6. Assignment on
Computational Geometry
Panos Giannopoulos, Wolfgang Mulzer, Lena Schlipf SoSe 2013

Due on 20. May 2013 in the tutorial session

Problem 1 Visibility Polygon

Let P be a simple planar polygon with n vertices. Let x be a point inside P. The visibility polygon $\text{vis}_P(x)$ of x is the set of all points q in P that are visible from x, i.e., the line segment xq does not intersect the outside of P.

(a) Draw an interesting example of a simple polygon P and visibility polygons for two points in P.

(b) Describe the structure of $\text{vis}_P(x)$. What are its vertices and edges?

(c) Suppose that we have a triangulation T of P available. Given a point x inside P, show how to find $\text{vis}_P(x)$ in $O(n)$ time. You may make suitable general position assumptions.

Hint: The triangles in T that intersect $\text{vis}_P(x)$ form a connected subgraph of the dual graph T^*.

Problem 2 LP – Lower Bound

Give an example that the deterministic incremental algorithm for two dimensional LP may take $\Omega(n^2)$ time.

Problem 3 Largest disk in a convex polygon.

Let P be a convex polygon in the plane. We would like to compute a disk of maximum size that is enclosed in P. Formulate this problem as a linear program.