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Abstract

We show that Delaunay triangulations and compressed
quadtrees are equivalent structures. More precisely, we
give two algorithms: the first computes a compressed
quadtree for a planar point set, given the Delaunay tri-
angulation; the second finds the Delaunay triangulation,
given a compressed quadtree. Both algorithms run in
deterministic linear time on a pointer machine. Our
work builds on and extends previous results by Krznaric
and Levcopolous [40] and Buchin and Mulzer [10]. Our
main tool for the second algorithm is the well-separated
pair decomposition (WSPD) [13], a structure that has
been used previously to find Euclidean minimum span-
ning trees in higher dimensions [27]. We show that
knowing the WSPD (and a quadtree) suffices to com-
pute a planar EMST in linear time. With the EMST at
hand, we can find the Delaunay triangulation in linear
time [21].

As a corollary, we obtain deterministic versions of
many previous algorithms related to Delaunay trian-
gulations, such as splitting planar Delaunay triangula-
tions [19, 20], preprocessing imprecise points for faster
Delaunay computation [9, 42], and transdichotomous
Delaunay triangulations [10,15,16].

1 Introduction

Delaunay triangulations and quadtrees are among the
oldest and best-studied notions in computational geom-
etry [4,7,25,29,44,45,47,49], captivating the attention of
researchers for almost four decades. Both are proximity
structures on planar point sets; Figure 1 shows a sim-
ple example of these structures. Here, we will demon-
strate that they are, in fact, equivalent in a very strong
sense. Specifically, we describe two algorithms. The
first computes a suitable quadtree for P , given the De-
launay triangulation DT(P ). This algorithm closely fol-
lows a previous result by Krznaric and Levcopolous [40],
who solve this problem in a stronger model of computa-
tion. Our contribution lies in adapting their algorithm
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Figure 1: A planar point set P , and a quadtree (a) and a
Delaunay triangulation (b) on it.

to the real RAM/pointer machine model.1 The second
algorithm, which is the main focus of this paper, goes
in the other direction and computes DT(P ), assuming
that a suitable quadtree for P is at hand. This con-
nection was first discovered and fruitfully applied by
Buchin and Mulzer [10] (see also [9]). While their ap-
proach is to use a hierarchy of quadtrees for faster con-
flict location in a randomized incremental construction
of DT(P ), we pursue a strategy similar to the one by
Löffler and Snoeyink [42]: we use the additional infor-
mation to find a connected subgraph of DT(P ), from
which DT(P ) can be computed in linear deterministic
time [21]. As in Löffler and Snoeyink [42], our sub-
graph of choice is the Euclidean minimum spanning tree
(EMST) for P , emst(P ) [27]. The connection between
quadtrees and EMSTs is well known: several algorithms
use the well-separated pair decomposition (WSPD) [13],
or a variant thereof, to reduce EMST computation to
solving the bichromatic closest pair problem. In that
problem, we are given two point sets R and B, and we
look for a pair (r, b) ∈ R×B that minimizes the distance
|rb| [1, 12, 41, 52]. Given a quadtree for P , a WSPD for
P can be found in linear time [9,13,14,35]. EMST algo-
rithms based on bichromatic closest pairs constitute the

1Refer to Appendix A for a description of different computa-
tional models.



fastest known solutions in higher dimensions. Our ap-
proach is quite similar, but we focus exclusively on the
plane. We use the quadtree and WSPDs to obtain a se-
quence of bichromatic closest pair problems, which then
yield a sparse supergraph of the EMST. There are sev-
eral issues: we need to ensure that the bichromatic clos-
est pair problems have total linear size and can be solved
in linear time, and we also need to extract the EMST
from the supergraph in linear time. In Section 4, we
show how to do this using the structure of the quadtree,
combined with a partition of the point set according to
angular segments similar to Yao’s technique [52].

