. The tree that works for this example consists of an edge
between {a1, a2} and for every a 6= a1, a2 exactly one additional edge to a1 if
N(a) ✓ N(a1) and to a2 if not.

Cycles of length 6 and larger and the graphs in our extension, especially
the graph in Figure 5, are in general not tree-arrangeable, because all pair-
wise neighbourhoods can be disjoint. Thus these two extensions go in di↵erent
directions.

3 Entropy and graph homomorphisms

This chapter is devoted to prerequisites which we will need for the new method
of Szegedy presented in Section 4.

3.1 Relative entropy

Entropy, a concept from information theory [6], is a measure for the uncertainty
about the outcome of a random variable or the uniformity of a probability
measure. The entropy of a measure µ on X is

H(µ) = Eµ(� log(µ)) = �
X

x2X

log(µ(x))µ(x).

If µ(x) = 0 then the corresponding summand is defined to be zero. This coin-
cides with the limit limx!0 x log(x) = 0. The entropy H(µ) is log(|X|) for the
uniform distribution and 0 if one event has probability 1. The next lemma tells
us that these are the extreme values. In principal entropy tells us how close a
measure is to the uniform distribution.

Lemma 3.1. Properties of the entropy of µ:

(a) H(µ) � 0

(b) Let A = {x 2 X : µ(x) 6= 0} ✓ X be the support of µ. Then

H(µ)  log(|A|).

Proof. (a) Using Jensen’s inequality with Equation (1) for the convex function
z = �log(z) we get

H(µ) = Eµ(� log(µ)) � � log(Eµ(1)) = 0

(b) With Jensen’s inequality Equation (1) for the concave function z = log(z)
we get

H(µ) = Eµ(log(1/µ))  log(Eµ(1/µ)) = log(|A|).
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Remember that only elements in A appear with non-zero probability in the
sum of the expected value.

Let µ and ⌫ be two probability measures on X. The cross entropy of µ
over ⌫ is defined by

H(µ, ⌫) = Eµ(� log(⌫)) = �
X

x2X

log(⌫(x))µ(x).

If µ is absolutely continuous with respect to ⌫, i.e. ⌫(x) = 0 implies µ(x) = 0
we can define the relative entropy of µ with respect to ⌫ as

D(µ||⌫) = H(µ, ⌫)�H(µ) = Eµ(log(µ/⌫)) =
X

x2X

(logµ(x)� log ⌫(x))µ(x),

where again every summand is defined to be zero, whenever µ(x) or ⌫(x) are
zero.

Relative entropy is a measure for the loss of information if we approximate
µ by ⌫. More precisely we will always set ⌫ to be the uniform distribution on X,
which implies that every measure on X is absolutely continuous with respect to
⌫. Then, in contrast to the normal entropy, the relative entropy is small when
µ is close to the uniform distribution and large otherwise.

Lemma 3.2. Let A ✓ X be the support of µ, then

D(µ||⌫) � � log(⌫(A))

with equality if and only if µ(x) = ⌫(x)/⌫(A) for all x 2 A.

This implies

D(µ||⌫) � 0 (4)

for all µ and ⌫, because � log(⌫(A)) � 0 for all A ✓ X. In particular this says
that the entropy of µ is always smaller than the cross entropy of µ with any ⌫.

Proof. Using Jensen’s inequality Equation (1) for convexity of z = �log(z) we
get

D(µ||⌫) =
X

x2A

(logµ(x)� log ⌫(x))µ(x) =
X

x2A

� log

✓
⌫(x)

µ(x)

◆
µ(x)

� � log

 
X

x2A

⌫(x)

µ(x)
µ(x)

!
= � log(⌫(A)).

The equality case in Jensen’s inequality is achieved if and only if ⌫(x)µ(x) = c for

all x 2 A. Comparing both sides of the equation we get c = ⌫(A) as desired.
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3.2 Probability distributions of graph homomorphisms

Recall that Hom(H,G) ✓ V (G)V (H) denotes the set of homomorphisms from

H to G and t(H,G) = |Hom(H,G)|
Nn denotes the probability that a random map

a : V (H) ! V (G) is a homomorphism.
Sidorenko’s conjecture states that t(H,G) � t(K2, G)e, which is equivalent

to

log(t(H,G)) � |E(H)| log(t(K2, G)).

Let ⌧(H,G) be the uniform distribution on Hom(H,G) and ⌫(H,G) the uni-
form distribution on V (G)V (H). We use the convention D(µ) := D(µ||⌫(H,G))
for any probability distribution µ on V (G)V (H). A probability distribution µ
on Hom(H,G) is extended to V (G)V (H) by setting all new values to zero.

Then the equality case of Lemma 3.2 implies D(⌧(H,G)) = �log(t(H,G)),
because for a 2 Hom(H,G) we have

⌧(H,G)(a) =
1

|A| =
Nn

Nn|A| =
⌫(H,G)(a)

.
⌫(H,G)(A)

Let De := D(⌧(K2, G)) = � log(t(K2, G)), then Sidorenko’s conjecture for
H is equivalent to the statement that

D(⌧(H,G))  eDe

holds for all G. By Lemma 3.2 every probability distribution µ on Hom(H,G)
satisfies

D(⌧(H,G)) = � log(t(H,G)) = � log(⌫(H,G)(Hom(H,G)))  D(µ).

If µ also satisfies

D(µ)  eDe

then H satisfies Sidorenko’s conjecture and we say that µ is a witness measure
for H. Our goal is to construct a witness measure on Hom(H,G) to prove
Sidorenko’s conjecture for H.

Another important probability distribution on V (G) is the distribution 
where the probability of a vertex is proportional to it’s degree. More precisely
for v 2 V (G) we define (v) = deg(v)

2E . We will shortly write Dv := D(). The
role of  is that it is the distribution of an end point of a uniformly chosen
random edge.

3.3 Example

We look again at the proof of the star in the previous section using density and
the random variable W . We now attempt to give a similar proof for the star
going in the direction of the recent paper by Szegedy [12] using relative entropy
and probability measures.
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Proof of Lemma 1.2. Define a probability measure µ on X = Hom(H,G). A
homomorphism between H and G can be expressed by a vector of length
n = |V (H)| with entries in V (G). For (x1, . . . , xn) 2 Hom(H,G) we define
the measure

µ((x1, . . . , xn)) = (2E)�1 deg(x1)
2�n

where deg(x1) is always not zero because we started with a homomorphism.
Summing over all (x1, . . . , xn) 2 Hom(H,G) immediately gives that this indeed
defines a measure. Again this corresponds to a uniformly random chosen edge
in G and n� 2 further neighbours for one of the endpoints.

We compute

D(µ) = �Eµ(log(⌫/µ))

=� Eµ

 
log

 
2E

N2
·
✓
deg(x1)

N

◆n�2
!!

=� Eµ

✓
log

✓
2E

N2

◆◆
+ (n� 2)Eµ

✓
log

✓
deg(x1)

N

◆◆
.

The second expected value only depends on x1 so we can change it to the
measure µ1(x1) =

deg(x1)
2E over V (G) and get

=� log

✓
2E

N2

◆
� (n� 2)Eµ1

✓
log

✓
deg(x1)

N

◆◆

� log(d)� (n� 1) log

✓
2E

N2

◆
= �e log(t(K2, G)) = eDe.

Thus µ is a witness measure and the star is Sidorenko.

The same calculation work for any tree T on vertices v1, . . . , vn with the
measure

µT ((x1, . . . , xn)) = (2E)�1
nY

i=1

degG(xi)
1�degH(vi).

As the density fT this can be again seen as choosing one random edge and then
building the tree starting from this edge. We found some witness measures for
graphs. In the next chapter we describe a method to couple two probability
measures preserving the Sidorenko property.

4 Coupling method

This chapter deals with the latest results by Szegedy [12] on Sidorenko’s con-
jecture, which gives us the possibility to prove the conjecture for various new
types of graphs. We want to iteratively construct witness measures using cou-
plings. We first need some machinery that will allow us to combine probability
distributions.
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Let  : X ! Y be a map between two probability spaces (X,µ) and (Y, ⌫).
We can define a new measure µ0 on Y by

µ0(A) = µ( �1(A)) for all A ✓ Y.

It is called the marginal distribution of (X,µ) on y with respect to  . If
µ0 = ⌫ then  is called measure preserving, i.e. the measure of the pre image
of every subset is the same as the original measure.

4.1 Conditionally independent couplings

Let {(Xi, µi)}3i=1 be three finite probability spaces and { i : Xi ! X3}i=1,2

two measure preserving maps, i.e. we have µ3(A) = µ1( 
�1
1 (A)) = µ2( 

�1
2 (A))

for all A ✓ X3. We call X3 a joint factor of the probability spaces (X1, µ1)
and (X2, µ2). Now we define X4 as the set of (x1, x2) 2 X1 ⇥ X2 satisfying
 1(x1) =  2(x2) and µ3( 1(x1)) 6= 0 or all together

X4 = {(x1, x2) 2 X1 ⇥X2 :  1(x1) =  2(x2), µ3( 1(x1)) 6= 0}.

