Problem 1 Quicksort

In class, you saw a randomized incremental algorithm for point location in a trapezoidal decomposition of the plane. In this problem, we will look at a one-dimensional variant of the problem. Let \(P = \{x_1, x_2, \ldots, x_n\} \) be a set of \(n \) numbers, given in no particular order.

Consider the algorithm that picks a random permutation of \(P \) and then inserts the elements of \(P \) in this order into an (unbalanced) binary search tree \(T \).

(a) Explain how this algorithm can be interpreted as a one-dimensional version of the algorithm in class.

(b) Show that the expected running time for the construction of \(T \) is \(O(n \log n) \).

(c) Let \(z \) be a fixed number. Give a bound on the expected time it takes to search for \(z \) in \(T \). Here, the expectation is over the random permutation used to construct \(T \).

(d) Explain how this algorithm resembles randomized quicksort.

Problem 2 Trapezoidal map and search structure

Give an example of set of \(n \) line segments with an order on them that makes the algorithm we have seen in class create a search structure of size \(\Theta(n^2) \) and worst-case query time \(\Theta(n) \).

Problem 3 Point in polygon

Let \(P \) be a polygon given as an array of its \(n \) vertices in sorted order along the boundary. Give an algorithm that, given a query point \(q \), decides whether \(q \) lies inside \(P \) in \(O(\log n) \) time for the case where \(P \) is

(a) convex;

(b) \(y \)-monotone;

(c) star-shaped. Here you can assume that a witness point \(p \) in the interior of \(P \) that ‘sees’ every point in \(P \) is also given.