1.1 Applications. Our two algorithms have several
implications for derandomizing recent algorithms re-
lated to DTs. First, we mention hereditary computation
of DTs. Chazelle et al. [19] show how to split a Delau-
nay triangulation in linear expected time (see also [20]).
That is, given DT(P ∪ Q), they describe a random-
ized algorithm to find DT(P ) and DT(Q) in expected
time O(|P | + |Q|). Knowing that DTs and quadtrees
are equivalent, this result becomes almost obvious, as
quadtrees are easily split in linear time. More im-
portantly, our new algorithm achieves linear worst-case
running time. Clarkson and Seshadhri [22] use heredi-
tary DTs for self-improving algorithms [2, 3]. Together
with the ε-net construction by Pyrga and Ray [46]
(see [2, Appendix A]), our result yields a determinis-
tic version of their algorithm for point sets generated
by a random source (the inputs are probabilistic, but
not the algorithm).

Eppstein et al. [28] introduce the skip-quadtree
and show how to turn a (compressed) quadtree into a
skip-quadtree in linear time. Buchin and Mulzer [10]
use a (randomized) skip-quadtree to find the DT in
linear expected time. This yields several improved
results about computing DTs. Most notably, they
show that in the transdichotomous setting [15, 16, 30],
computing DTs is no harder than sorting the points
(according to some special order). Here, we show
how to go directly from a quadtree to a DT, without
skip-quadtrees or randomness. This gives the first
deterministic transdichotomous reduction from DTs to
sorting.

Buchin et al. [9] use both hereditary DTs and the
connection between skip-quadtrees and DTs to simplify
and generalize an algorithm by Löffler and Snoeyink [42]
to preprocess imprecise points for Delaunay triangu-
lation in linear expected time (see also Devillers [26]
for another simplified solution). Löffler and Snoeyink’s
original algorithm is deterministic, and the derandom-
ized version of the Buchin et al. algorithm proceeds in
a very similar spirit. However, we now have an opti-
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Figure 2: We show which can be computed from which in
linear time. The black arrows depict known linear time de-
terministic algorithms that work in the pointer machine/real
RAM model. The red arrows depict our new results. Further-
more, for reference, we also show known randomized linear time
algorithms (in green) and known deterministic linear time algo-
rithms that work in a weaker model of computation (in blue).

mal deterministic solution for the generalized problem
as well.

In Figure 2, we show a graphical representation of
different proximity structures on planar point sets. The
arrows show which structures can be computed from
which in linear deterministic time on a pointer machine,
before and after this paper. Please realize that there
are several subtleties of different algorithms and their
interactions that are hard to show in a diagram, it
is included purely as illustration of the impact of our
results.

2 Preliminaries

We review some known definitions, structures, and
algorithms and their relations.

2.1 Delaunay Triangulations and Euclidean
Minimum Spanning Trees. Given a set P of n points
in the plane, an important and extensively studied
structure is the Delaunay triangulation of P [4, 7, 25,
45, 49], denoted DT(P ). It can be defined as the dual
graph of the Voronoi diagram, the triangulation that
optimizes the smallest angle in any triangle, or in many
other equivalent ways, and it has been proven to opti-
mize many other different criteria [44].

The Euclidean minimum spanning tree of P , de-
noted emst(P ), is the tree of smallest total edge length
that has the points of P as its vertices, and it is well
known that the EMST is a subgraph of the DT [49, The-



orem 7]. In the following, we will assume that all the
pairwise distances in P are distinct (a general position
assumption), which implies that emst(P ) is uniquely de-
termined. Finally, we remind the reader that emst(P ),
like every minimum spanning try, has the following cut
property : let P = R ∪B a partition of P , and let r and
b be the two points with r ∈ R and b ∈ B that minimize
the distance |rb|. Then rb is an edge of emst(P ).2

2.2 Quadtrees—Compressed and c-Cluster.
Let P be a planar point set. A quadtree for P
is a hierarchical decomposition of an axis-aligned
bounding square for P into smaller axis-aligned
squares [4,29,34,47]. A regular quadtree is constructed
by successively subdividing every square with at least
two points into four congruent child squares. A node v
of a quadtree stores (i) Sv, the square corresponding to
v; (ii) Pv, the points contained in Sv (Pv is only stored
implicitly); and (iii) Bv, the axis-aligned bounding box
for Pv. We write |Sv| and |Bv| for the diameter of Sv
and Bv, and cv for the center of Sv. Furthermore, we
denote the parent of v by v̄. Regular quadtrees can have
unbounded depth (if P has unbounded spread3), so in
order to give any theoretical guarantees the concept
is usually refined. In the sequel, we use two such
variants of quadtrees, namely compressed and c-cluster
quadtrees, which we show are in fact equivalent.