Note that µ3( 1(x1)) = 0 implies µ1(x1) = 0. Let {⇡i : X4 ! Xi}i=1,2 be the
projections onto X1,X2 respectively. A measure µ on X4 is called a coupling

of (X1, µ1) and (X2, µ2) over the joint factor X3 if ⇡1 and ⇡2 are measure
preserving on (X4, µ). This is equivalent to saying that the marginals of µ on
X1 and X2 are µ1 and µ2 respectively. For example the marginal of µ on X1 is

µ|X1(x1) =
X

x22X2:(x1,x2)2X4

µ((x1, x2)) = µ(⇡�1
1 (x1)) = µ1(x1).

The composition of two measure preserving maps is again measure preserving
and thus are  1 � ⇡1 and  2 � ⇡2 for a coupling µ. Since  1(x1) =  2(x2) holds
for all (x1, x2) 2 X4 we have in fact a commutative diagram as shown in Figure
6 and in particular

 1 � ⇡1 =  2 � ⇡2 =  1 ⇥  2

For our purposes we want a coupling µ4 where the probability is independent
of the choice for x3 2 X3. Later this will give us the possibility to identify two
graphs on certain sets leaving the respective rests independent. Let x3 2 X3

and (x1, x2) 2 X4 such that  1(x1) =  2(x2) = x3. The events A = ⇡�1
1 ({x1})

and B = ⇡�1
2 ({x2}) are called conditionally independent over the event

Y = ( 1 � ⇡1)�1({ 1(x1)}) if µ(A \ B|Y ) = µ(A|Y )µ(B|Y ). Assuming that
µ4 is a coupling we get µ4(A) = µ1(x1), µ4(B) = µ1(x2), µ4(Y ) = µ3(x3) and
therefore

µ4(A \B)

µ4(Y )
=

µ4(A)

µ4(Y )
· µ4(B)

µ4(Y )

, µ4((x1, x2))

µ3( 1(x1))
=

µ1(x1)

µ3( 1(x1))
· µ2(x2)

µ3( 1(x1))
.
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X4

X1

X2

X3

 1

 2

⇡1

⇡2

 1 ⇥  2

 �1
1

 �1
2

⇡�1
1

⇡�1
2

( 1 ⇥  2)
�1

Figure 6: Commutative diagram for measure preserving maps. All the red
subsets have the same measure in its respective probability space.

This motivates the following definition for the measure µ4 on X4

µ4((x1, x2)) :=
µ1(x1)µ2(x2)

µ3( 1(x1))
. (5)

Claim. Let us check that indeed µ4 is a coupling, i.e. the projections ⇡i are
measure preserving on (X4, µ4) for i = 1, 2.

Proof. W.l.o.g. i = 1 and let A be a subset of X1.

µ4(⇡
�1
1 (A)) =

X

(x1,x2)2X4
x12A

µ4(x1, x2) =
X

(x1,x2)2X4
x12A

µ1(x1)µ2(x2)

µ3( 1(x1))

=
X

x12A
µ3( 1(x1)) 6=0

µ1(x1)

µ3( 1(x1))

X

x22X2
 1(x1)= 2(x2)

µ2(x2)

=
X

x12A
µ3( 1(x1)) 6=0

µ1(x1)
µ2( 

�1
2 ( 1(x1)))

µ3( 1(x1))

=
X

x12A
µ3( 1(x1)) 6=0

µ1(x1) = µ1(A),

where the next to last equality comes from the fact that  2 is measure preserv-
ing, i.e. the measure of the point  1(x1) in X3 is the same as the measure of
its preimage in X2.
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Taking A = X1 this implies that indeed µ4 is a probability measure. To-
gether with the projections ⇡1 and ⇡2 we call µ4 the (unique) conditionally

independent coupling of X1 and X2 over the joint factor X3. Observe that
the pre-images ( 1 ⇥  2)�1(x3) =  �1

1 (x3) ⇥  �1
2 (x3) for x3 2 X3 give us a

partition of X4.

4.2 Relative entropy of couplings

In this part we want to establish statements for the relative entropy of condi-
tionally independent couplings. We will repeatedly deal with similar terms. For
the start consider the cross entropy of a conditionally independent coupling ⌫4
and a coupling µ:

H(µ, ⌫4) =
X

(x1,x2)2X4

log(⌫4((x1, x2)))µ((x1, x2))

=
X

(x1,x2)2X4

log

✓
⌫1(x1)⌫2(x2)

⌫3( 1(x1))

◆
µ((x1, x2)).

Then we can expand the logarithm to obtain three sums of the kind

X

(x1,x2)2X4

log(⌫1(x1))µ((x1, x2)).

Since the part in the logarithm only depends on x1 we can split the sum

=
X

x12X1
µ3( 1(x1)) 6=0

log(⌫1(x1))
X

x22X2
 1(x1)= 2(x2)

µ((x1, x2)).

The last sum runs over all elements in X2 which have the same value as x1 and
is thus equal to the measure of the pre image µ(⇡�1

2 (x1)). Finally using that ⇡2
is measure preserving on (X4, µ) we get

=
X

x12X1
µ3( 1(x1)) 6=0

log(⌫1(x1))µ1(x1) = H(µ1, ⌫1).

With the same calculation we get for the second sum

X

(x1,x2)2X4

log(⌫2(x2))µ((x1, x2)) = H(µ2, ⌫2)

and for the third we fix a summation by x3 2 X3 and use that  2 �⇡2 is measure
preserving to get

X

(x1,x2)2X4

log(⌫2( 1(x1)))µ((x1, x2)) = H(µ3, ⌫3).
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All together we get

H(µ, ⌫4) = H(µ1, ⌫1) +H(µ2, ⌫2)�H(µ3, ⌫3).

This basically says that the cross entropy of a coupling µ over a conditionally
independent coupling ⌫4 does not depend on the choice of the coupling.

For the entropy of µ4 this gives us

H(µ4) = H(µ1) +H(µ2)�H(µ3).

The main ingredient for the method of Szegedy is the following inclusion-
exclusion type formula for conditionally independent couplings.

Lemma 4.1. Let µ4 and ⌫4 be conditionally independent couplings of X1 and
X2 over the joint factor X3, then

D(µ4||⌫4) = D(µ1||⌫1) +D(µ2||⌫2)�D(µ3||⌫3) (6)

Proof.

D(µ4||⌫4) = H(µ4, ⌫4)�H(µ4)

= H(µ1, ⌫1) +H(µ2, ⌫2)�H(µ3, ⌫3)�H(µ1)�H(µ2) +H(µ3)

= D(µ1||⌫1) +D(µ2||⌫2)�D(µ3||⌫3).

The following lemma says that the relative entropy over couplings with re-
spect to a conditionally independent couplings is minimized by the conditionally
independent coupling.

Lemma 4.2. Let µ be any coupling of (X1, µ1) and (X2, µ2) over the joint
factor X3, then

D(µ||⌫4) � D(µ4||⌫4) (7)

Proof.

D(µ||⌫4)�D(µ4||⌫4)
= H(µ, ⌫4)�H(µ)�H(µ4, ⌫4) +H(µ4)

= H(µ4)�H(µ)

= H(µ4, µ4)�H(µ, µ4) +H(µ, µ4)�H(µ)

= H(µ, µ4)�H(µ) = D(µ||µ4) � 0.

This last relative entropy is a measure for the dependence between µ and µ4.

Note that we also get that the entropy over couplings is maximized by con-
ditionally independent couplings. This coincides with the fact that entropy
is maximized by the uniform distribution and the intuition that conditionally
independent couplings are the most equally distributed couplings.
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4.3 Coupling Sidorenko graphs

Now we are able to construct probability distributions on homomorphism sets
which are iteratively obtained from the uniform distribution on edges using
conditionally independent couplings.

Let µ be a probability distribution on Hom(H,G) and � : S ! V (H) be
an injective map of some set S. Then the map T� : Hom(H,G) ! V (G)S

defined by � 7! � � � factors the probability space (Hom(H,G), µ). We get an
induced probability distribution on V (G)S defined by µ|�(�) = µ(T�1

� (�)) for

� 2 V (G)S . The probability space (V (G)S), µ|�) is called a vertex factor of
µ.

Note that T�1
� (�) contains all possible ways how � can be extended to a

homomorphism in Hom(H,G). If S ✓ V (H) then we denote by µ|S the prob-
ability measure µ|� where � : S ! S is the identity. Then µ|S is the marginal
distribution on S with respect to T� . For � 2 Hom(H,G) we then sometimes
write �|S for T�(�). If S is empty then µ|S is defined on a single point V (G);

and D(µ|;) = (log(1)� log(1))1 = 0.
Let H1 and H2 be two bipartite graphs and (X1, µ1) = (Hom(H1, G), µ1)

and (X1, µ1) = (Hom(H2, G), µ1) two probability spaces. Our goal is to com-
bine both probability distributions to a new probability distribution on the set
of homomorphism of a graph glued together from H1 and H2. We want to define
a coupling, thus we need a joint factor. Therefore we label the n gluing vertices
in H1 and H2 by {�i : [n] ! V (Hi)}i=1,2 and assume that both induce the
same vertex factor, i.e. the marginal distributions on the labelled vertices are
the same. This is µ3 := µ1|�1 = µ2|�2 with X3 = V (G)[n] defines a vertex factor
of µ1 and µ2. Then { i = T�i

}i=1,2 are two measure preserving maps and X3

is the joint factor of (X1, µ1) and (X2, µ2). We denote by C(µ1, µ2,�1,�2) the
conditionally independent coupling µ4 of µ1 and µ2 over µ3.

