Problem 1 Computing the intersections of two convex polygons 10 points

Let P and Q be two convex polygons with n and m vertices respectively; each polygon is given as a list of its vertices sorted in counter-clockwise (or clock-wise) order. Give a sweep-line algorithm that computes all intersections between P and Q in $O(n + m)$ time.

Problem 2 Triangulations for Polygons with Holes 10 points

Let P be a polygon with n vertices and h holes.

(a) Give a reasonable definition for a triangulation of P.
(b) Show that P has a triangulation.
(c) Find a formula for the number of triangles in any triangulation of T, and prove that it is correct.

Problem 3 The Dual of a Triangulation 10 points

Let P be a simple polygon with n vertices, and let T be a triangulation of P. The dual graph of T, T^*, is the graph whose vertices are the triangles of T in which two triangles are adjacent if and only if they share a diagonal.

(a) Show that T^* is a tree.
(b) Use T^* to give an alternative proof that T is 3-colorable.
(c) Suppose that $n \geq 4$. An ear of T is a triangle in T that has two polygon edges as sides. Show that T contains at least two ears.
(d) Let $n \geq 4$. Show that P has a diagonal that partitions P into two simple polygons with at least $\frac{n-3}{3} + 2$ vertices.