A compressed quadtree is a quadtree in which we
replace long paths of nodes with only one child by
a single edge [5, 6, 9]. It has size O(|P |). Formally,
given a large constant a, an a-compressed quadtree is
a regular quadtree with additional compressed nodes.4

A compressed node v has only one child ṽ with |Sṽ| ≤
|Sv|/a and such that Sv \ Sṽ has no points from P .
Note that Sṽ need not be aligned with Sv, which would
happen if we literally “compressed” a regular quadtree.
This relaxed definition is necessary because existing
algorithms for computing aligned compressed quadtrees
use a more powerful model of computation than our
real RAM/pointer machine (see Appendix A). This
is usually acceptable for quadtrees,5 but we intend to

2This is very similar to the bichromatic closest pair reduction

mentioned in the introduction, but note that the cut property
holds for any partition of P , whereas the bichromatic closest pair

reduction requires a very specific decomposition of P into pairs of
subsets (which is usually not a partition).

3The spread of a point set P is the ratio between the largest

and the smallest distance between any two distinct points in P .
4Such nodes are often called cluster -nodes in the literature [5,

6, 9], but we prefer the term compressed to avoid confusion with
c-cluster quadtrees defined below.

5Indeed, as pointed out by Har-Peled [35, Lemma 2.2.6], some

non-standard operation is inevitable if we require that the squares
of the compressed quadtree are perfectly aligned.

derandomize algorithms that work on a traditional real
RAM/pointer machine, so we prefer to stay in this
model. This keeps our results comparable with the
previous work.

Now let c be a large enough constant. A subset
U ⊆ P is a c-cluster if U = P or d(U,P \ U) ≥ c|BU |,
where BU denotes the smallest axis-aligned bounding
box for U , and d(A,B) is the minimum distance between
a point in A and a point in B [39, 40].6 The c-clusters
for P form a laminar family,7 so they define a c-cluster
tree Tc. These trees are a very natural way to tackle
point sets of unbounded spread, and they have linear
size. However, they also may have high degree. To avoid
this, a c-cluster tree Tc can be augmented by additional
nodes, adding more structure to the parts of the point
set that are not strongly clustered. For each internal
node u of Tc with set of children V , we build a regular
quadtree on a set of points containing one representative
point from each node in V (the intuition being that such
a cluster is so small and far from its neighbors, that we
might as well treat it as a point). This quadtree has size
O(|V |) (Lemma B.3), so we obtain a tree of constant
degree and linear size, the c-cluster quadtree. The sets
Pv, Sv and Bv for the c-cluster quadtree are just as
for regular and compressed quadtrees, where in Pv we
expand the representative points appropriately. Note
that it is possible that Sv + Pv, but the points of Pv can
never be too far from Sv. In Appendix B.1 we elaborate
more on c-cluster quadtrees and their properties, and in
Appendix B.2, we prove the following theorem:

Theorem 2.1. Let P be a planar point set. Given a c-
cluster quadtree on P , we can compute in linear time
an O(c)-compressed quadtree on P ; and given an a-
compressed quadtree on P , we can compute in linear
time an O(a)-cluster quadtree on P .