The assumption µ1|�1 = µ2|�2 tells us that the measure of all possible ways
to extend � 2 V (G)[n] to a homomorphism in Hom(H1, G) or Hom(H2, G) is
the same. We again have the commutative diagram illustrated in Figure 6.

Example 4.3. For an easy example let ⌫1 and ⌫2 be the uniform distribution
on Hom(H1, G) and Hom(H2, G) and �i be as above. Then for � 2 V (G)[n] we
get that ⌫3 is uniformly distributed

⌫3(�) = ⌫1|�1(v) = ⌫1 � T�1
�1

(�)

= ⌫1({�0 2 V (G)V (H1) : �0 � � = �})

=
|{� 2 V (G)V (H1) : �0 � � = �}|

|V (G)||V (H1)|

=
|V (G)|V (H1)�n

|V (G)||V (H1)|
= V (G)�n.

Let ⌫4 be the conditionally independent coupling of ⌫1 and ⌫2 over ⌫3 then

⌫4(�1,�2) =
⌫1(�1)⌫2(�2)

⌫3( 1(�1))
= V (G)n�V (H1)�V (H2)
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is again uniformly distributed.

Since we need a probability distribution on the set of homomorphisms for
every G we define the following concept: For a graph H we define a probabil-

ity model f on the set of finite graphs G whose value f(G) is a probability
distribution on Hom(H,G). We say that H is the skeleton of the probability
model f .

Now let f1 and f2 be two probability models with skeletons H1 and H2

and {�i : [n] ! V (Hi)}i=1,2 two maps such that f1(G)|�1 = f2(G)|�2 for
all G. Then we call �1 and �2 a joint vertex factor of f1 and f2. The
conditionally independent coupling g = C(f1, f2,�1,�2) of f1 and f2 is the
probability model g whose value on G is the conditionally independent cou-
pling g(G) = C(f1(G), f2(G),�1,�2) of f1(G) and f2(G) over �1([n]) and with
f1(G)|�1 = f2(G)|�2 . The skeleton of g is the graph obtained by identifying
the vertices with the same labels in the disjoint union of H1 and H2. After
identification we delete multiple edges in the same way as for smooths graphs
in Section 2.

C(f1(G), f2(G),�1,�2) is a probability measure over

X4 =

⇢
(�1,�2) 2 Hom(H1, G)⇥Hom(H2, G)

����
�1 � �1 = �2 � �2
µ3(�1 � �1) 6= 0

�

which is in fact isomorphic to

X4
⇠= {� 2 Hom(H,G) : µ3(� � �1) 6= 0}

by the isomorphism � 7! (�1,�2) where �1 = �|V (H1) and �2 = �|V (H2). The
property �1 ��1 = �2 ��2 is immediate because the images of �1 and �2 are the
labelled points glued together. The requirement µ3(� � �1) 6= 0 is no restriction
because µ3(� � �1) = 0 implies µ1(�|V (H1)) = 0.

Finally we constructed a probability distribution µ on Hom(H,G) from two
distributions on Hom(H1, G) and Hom(H2, G) using a conditionally indepen-
dent coupling. Note that for � 2 V (G)[n] we have that T�1

�1
(�)⇥ T�1

�2
(�) ✓ X4

is the set of possibilities which extends � to a homomorphism from H to G.

Example 4.4. We take a closer look at some easy probability models. Let
G be any graph. The uniform random edge model G 7! ⌧(e,G) gives us a
probability distribution on V (G)2. For two vertices x, y 2 V (G) the probability
is ⌧(e,G)((x, y)) = 1

2E when {x, y} 2 E(G) and zero otherwise, a uniformly
random chosen edge.

Now we want to couple two edges {w, x} and {y, z} with probability model
⌧(e,G) on one vertex. We define �1(1) = w and �2(1) = y. Check that the
marginal distribution on a vertex is indeed 

⌧(e,G)|�i
(v) =

X

v2e2E(G)

⌧(e,G)(e) =
deg(v)

2E
= (v).
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Then we get that ⌧(e,G)|�1 =  = ⌧(e,G)|�2 and therefore �1 and �2 define
a joint vertex factor of twice ⌧(e,G). We define the conditionally independent
coupling f = (⌧(e,G), ⌧(e,G),�1,�2).

f(G) is a probability distribution on V (G)3. For x, y, z 2 V (G) the proba-
bility is zero if {x, y} 62 E(G) or {y, z} 62 E(G) and otherwise we compute

f(G)((x, y, z)) = µ4((x, y, z)) =
µ1((x, y))µ2((y, z))

µ1|�1(y)

=
⌧(e,G)((x, y))⌧(e,G)((y, z))

(y)

=
(2E)�1(2E)�1

deg(y)(2E)�1

=
1

deg(y)2E
.

The Skeleton of f is the star on 3 vertices. Observe that the probability distri-
bution f(G) is the same as the one we defined in Section 3.3 for proving that
any tree is Sidorenko. In this way we can compute explicitly the probability
model for small graphs.

Note that in the proof we used that the marginal distribution on a single ver-
tex is . This can be generalized to the important property that marginals do not
change under conditionally independent couplings. Let f1 and f2 be probability
models with skeletons H1 and H2. Assume that {�i : [n] ! V (Hi)}i=1,2 defines
a joint vertex factor. Let H be the skeleton of g = C(f1(G), f2(G),�1,�2).

Lemma 4.5. For any subset S1 ✓ V (H1) or S2 ✓ V (H2) the marginal distri-
butions of g(G) are the same for all G as of f1(G), f2(G) repectively, i.e.

g(G)|S1 = f1(G)|S1 g(G)|S2 = f2(G)|S2 8G.

Proof. Let S ✓ V (H1) (S ✓ V (H2) goes analogously) and � : S ! S the
identity map. Then we get for the probability of one element � 2 V (G)S

g(G)|S(�) = g(G)|�(�) = g(G)(T�1
� (�)) = µ4(T

�1
� (�))

=
X

(�1,�2)2X4

T�(�1)=T�(�2)=�

µ4(�1,�2)

=
X

�12X1,�22X2,T�(�1)=T�(�2)=�
µ1|�1 (�1��1) 6=0,T�1 (�1)=T�2 (�2)

µ1(�1)µ2(�2)

µ1|�1(T�1(�1))

=
X

�12X1,T�(�1)=�
µ1|�1 (�1��1) 6=0

µ1(�1)

µ1|�1(T�1(�1))

X

�22X2,T�(�2)=�
T�1 (�1)=T�2 (�2)

µ2(�2).
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Now we consider a fixed �1. We know that S ✓ V (H1), this implies that
�(S) \ V (H2) ✓ �2([n]) and thus T�(�1) = � and T�2(�2) = T�1(�1) implies
T�(�2) = �. We sum over all those �2 an conclude

=
X

�12X1,T�(�1)=�
µ1|�1 (�1��1) 6=0

µ1(�1)
µ2((T�2)

�1(T�1(�1)))

µ1|�1(T�1(�1))

=
X

�12X1,T�(�1)=�
µ1|�1 (�1��1) 6=0

µ1(�1) = µ1 � T�1
� (�).

Definition 4.6. We denote by U the smallest set of probability models which
contains the model G 7! ⌧(e,G) (uniform random edge) and is closed with
respect to conditionally independent couplings over joint vertex factors. The
set of skeletons of models in U is denoted by G.

Notice that the fact that f(G) is a probability distribution on Hom(H,G)
for all G implies that Hom(H,G) is not empty. Taking G as a triangle and a
single edge this in turn implies that every graph in G has to be bipartite.

In particular it follows from the previous lemma that if a probability distri-
bution on Hom(H,G) is constructed according to a probability model in U then
its marginals on the edges of H are all identical to ⌧(e,G) and its marginals
on vertices are identical to . This is the case because every probability model
in U is constructed via conditionally independent couplings from the model
G 7! ⌧(e,G).

Definition 4.7. U1 is the smallest set of probability models which contains
the model G 7! ⌧(e,G) and is closed with respect to conditionally independent
couplings over joint vertex factors under the restriction that the images �i([n])
are independent sets. Correspondingly G1 is the set of skeletons of the elements
in U1.

Note that U1 ✓ U and therefore G1 ✓ G. With all this in our hands we can
now easily prove Sidorenko’s conjecture for G1.

Proposition 4.8. Every element in U1 is a family of witness measures. Con-
sequently every graph in G1 satisfies Sidorenko’s conjecture.

Proof. D(⌧(e,G))  1De, thus ⌧(e,G) is a witness measure. Assume that f1
and f2 are probability models with Skeletons H1 and H2. Assume that the maps
{�i : [n] ! V (Hi)}i=1,2 define a joint vertex factor such that the images of �1
and �2 are independent sets. Let H be the skeleton of g = C(f1, f2,�1,�2).
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T 0 vn�1 vn

Figure 7: Recursively constructing the probability model for a tree T by gluing
together T 0 and one edge on the red vertex.

Then with Lemma 4.1 and 3.2 and the induction hypothesis (IH)

D(g(G))
(6)
= D(f1(G)) +D(f2(G))�D(f1(G)|�1)

(4)
 D(f1(G)) +D(f2(G))

IH
 (|E(H1)|+ |E(H2)|)De = |E(H)|De.

Note that the n = 0 is allowed, because the emptyset is an independent set.
In particular this tells us that the disjoint union of to Sidorenko graphs is again
Sidorenko, which was already proven by Sidorenko himself [10].

With this proposition we now can prove Sidorenko’s conjecture for some
classes of graphs. In the following lemmas we show that trees, even cycles and
bipartite graphs where one vertex is complete to the other side are in G1 and
therefore by Proposition 4.8 satisfy the Sidorenko conjecture.

Lemma 4.9. Any tree T is in G1.

Proof. We prove by induction that any tree T on n vertices has a probability
model in U1 and thus is in G1. For n = 2 we have a single edge. We know that
the uniform random edge model G 7! ⌧(e,G) is in U1 and therefore T is in G1.
Assume that all trees on n� 1 vertices have a probability model f in U1.

Let T be a tree on n vertices v1, . . . , vn and assume that vn is a leaf con-
nected to vn�1. By induction we know that the tree T 0 induced by the vertices
v1, . . . , vn�1 has a probability model f 0 in U1. As stated before the uniform
random edge model for the edge {vn�1, vn} is in U1. We define the labelling
maps {�i : [1] ! V (Hi}i=1,2) by �i(1) = vn. By Lemma 4.5 we know that
for every probability distribution in U the marginals on vertices are identical
to . Thus �1 and �2 define a joint vertex factor of f 0 and ⌧(e,G), because
f 0(G)|�1 =  = ⌧(e,G)|�2 . Since vn�1 is independent the conditional indepen-
dent coupling f = (f 0(G), ⌧(e,G),�1,�2) is in U1. In Figure 7 we illustrate the
gluing process, where the vertex in the image of �1 and �2 are coloured red.
Wee see that the skeleton of f is the tree T and thus we are done.
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v3v2

v1 v4

P4

P4

C6

Figure 8: Constructing the probability model for an even cycle C2m by gluing
to paths of length m on its boundary vertices. Example for m = 3.

This explains how we always can glue any number of additional edge onto
a graph in G1. Sidorenko already proved in [10] that one can add additional
edges to Sidorenko graphs.

Lemma 4.10. Even cycles C2m are in G1.

Proof. We construct a probability model for C2m. The path Pm+1 on m+ 1 ver-
tices v1, . . . , vm+1 is a tree and therefore there is a probability model f inG1 with
skeleton Pm. We define {�i : [2] ! V (Hi}i=1,2) by �i(1) = vm+1 and �i(2) = v1.
Then �1 and �2 define a joint vertex factor, because f(G)|�1 = f(G)|�2 . Observe
that gluing a graph to itself on an independent set is always possible. Since v1
and vm are independent we get that the conditionally independent coupling of
f 0 = (f(G), f(G),�1,�2) has skeleton C2m as shown in Figure 8.

In the proof of the previous lemma we used that we can always glue a graph
to itself on an independent set. We know from Lemma 4.5 that marginals do not
change under coupling and therefore when constructing the probability model
for a graph we can always glue previous graphs on independent sets. Applying
this to stars gives us the possibility to prove that bipartite graph where one
vertex is complete to the other side are Sidorenko.

Proof of Theorem 2.1. Recall that we have vertices x, v1, . . . , vk, y1, ym where x
is connected to v1, . . . , vn and yi is connected to Si ✓ {v1, . . . , vk} and at = |St|.
We recursively build the probability model f = fk+1 for star on k + 1 vertices
x, v1, . . . , vk as in the proof of Lemma 4.9. Now for every t 2 [m] we glue the
stars on the vertex yt with neighbours St onto the probability model f . For this
define {�i : [at] ! V (Hi}i=1,2) by �i([at]) = St, which gives us a joint vertex
factor, because f was constructed from ft. One step can be seen in Figure 9.
We obtain that f is in U1 and therefore the graph is Sidorenko.

In general this gives us the possibility for any tree to reflect a sub-tree on
an independent set and the result will be in G1. Next we want to extend our
gluing techniques.
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Figure 9: Reflecting a sub-star on an independent set to prove that bipartite
graphs with one vertex xomplete to the other side are in G1.

Definition 4.11. Let U2 be the smallest set of probability models which con-
tains the model G 7! ⌧(e,G) and is closed with respect to conditionally inde-
pendent couplings over joint vertex factors which span forests. Correspondingly
G2 is the set of skeletons of the elements in U2.

We have U1 ✓ U2 ✓ U and thus G1 ✓ G2 ✓ G.

Theorem 4.12. Every element in U2 is a family of witness measures. Conse-
quently every graph in G2 satisfies Sidorenko’s conjecture.

To prove the theorem we need the following lemma.

Lemma 4.13. Let H be a forest and G any graph. Let µ be a probability
measure on Hom(H,G) such that the marginals on the edges of H are identical
with ⌧(e,G) and the marginals on the vertices are identical with . Then

D(µ) � De|E(H)|�Dv(2|E(H)|� |V (H)|).

Proof of Lemma 4.13. We go by induction on the number of vertices |V (H)|.
For |V (H)| = 0 there is nothing to prove and for |V (H)| = 1 we get D(µ) = Dv.
If |V (H)| = 2 then either |E(H)| = 1 and then D(µ) = De or |E(H)| = 0 and
D(µ) = Dv +Dv �D(µ|;) = 2Dv which is fine in both cases.

Now assume V (H) � 3 then since H is a forest there exists V1 and V2 such
that V (H) = V1 [ V2 and V1 \ V2 is a single vertex v. We set µ1 := µ|V1 and
µ2 := µ|V2 , then µ is a coupling of µ1 and µ2 over µ3 = µ|v. Let µ4 be the
conditionally independent coupling of µ1 and µ2 over µ3. With E1 and E2 as
the edges contained in the forests induced by V1 and V2 respectively we get
|E(H)| = |E1|+ |E2| and then using Lemma 4.2, 4.1 and 3.2 we get

D(µ)
(7)
� D(µ4)

(6)
= D(µ1) +D(µ2)�D(µ|v)

(4)
� De|E1|�Dv(2|E1|� |V1|) +De|E2|�Dv(2|E2|� |V2|)�Dv

= De|E(H)|�Dv(2|E(H)|� |V (H)|)
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Proof of Theorem 4.12. Let f 2 U2 be a probability model with skeleton H.
We prove by induction that

D(f(G))  De|E(H)|�Dv(2|E(H)|� |V (H)|). (8)

Since we can assume that H has no isolated points we have 2|E(H)| � |V (H)|
which implies D(f(G))  |E(H)|De.

Clearly ⌧(e,G) with skeleton a single edge satisfies the inequality, because
D(⌧(e,G)) = De. Let f1 and f2 be two probability models with skeletons H1

and H2. Assume that {�i : [n] ! V (Hi)}i=1,2 defines a joint vertex factor such
that the images of �1 and �2 form an identical forests we call H3. Let H be the
skeleton of g = C(f1, f2,�1,�2) then we get

D(g(G))
(6)
= D(f1(G)) +D(f2(G))�D(f1(G)|�1)

IH
 De(|E(H1)|+ |E(H1)|� |E(H3)|)
�Dv(2|E(H1)|+ 2|E(H2)|� 2|E(H3)|� |V (H1)|� |V (H2)|+ |V (H3)|)

= De|E(H)|�Dv(2|E(H)|� |V (H)|),

where the first two terms D(fi(G)) are upper bounded by induction hypothesis
(IH) and the third term D(f1(G)|�1) is lower bounded by Lemma 4.13.

In general it is a completely combinatorial and finite problem to decide mem-
bership in these classes. With the three dimensional cube and the 1-subdivision
of K4 we now give two precise examples.

Example 4.14. We want to prove that the 3-cube Q3 is in G2 and therefore
Sidorenko. We start with two 4-cycles which are glued together on one edge.
This graph is in G2 because one vertex is complete to the other side and these
graphs are in G1 ✓ G2. We now take two copies of this graph H1 and H2

with probability models f1 and f2. Define the maps {�i : [4] ! V (Hi)}i=1,2

such that they map onto two opposite edges as indicated with red in Figure 10.
This defines a joint vertex factor since we glue on the same graph and therefore
f1(G)|�1 = f2(G)|�2 . Then by Theorem 4.12 the conditionally independent
coupling g = (f1(G), f2(G),�1,�2) lies in G2 and has skeleton Q3 as shown in
Figure 10. Thus Q3 is Sidorenko.

Example 4.15. Next we want to look at the 1-subdivision of K4. This graph
is obtained from the complete graph on 4 vertices by splitting every edge with a
vertex. We start with two copiesH1 andH2 of a 6-cycle with one additional edge
which clearly is in G2. We define {�i : [4] ! V (Hi)}i=1,2 such that the pendent
vertex and two edges on the other side are labelled as indicated in Figure 11. We
get a joint vertex factor and thus by Theorem 4.12 the conditionally independent
coupling lies in G2. The skeleton is the 1-subdivision of K4 (compare Figure
11) and thus it is Sidorenko. In general the 1-subdivision of the complete graph
Km is not in G2, but we will see later that it is Sidorenko.
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Figure 10: 3-cube is Sidorenko.

H1 H2

�i

Figure 11: 1-subdivision of K4 is Sidorenko.
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We will keep on marking the induced graph of the image of �1 and �2 by
red. But from now on we will omit the reference to the graph D(f) := D(f(G))
and leave out the details about the conditionally independent coupling, because
the argument always is the same. Note that in fact Equation 8 is stronger
then Sidorenko’s conjecture, because if G is not regular, then  is not uniformly
distributed and therefore Dv > 0.

To achieve appropriate upper bounds for the relative entropy using the cou-
pling method we need a lower bound for the relative entropy of the gluing part
containing De times the number of edges. For forests we indeed get equality
between the upper and lower bound. The question is what kind of bounds can
we hope for if we do not glue on forests. Later we will see a recursive scenario
where these terms get cancelled.

Example 4.16. Let us consider an easy example and try to find a lower bound
for the relative entropy of the 6-cycle. To construct C6 we follow the proof of
Lemma 4.10 and start with two paths of length 3. Then these two graphs with
probability models f1 and f2 are glued together on two vertices via {�i}i=1,2.
We get the probability model f for C6. By lemma 4.1 we get

D(C6) = D(f(G)) = D(f)

(6)
= D(f1) +D(f2)�D(fi|�i

)

= 6De � 4Dv �D(fi|�i
)

and therefore we need an upper bound for D(fi|�i). fi|�i is a distribution for
two vertices which have an edge in their neighbourhood. Lemma 4.2 only gives
us a lower bound of 2Dv.

4.4 Boundaries of G1 and G2

In this part we want to develop a way to prove that a certain bipartite graph
is in G2 \ G1. For a graph H not to be in G1 we have to show that it is not
possible to obtain the probability model for this graph from the uniform random
edge model using couplings over independent sets. To prove this we consider
any independent set A that disconnects H up to symmetry. Then we need to
look at all possible partitions of the remaining vertices into two sets such that
the vertices in A can be reached from both sets. Together with A these two
sets induce the graphs H1,H2 and the maps {�i}i=1,2. Let f1 and f2 be two
probability models in G1 with skeletons H1 and H2 respectively. It is left to
show that �1 and �2 do not define a joint vertex factor of f1 and f2, i.e. we
need to find G such that f1(G)|�1 6= f2(G)|�2 . How can we find such G? The
following is true for all probability models.

Claim. A very important fact is that for all probability models f 2 U with
skeleton H, all graphs G and any homomorphism � 2 Hom(H,G) the proba-
bility of f(G)(�) is non-zero.
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Proof. Let G be any graph. The probability distribution ⌧(K2, G) corresponds
to a uniformly random chosen edge and thus every homomorphism has non-zero
probability. Let f1 and f2 be two probability models with the above property
and assume that {�i : [n] ! V (Hi)}i=1,2 define a joint vertex factor. Let H be
the skeleton of g = (f1(G), f2(G),�1,�2) and � 2 Hom(H,G) any homomor-
phism. Then

g(G)(�) = µ4((�1,�2)) =
f1(G)(�1)f2(G)(�2)

f1(G)|�1(T�1(�))

which is non-zero by assumption, because �1 and �2 are homomorphisms.

Intuitively it is clear that in any coupling vertices that did not have a com-
mon neighbour before cannot have one afterwords. Using the above claim we
want to formulate this in the following lemma.

Lemma 4.17. Let H1 and H2 be graphs with probability models f1, f2 2 U
and let {�i : [n] ! V (Hi)}i=1,2 be such that �1([k]) has a common neighbour
in H1 but �2([k]) does not in H2. Then �1 and �2 do not define a joint vertex
factor and in particular f1(G)|�1 6= f2(G)|�2 for some G.

Proof. Let G = H2 and � 2 Hom(H2, G) the identity, then we get that
f2(G)|�2(T�2(�)) 6= 0 because f2(G)(�) 6= 0. But in H1 the vertices �1([k])
do have a common neighbour and therefore it is not possible to extend T�1(�)
to a homomorphism in Hom(H1, G) and thus f1(G)|�1(T�2(�)) = 0.

The lemma tells us that if we find a set of vertices that have a common
neighbour in H1 but not in H2 then there cannot be any coupling. As an
example we will now proof that the 3-dimensional cube is not inG1 and therefore
in G2 \G1.

Example 4.18. Let H be the three dimensional cube as in Figure 10. We
have to consider all independent sets in V (H) and check if there is any coupling
possible. For every independent set A we have to check all possible partitions
of the remaining vertices into two sets such that both reach all of A. Vertices
in A will always be coloured red. All vertices that belong to one of the two sets
will be coloured with green and together with A they induce H1. H2 is induced
by all red and black vertices.

The largest possible independent set in H is of size 4 and is unique up to
symmetry. The only possible partition for the rest is into two sets of two,
because any three vertices have a common neighbour, which the fourth one
cannot reach. As shown in Figure 12 on the left we can apply Lemma 4.17 to
the vertices a, b and c, which do have a common neighbour in H2 but not in H1.
Thus there cannot be a coupling using this independent set.

For independent sets of size three there is still only one possibility since any
two from one side cover the hole other side. The rest is already a partition as
shown in Figure 12 on the right and again vertices a, b and c do have a common
neighbour in H2 but not in H1.
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Figure 12: We cannot build the 3-cube by gluing on an independent set of size
4 or 3.

Since H is 3-regular there are two di↵erent independent sets of size two.
Either we take two points from one side or two antipodal points. In both cases
the graph stays connected and therefore there exists no partition. Obviously
the same holds for independent sets of size one. We implicitly proved that the
vertex connectivity of H is 3.

We checked all independent sets and in conclusion there are no two proba-
bility models f1 and f2 such that any coupling over an independent set gives us
a probability model with skeleton H, i.e. H 62 G1.

It is a little bite more complex, but with the same arguments one can prove
that the 1-subdivision of K4 is in G2 \ G1. To prove that a graph H is not in
G2 or even not in G one has to check all possible forest in H or every subgraph
for a partition that induces a coupling. We will see an example for this later.

5 Further applications of the method

5.1 Graph where one class is of size at most four

In his original paper [10] Sidorenko proves that all bipartite graphs with one
class of size at most three are Sidorenko. He claims that the same calculations
hold if we consider graphs where one class is of size at most 4. With the
method of Szegedy we can now verify that this statement is also true. Let H
be a bipartite graph with independent sets A[̇B = V (H), where |A|  4. We
assume the graph to be connected, because otherwise we consider its connected
components and disjoint union of Sidorenko graphs are again Sidorenko.

If |A| = 1 then we have a star, which is Sidorenko. If |A| = 2 then either
it is a tree or there are at least two common neighbours for the vertices in
A which make these neighbours complete to the other side. In both cases we
showed that H is Sidorenko. If for A = {x, y, y0} these three vertices have
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a common neighbour we are again done. So assume they do not. We then
start with two copies of the graph Tr,q from Section 2.3 which are Sidorenko
since all the r 6= 0 vertices are complete to the other side. Next we define
{�i : [q + 1] ! {x,w1, . . . , wq}}i=1,2 and glue both together along �i([q + 1]) as
indicated in Figure 13. Then the resulting graph Tr,r,q is Sidorenko. We can
add r0 � r further neighbours to x and y0, because the marginal distribution on
this vertices did not change. Gluing edges onto x, y and y0 gives us any possible
graph H we need. Since H is connected we can assume w.l.o.g. r 6= 0 and
r0 6= 0, whereas q could be zero.

y

y0

x q

r

r0

Figure 13: Tr,r0,q

Now we need to consider A = {w, x, y, z}. Again, if there is a vertex con-
nected to all of A we are done, because it is then complete to the whole other
side which is A. Assume there is no such vertex. The examples from the last
section (3-cube and 1-subdivision of K4) now give us the building blocks for
any graph of this kind. Basically we have to apply both constructions at once
while replacing some vertices by more. As in the previous case we do not need
to worry about vertices that are only connected to one vertex in A because we
can add them afterwords. Therefore the graph looks like in Figure 14 and we
have to take care of

�4
2

�
= 6 sets for the pairwise neighbourhoods of two vertices

in A and of
�4
3

�
= 4 sets for threefold neighbourhoods. Note that some of these

sets could be empty, but we know that the graph is connected. As shown in
Figure 14, we want to glue some variants of the graphs H1 and H2 together on
the red forest. The red vertex in the center is only there if s is odd, so we have
s common neighbours for x and y in total.

We do a case distinction by the number l = 0, . . . , 4 which counts how many
threefold neighbourhoods of A are non-empty.

• l = 0: This implies t = r = r0 = q = 0. Since H is connected we can
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2c
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t q w

Figure 14: Constructing any bipartite graph with one class A = {x, y, z, z0}.

assume w.l.o.g. that x and y have s > 0 common neighbours and x and
z have u > 0 common neighbours. Further we know that either w > 0 or
one of u0 and v0 is non-zero. If u0 = v0 = 0 then we just take a double star
H2 on z and z0 with w neighbours, H1 = Ts,u,v on x,y and z and glue both
together on z. This graph is Sidorenko, because the induced probability
distribution on a vertex is always  and therefore we can always glue two
Sidorenko graphs on a single vertex. The same works if w = 0 and one of
v, v0 and u0 is zero.

Now for w > 0 we are left to check the cases where u0 > 0 or v0 > 0.
If v = 0 and v0 = 0 we can again glue a double star on x and y to the
graph Tu,u0,w on x,z and z0. If v = 0 and u0 = 0 then we need a blown
up 8-cycle. We start with two edges with endpoints x and y and glue
this on two edges with endpoints x and z0. Next we take another copy of
this path of length four with the middle vertex z and glue both together
on x and z0. The resulting 8-cycle, where every second vertex is one of
x, y, z, z0, allows us to add vertices until we have u,s,v0 and w neighbours
for the respective vertices.

Independently of w the only case left is v > 0, u0 > 0 and v0 > 0. Then let
H1 = T1,1,d s

2 e on x, y, z and H2 = T1,1,d s
2 e on x, z, z0 and add w neighbours

to z and z0 afterwords. We can glue H1 and H2 as shown in Figure 14 on
x,y, one neighbour if s is odd and the set of size w. Afterwords we add
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u � 1,v � 1,u0 � 1 and v0 � 1 neighbours to the respective vertices. This
is possible because the marginal distribution on two of these vertices did
not change during coupling and therefore these constructions are in G2

• l = 1: Assume w.l.o.g. that x, z and z0 do have a common neighbour, i.e.
t > 0, but r0 = r = q = 0. We have to distinguish with which vertices y
has common neighbours.

If y only has common neighbours with one other vertex in A, say w.l.o.g.
x, then s > 0 and v0 = v = 0. Take the graph H1 induced by x,z, z0

and their common neighbours, which is Sidorenko, since t vertices are
complete to the other side. We can glue the double star H2 on x and y
with s common neighbours together with H1 on x.

Otherwise y has a common neighbour with at least two other vertices, say
w.l.o.g. v > 0 and v0 > 0 with v > v0. Then let H1 = Td s

2 e,v,t on x,y,z
and H2 = Td s

2 e,v,t on x,y,z0 and add w neighbours to z and z0 afterwords.
We can glue both graphs on x, y, one neighbour if s is odd and the sets of
size t and w as shown with red in Figure 14. Then add u neighbours for
x and z, u0 neighbours for x and z0 and the v � v0 remaining neighbours
for y and z0 to complete the graph to H. This is possible, because adding
neighbours in both Hi was possible before gluing and thus it is afterwords.
Since H1 and H2 are in G1 and all other added neighbours were glued on
independent sets H is in G2

• l � 2: W.l.o.g. we can assume that x, y, z and x, y, z0 have a common
neighbour, i.e. r > 0 and r0 > 0, where r � r0. Let H1 be the graph on
x,y,z with neighbour set of size r,t,d s

2e,q and w and similarly let H2 bet
the same graph on x,y and z0. We glue both together on the forest spanned
on the red vertices. Afterwords we add u,u0,v,v0 and r � r0 neighbours to
their respective vertices to complete the graph to H. Again H is in G2,
because H1 and H2 are in G1 and all other added neighbours were glued
on independent sets.

All together we proved that any H is in G2 if |A|  4 and therefore satisfies
the Sidorenko conjecture.

5.2 What about 5?

After the previous section the immediate question is: What can we say about
graphs with at most 5 vertices on one side? Let us look at the building blocks.
For the 1-subdivision of K5 we easily prove that it is in G (Figure 15) and later
in Section 5.4 we will show that the 1-subdivision of Km is Sidorenko for all m.
The crucial fact will be that we glue on a smaller instance of the graph which
is contained in both gluing parts and therefore we will be able to get rid of the
negative term.

The complete bipartite graph K5,5 minus a perfect matching (for 4 vertices
this was the cube) is in G as shown in Figure 16. This construction can be
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Figure 15: The 1-subdivision of K5 is in G glued together on a 6-cycle plus a
single vertex.

Figure 16: K5,5 minus a perfect matching glued on a 6-cycle is in G.
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generalized to the graph Km,m minus a perfect matching for all m in a straight
forward way by gluing on the same graph for m� 1. The problem with proving
Sidorenko’s conjecture for this graphs is that we glue on a graph which is not an
induced subgraph of the parts we glue together, in the above case the 6-cycle.
With some extra calculations one can show that for m 6= 5, 8, 11, . . . this graph
is Sidorenko, but we do not do it here.

It remains to look at 5 vertices where every three of them have a unique
common neighbour. Recall the K5,5 minus a ten-cycle is the smallest graph for
which the conjecture is open. The graph described before consists of two copies
of it glued together on the 5 vertices. We will now show that K5,5 � C10 is not
in G as Szegedy [12] claimed and therefore the method in its current state fails
for this graph.

b

a

H1

H2

b

a

H1

H2

b

a

H1

H2

Figure 17: The K5,5 minus a C10 with independent sets of size 5,4 and 3.

For the start let us prove that H = K5,5 � C10 is not in G1. To prove this
we have to consider every independent set A which disconnects H, check all
possible ways to partition the remaining vertices into two sets such that both
reach A and prove that the induced graphs H1 and H2 cannot form a coupling.

The largest possible independent set A is of size 5. After the removal we are
left with 5 independent vertices. We cannot take four vertices in one set, because
the graph is 3-regular and therefore the fifth would not be able to reach all of
A. We also cannot take only two vertices which have two common neighbours
into one set, since they also cannot reach one vertex of A. But we can take
any two neighbours into one set, which only have one common neighbour. The
other three go into the second set. The result for H1 and H2 such that the
intersection is A is illustrated in Figure 17 on the left. Again we have vertices a
and b which have a common neighbour in H1 but not in H2. Lemma 4.17 then
gives us that there is no coupling possible.

Since three vertices of one side cover the complete other side there is also
only one independent set of size 4. After removal of this set we are left with
three components, but we need to combine the two singletons to reach all of A
because they only have degree three. Up to symmetry there is also only one
possibility for a independent set of size three that disconnects H as in Figure
17 on the right. It immediately gives us the partition into two set. In both
cases we get vertices a and b are as desired and we conclude with Lemma 4.17.
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All other independent sets cannot disconnect H and therefore no partition is
possible. Thus K5,5 � C10 62 G1.

b

a

H1

H2

b

a

H1

H2

a

b

H1

H2

Figure 18: The K5,5 minus a C10 with a tree that does not use any diagonal
edges and disconnects the graph.

Now we want to address G2. We need to check all subsets A of the vertices
V (H) that span a forest and disconnect H. All independent sets were already
considered before and thus we only consider forests with at least one edge.
Observe that H can be seen as a 10-cycle with 5 diagonals and thus there are
two di↵erent kind of edges, the diagonals and the cycle edges.

First look at all forest not using any diagonal edges and at least one cycle
edge. Then we can have at most 5 vertices, because the diagonal edges cover
all vertices. But 4 vertices which do not induce a diagonal edge are not enough
to disconnect the graph. Thus the only possibility is taking to cycle edges and
one additional vertex as shown in Figure 18. We are left with three sets, which
give us three possible partitions into H1 and H2 and we always have vertices a
and b as desired.

a

b

H1

H2

a

b

H1

H2

Figure 19: The K5,5 minus a C10 with a tree that only edge is diagonal and
disconnects the graph.

Now we consider forests with exactly one diagonal edge. Removing any
diagonal edge leaves us two paths of length 4 with 4 diagonal edges, which we
want to disconnect without using another diagonal edge. We can use at most
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4 vertices, because the diagonal edges cover all vertices. It is not possible to
disconnect the remaining graph with one vertex. If we want to disconnect it by
two additional vertices we need to choose two which are on opposite sides on a
4-cycle. Up to symmetry there are two possibilities as shown in Figure 19.

In Figure 20 there are all remaining possibilities for a forest that disconnects
the graph using exactly one diagonal edge and vertices a and b in every case. In
the first row there are all possibilities two split the remaining graph into two sets.
Either we choose an edge in the middle, which forces us to take another vertex as
on the top left. We cannot take a fifth because then we have three components.
Or we choose an independent vertex, which gives us two possibilities two choose
another two edges which leave us with two components.

Now we have to look in where in these constructions we can add another
vertex which does not create a second diagonal edge. In the next three rows
there are all possible ways where we get three components with all choices for
H1 and H2. The second row is the only possibility to add a vertex to the first
example of Figure 19, the second row contains the only possibility to extend the
first two examples of Figure 20 and the third row the only possibility to extend
the third example without creating a second diagonal edge. We considered all
possibilities starting from a diagonal edge and not having a second.

There cannot be a forest using three diagonal edges, because then we would
have a 4-cycle. Therefore it is left to check that all forest with exactly two
diagonal edges cannot induce a coupling as shown in Figure 21. We fix any two
not neighbouring diagonal edges, which already gives us the first example on
the top left. The next two possibilities are all possible choices for one additional
vertex up to symmetry.

We can add another vertex to the example in the top middle in two di↵erent
ways. Either we get the graph on the left of the second row, or the graph in the
third row which has three possibilities for H1 and H2. The graph on the top
right has also two possible additional vertices shown on the right of the second
row. Adding any other vertex to one of this examples that does not create a
cycle gives us the same example shown in the last row which also gives us a
partition into three sets. In all of these examples we have vertices a and b which
allow us to apply Lemma 4.17.

For G it remains to check all subgraphs that are not forests. So there either
has to an induced 4- or 6-cycle. If we remove a 6-cycle we are left with a path
of length three. Avoiding a 4-cycle up to symmetry there is only one possibility
to disconnect it as shown in Figure 22.

Removing a C4 from H leaves us with a path of legnth 3 with 3 diagonal
edges. We can now disconnect the graph using two more vertices by choosing
the middle edge or one of the middle vertices and a non-neighbouring vertex.
Both possibilities are treated in Figure 23 in the first row. If we want to use 7
vertices in total there are 3 left so disconnect the remaining graph. We cannot
choose two vertices next to the C4 and thus the only possible choice is shown
on the top right. Since we need at least two vertices left the maximum number
of vertices that we can remove is 8. For the two vertices left we can choose both
from the same side which have one common neighbour, both from the same side
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Figure 20: The K5,5 minus a C10 with any choice for a forest using exactly one
diagonal edge and disconnecting the graph.

44



a

b

H1

H2

a

b

H1

H2

a

b

H1

H2

a

b

H1

H2

a

b

H1

H2

a

b

H1

H2

a

b

H1

H2

a

b

H1

H2

a

b

H1

H2

a

b

H1

H2

a

b

H1

H2

a

b

H1

H2

Figure 21: The K5,5 minus a C10 with any choice for a forest using exactly two
diagonal edges and disconnecting the graph.
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Figure 22: The K5,5 minus a C10 with any choice for a subgraph that only cycle
is of length 6 and is disconnecting the graph.

which have two common neighbours or both from di↵erent sides as shown in
the bottom of Figure 23. In all cases we get two vertices a and b which have a
neighbour in one graph but not the other and allow us to apply Lemma 4.17.
Therefore no coupling on a graph is possible and all together we have proved
that the K5,5 � C10 is not in G.

5.3 All cubes are Sidorenko

As seen in the previous chapter the three dimensional cube is in G2. We will
now prove that all cubes are in G and satisfy the Sidorenko conjecture. This
result was first shown by Hatami in [7] who proved that norming graphs are
Sidorenko and that all cubes are norming graphs.

We recursively define the d-dimensional cube Qd. Q0 is just a single
vertex. Qd+1 is obtained from Qd by taking to copies of Qd and adding an
edge for every vertex to its copy. Note that the following recursive and explicit
formulas hold for the number of vertices and edges respectively

|V (Qd+1)| = 2|V (Qd)| |V (Qd)| = 2d

|E(Qd+1)| = 2|E(Qd)|+ |V (Qd)| |E(Qd)| = d2d�1

We want to recursively construct probability models for the cube Qd. We
cannot use the above constructions. Start with the probability model f1 = (G 7!
⌧(e,G)) with skeleton Q1. Now we construct fd+1 from fd. Take the condition-
ally independent coupling f of twice fd where (�i : [2d�1] ! V (Qd�1))i=1,2 as
shown in Figure 24. Then take the conditionally independent coupling fd+1 of
twice this f where we define (�i : [2d] ! V (Qd�1)[̇V (Qd�1))i=1,2 as in Figure
25. The skeleton of fd+1 is Qd+1. This constructions shows that fd is in G for
all d.

Theorem 5.1. fd is a family of witness measures for all d and consequently all
cubes are Sidorenko.

Proof. We want to obtain the same inequality (8) as in Theorem 2.1, but we
cannot apply Proposition 4.8 since we do not glue on forests. Observe that
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Figure 23: The K5,5 minus a C10 with any other choice for a subgraph that is
not a forest and disconnecting the graph.

fd�1

fd fd

Figure 24: Gluing together twice the probability model fd on the red vertices
to get f . Example for d = 3.
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fd�1 fd�1

f
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fd+1

Figure 25: Gluing together twice the probability model f on the red vertices to
get fd+1. Example for d = 3.

we always glue on two disjoint cubes which gives us the possibility to obtain a
recurrence relation.

From the definition of U we know D(f0) = Dv and D(f1) = De. Using what
we obtained above and that f |�i

= fd�1 we achieve

D(fd+1) = D(f) +D(f)�D(fd+1|�i)
= 4D(fd)� 2D(f |�i

)�D(fd+1|�i)
= 4D(fd)� 2D(fd�1)�D(fd+1|�i)

The last term is the relative entropy of a coupling of two disjoint cubes
of dimension d � 1. To see this let µ1 = fd+1|�i |V (Qd�1) = fd�1 and µ2 =
fd+1|�i |V (Qd�1) = fd�1 be the marginal distribution on both cubes, then fd+1|�i
is a coupling of µ1 and µ2. Using Lemma 4.2 we can lower bound the relative
entropy of this coupling by the relative entropy of the conditional independent
coupling µ4 of µ1 and µ2 over fd+1|;. Then

D(fd+1|�i)
(7)
� D(µ4)

(6)
= 2D(fd�1)�D(fd�1|;) = 2D(fd�1)

and therefore we get

D(fd+1)  4D(fd)� 4D(fd�1).
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Repeated application for i < d yields

D(fd)  · · ·  i2i�1D(fd�i)� (i� 1)2iD(fd�1�i)

 i2i�1(4D(fd�i�1)� 4D(fd�i�2)))� (i� 1)2iD(fd�1�i)

= (i2i�14� (i� 1)2i)D(fd�i�1)� i2i�14D(fd�i�2)

= (i+ 1)2(i+1)�1D(fd�(i+1))� ((i+ 1)� 1)2i+1D(fd�1�(i+1))

and so finally we get

D(fd)  Ded2
d�1 �Dv(d� 1)2d  |E(Qd)|De,

which is precisely the same as Equation (8). Therefore Qd is Sidorenko for all
d.

The proof for the d-dimensional cube can be generalized to any grid in any
dimension using the recursion from above. One has to be careful and ensure that
all the minus terms are cancelled. This result was also proven before by Kim,
Lee and Lee [8] in their second extension to Cartesian products. For a tree T
and bipartite graph H the Cartesian product T ⇥H is a graph on V (T )⇥V (H)
where (v1, u1) and (v2, u2) are adjacent if u1 = u2 and {v1, v2} 2 E(T ) or
v1 = v2 and {u1, u2} 2 E(H). They prove the following:

Theorem 5.2. If T is a tree and H is a bipartite graph having Sidorenko’s
property, then T ⇥H also has Sidorenko’s property.

We will discuss this with Szegedy’s new method in Section 5.5. Taking
paths of various length P1, P2, . . . , Pd which are Sidorenko gives us that the d-
dimensional grid P1 ⇥ P2 ⇥ · · · ⇥ Pn is again Sidorenko. In particular this also
implies that all cubes Qd = K2 ⇥K2 ⇥ · · ·⇥K2 are Sidorenko.

We proved that Qd is in G for all d and earlier that Q3 2 G2 \ G1. The
question is what is the maximum d such that Qd is in G2. Or does this hold for
all d? In Figure 26 we give the only possible construction for the 4-dimensional
cube, using couplings over trees only. None of the methods we established sug-
gest that this is not working, but we do not give a proof either. The red vertices
induce a forest and give us the graphs H1 and H2 shown below. It remains to
be shown that the induced probability distributions on the red vertices in H1

and H2 are the same, which in principal could be done by explicitly computing
them in the sense of Example 4.4.

This construction really looks promising, which is in accordance with Szegedy,
who mentioned in private communication that he thinks that cubes up to di-
mension 6 are in G2.

5.4 1-subdivision of Km is Sidorenko for all m

Similar to the cubes we can also deal with the 1-subdivision of Km. First define
the 1-subdivision of Km as the graph Sm which is obtained from the complete
graph Km by splitting every edge into two. A recursive construction becomes
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Q4

H1 H2

Figure 26: Possible construction to show that Q4 2 G2.

50



clear when we construct a probability model corresponding to Sm. The graph
Sm has m+

�
m
2

�
vertices (m for the vertices of Km and one for every edge) and

2
�
m
2

�
(every edge is split in two) edges.

S1 is just a single vertex, S2 two adjoined edges and S3 a 6-cycle. Starting
from S1 we can recursively construct a probability model for Sm+1 by taking
two copies of Sm, joining one edge to a corner and then gluing both together via
{�i}i=1,2 on a Sm�1 and a single vertex. We have already seen this construction
for m = 4 in Figure 11 and for m = 5 in Figure 15. Let fm be the probability
model corresponding to Sm and f for Sm plus one adjoined edge. Again we
want that the relative entropy of some terms cancel each other. Observe that
we get D(f) = D(fm) +De�Dv by Lemma 4.1 and D(f |�i) � D(fm�1) +Dv

by also using Lemma 4.2. So now we can do the following computation

D(fm+1)
(6)
= D(f) +D(f)�D(f |�i

)

 2D(fm)�D(fm�1) + 2De � 3Dv.

Repeated application for i < m gives us

D(fm)  . . .

 (i+ 1)D(fm�i)� iD(fm�i�1) + 2

✓
i+ 1

2

◆
De � 3

✓
i+ 1

2

◆
Dv

 (i+ 1)[2D(fm�i�1)�D(fm�i�2) + 2De � 3Dv]

� iD(fm�i�1) + 2

✓
i+ 1

2

◆
De �

✓
i+ 1

2

◆
Dv

= (i+ 2)D(fm�(i+1))� (i+ 1)D(fm�(i+1)�1) + 2

✓
i+ 2

2

◆
De � 3

✓
i+ 2

2

◆
Dv.

Finally after m� 3 steps, using D(f1) = Dv and D(f2) = 2De �Dv we get

D(fm)


✓
2

✓
m� 1

2

◆
+ 2(m� 1)

◆
De �

✓
(m� 1) + (m� 2) + 3

✓
m� 1

2

◆◆
Dv

= 2

✓
m

2

◆
De �

✓
3

✓
m

2

◆
�m

◆
Dv

= |E(Sm)|De � (2|E(Sm)|� |V (Sm)|)Dv

and therefore Sm is Sidorenko. This result was not proven before in any of the
present resources.

5.5 A question of Szegedy

In this part we want to give a partial answer to the question of Szegedy [12]
what the relationship between the results from Kim, Lee and Lee [8] and his new
method is. First we will proof that their first approach to Sidorenko’s conjecture
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is covered by Szegedys method, i.e. tree-arrangeable graphs are in G1. Recall
that a bipartite graph is tree-arrangeable if there exists a bipartition A[̇B and
a tree T on A such that for all vertices u, v 2 A

N(u) \N(v) =
\

w2P

N(w)

for any path P in T connecting u and v, where N(u) is the set of neighbours of
u in H.

Theorem 5.3. All tree-arrangeable graphs are in G1.

Proof. Let H be a tree-arrangeable graph with V (H) = A[̇B, and T a tree
on A = {a1, . . . , an} with the above property. We recursively build H starting
from a vertex a1 with neighbours N(a1) and following T . At step i we have the
graphHi�1 which already contains all vertices a1, . . . , ai�1 and their neighbours.
Assume that ai is a neighbour of ai�1 in T and let T 0 be the graph induced by
a1, . . . , ai in T .

Now take a star on ai with neighbours N(ai). We want to glue all vertices in
N(ai) onto the respective vertices in Hi�1 if they already exist. Let Ni ✓ N(ai)
be all the neighbours of ai present in Hi�1. Thus we have to check that the
marginal distributions on Ni are the same in the probability model for Hi and
the star.

We know that for every vertex aj for j = 0, . . . , i� 1 and any path from ai
to aj in T 0

N(ai) \N(aj) =
\

w2P

N(w).

Since ai is a leaf in T 0 every path from ai to another vertex has to use ai�1. This
implies that for all j = 1, . . . , i�1 we get Ni\N(aj) ✓ N(ai)\N(aj) ✓ N(ai�1).

Using that V (Hi�1) =
Si�1

j=1 we get Ni ✓ N(ai�1). Since all vertices in Ni are
neighbours of ai�1 the marginal distribution is the same as in the star centered
at ai. So we can glue the star to Hi�1 on Ni giving us Hi.

After n steps we get the graph Hn = H and since we only glued on inde-
pendent sets H 2 G1.

Next we want to investigate the second approach with Szegedy’s methods.
Taking any Sidorenko graph we cannot do anything with this method, because
we need a probability model for H. So at least we need to assume that H is in
G with probability model f and D(f)  eDe.

We will use a slightly di↵erent construction for T ⇥H. Let {Tv}v2V (H) be
vertex-disjoint copies of T . For every edge {v1, v2} 2 E(H) we place an edge
between every vertex in Tv1 and Tv2 , so that they form a copy of T ⇥ K2 as
shown in Figure 27.

We want to check that this construction gives us T ⇥ H. Here a vertex
(v, u) 2 V (T ⇥H) corresponds to the vertex v in V (Tu). If {(v1, u1), (v2, u2)}
is an edge in T ⇥ H then there are two cases possible: Either u1 = u2 and
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Figure 27: The Cartesian product of a tree T with a single edge e.

{v1, v2} 2 E(T ), then there is an edge between v1 and v2 in Tu1 . Or v1 = v2 and
{u1, u2} 2 E(H), then there is an edge between v1 in Tu1 and v1 in Tu2 because
of the edge in H. The other way round every edge added in the construction
above corresponds to an edge in T ⇥ H by similar arguments. Therefore the
second construction gives us the same graph.

Let T be a tree and H 2 G. What can we say about T ⇥ H? We have a
probability model f 2 U for H which is constructed from the uniform random
edge model using conditionally independent couplings. We will try to reproduce
this construction not starting from ⌧(e,G) but a probability model on T ⇥K2

to get a probability model g for T ⇥H. We get a starting probability model g0
for T ⇥K2 in U2 by just gluing 4-cycles together along edges as shown in Figure
27.

In the first step of the construction for f two edges ⌧(e,G) are glued together
on a vertex. Therefore we take to copies of T ⇥K2 with probability models g0
and glue them along the tree T . This gives us a probability model in U2.

In any other step of the construction for f two graphs H1 and H2 with
probability models f1 and f2 in U are glued together on a joint vertex factor
{�i}i=1,2, i.e. f1|�1 = f2|�2 . The labelled vertices induce a graph H0 and we
get the probability model f 0 in U with skeleton H 0.

Therefore we take the two probability models g1 and g2 in U with skeletons
T ⇥ H1 and T ⇥ H2. We want to glue them together on a joint vertex factor
{⌘i}i=1,2 to get the probability model g0 in U with skeleton T ⇥H 0. We can con-
struct {⌘i : [n · |V (T )|] ! V (T ⇥Hi)}i=1,2 by extending {�i : [n] ! V (Hi)}i=1,2

from H0 to T ⇥H0 in the canonical way.
We need to prove that g1|⌘1 = g2|⌘2 , which seems plausible since we obtained

g1 and g2 from g0 in the same way as f1 and f2 from ⌧(e,G). Of course this is
true if we glue a graph to itself or a former subgraph as its the case in all of our
constructions, but in general it needs more precise investigations to formalize
this statement.

Assume for the moment that we managed to prove that g0 2 U in all cases.
Then we would face another problem: Assuming that H 0 2 G is Sidorenko we
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have

D(f 0) = D(f1) +D(f2)�D(f1|�1)  |E(H 0)|De

and we need

D(g0) = D(g1) +D(g2)�D(g1|⌘1)
 (|E(H 0)| · |V (T )|+ |V (H 0)| · |E(T )|)De = |E(T ⇥H 0)|De.

We are also not able to show this at the moment, because we need a lower bound
for D(g1|⌘1) where T ⇥ H 0 might contain cycles even if H 0 did not. To get a
lower bound we would need to know more about the calculation of D(f 0) and
possible ways to get rid of the negative terms as we did for the cubes.

On the other hand this works if f 2 U1. Then we only glue on independent
sets H0 and therefore T ⇥H0 would always be a forest and thus g0 2 U2. Sum-
ming this up we have proved that for any tree T and a graph H with probability
model f 2 U1, which was constructed solely by reflection and gluing on former
subgraphs, the Cartesian product T⇥H is in G2 and therefore Sidorenko. Possi-
ble examples for H are trees, even cycles and bipartite graphs where one vertex
is complete to the other side.

6 Concluding remarks

In the previous two sections we proved Sidorenko’s conjecture for two classes of
graphs in G, the d-dimensional cubes and the 1-subdivision of Km. The con-
structions of the probability models used conditionally independent couplings
over graphs that are not forests. The proofs did go through because we did glue
on smaller instances of the graphs which appeared in both gluing parts. This
way the negative terms were equalized by the positive terms. A proof like this
is possible if we have a recursive construction for the graphs which gives us the
right cancellations.

With some more detailed analysis of the relative entropy of the 6-cycle we
should be able to prove that the K5,5 minus a perfect matching is Sidorenko.
An even beyond this there are much more classes of graphs in G which allow a
recursive construction and therefore the possibility to construct the probability
measures in U.

To finish we list some more remarks and give ideas for future studies. Szegedy
claims [12] that with his method one can prove the equivalent conjecture for
some classes of 3-uniform hypergraphs, but note that Sidorenko proved that the
conjecture fails in general [11].

We proved that the extension by Kim, Lee and Lee [8] to tree-arrangeable
graphs is covered by Szegedys method. Even though the Cartesian product does
not seem to go beyond G we are so far not able to prove it with the method of
Szegedy, because of the generality and complexity of the statement.

To really understand the impact of the method of Szegedy completely it
would be necessary to find a complete combinatorial characterization of G1, G2
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and G. For this we would need to extend the arguments given in Section 4.3
and 4.4 and explore what combinatorial properties make the di↵erence between
Q3 2 G2 \G1 and graphs that are in G1.

The main tool of the method is the inclusion-exclusion formula (Lemma 4.1)
for conditionally independent couplings. This immediately suggest an extension
to a coupling of three or more probability distributions in the sense of the usual
inclusion exclusion formula for multiple sets. This might be one approach to
avoid the application of Lemma 4.17.

On the other hand we proved that K5,5 � C10 is not in G. Since it is very
hard to surpass G with the coupling method and this seems to be the right tool
for dealing with densities on graph homomorphisms this raises the provocative
questions if Sidorenko’s conjecture fails outside G. In contrast to this it would
be really nice to prove the conjecture for any graph not in G.
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