2.3 Well-Separated Pair Decompositions. For
any two finite sets U and V , let U ⊗ V := {{u, v} |
u ∈ U, v ∈ V, u 6= v}. A pair decomposition P for a
planar8 n-point set P is a set of m pairs {{U1, V1}, . . . ,
{Um, Vm}}, such that (i) for all i = 1, . . . ,m, we have
Ui, Vi ⊆ P and Ui ∩ Vi = ∅; and (ii) for any {p, q} ∈
P ⊗ P , there is exactly one i with {p, q} ∈ Ui ⊗ Vi.
We call m the size of P. Fix a constant ε ∈ (0, 1),
and let {U, V } ∈ P. Denote by BU , BV the smallest
axis-aligned rectangles containing U and V . We say
that {U, V } is ε-well-separated if max{|BU |, |BV |} ≤

6That is, U is a c-cluster precisely if {U,P \U} is a (1/c)-semi-
separated pair [35,51].

7A laminar family is a set system in which any two sets A and

B satisfy either A ∩B = ∅; A ⊆ B; or B ⊆ A.
8Although some of these notions extend naturally to higher

dimensions, the focus of this paper is on the plane.



εd(U, V ), where d(U, V ) is the distance between BU and
BV (i.e., the smallest distance between a point in BU
and a point in BV ). If {U, V } is not ε-well-separated,
we say it is ε-ill-separated. We call P an ε-well-separated
pair decomposition (ε-WSPD) if all its pairs are ε-well-
separated [12,13,27,35].

Now let T be a (compressed or c-cluster) quadtree
for P . Given ε > 0, it is well known that T can be
used to obtain an ε-WSPD for P in linear time [13,35].
Since we will need some specific properties of such an
ε-WSPD, we give pseudo-code for such an algorithm in
Algorithm 1. The correctness of wspd is immediate,
since it only outputs well-separated pairs, and the
bounds on the running time and the size of wspd(T )
follow from a well-known volume argument which we
omit [9, 13,14,35].

Algorithm 1 Finding a well-separated pair decompo-
sition.

1. Call wspd(r) on the root r of T .

wspd(v)

1. If v is a leaf, return ∅.

2. Return the union of wspd(w) and wspd({w1, w2})
for all children w and pairs of distinct children
w1, w2 of v.

wspd({u, v})

1. If Su and Sv are ε-well-separated, return {u, v}.

2. Otherwise, if |Su| ≤ |Sv|, return the union of
wspd({u,w}) for all children w of v.

3. Otherwise, return the union of wspd({w, v}) for all
children w of u.

Theorem 2.2. There is an algorithm wspd, that given
a (compressed or c-cluster) quadtree T for a planar n-
point set P , finds in time O(n) a linear-size ε-WSPD
for P , denoted wspd(T ). �

Note that the WSPD is not stored explicitly: we
cannot afford to store all the pairs {U, V }, since their
total size might well be quadratic. Instead, wspd(T )
contains pairs {u, v}, where u and v are nodes in T ,
and {u, v} is used to represent the pair {Pu, Pv}.

Note that the algorithm computes the WSPD with
respect to the squares Sv, instead of the bounding boxes
Bv. This makes no big difference, since for compressed
quadtrees Bv ⊆ Sv, and for c-cluster quadtrees Sv can
be outside Bv only for c-cluster nodes, resulting in a

loss of at most a factor 1 + 1/c in separation. Referring
to the pseudo-code in Algorithm 1, we now prove three
observations.

Observation 2.3. Let {u, v} be a pair of distinct nodes
of T . If wspd({u, v}) is executed by wspd run on T (in
particular, if {u, v} ∈ wspd(T )), then max{|Su|, |Sv|} ≤
min{|Sū|, |Sv̄|}.

Proof. We use induction on the depth of the call stack
for wspd({u, v}). Initially, u and v are children of the
same node, and the statement holds. Furthermore,
assuming that wspd({u, v}) is called by wspd({u, v̄})
(and hence |Su| ≤ |Sv̄|), we get max{|Su|, |Sv|} ≤
|Sv̄| = min{|Sū|, |Sv̄|}, where the last equation follows
by induction. �

Observation 2.4. If {u, v} ∈ wspd(T ), then ū and v̄
are ill-separated.

Proof. If ū = v̄, then the claim is obvious. Oth-
erwise, let us assume that wspd({u, v}) was called
by wspd({u, v̄}). This means that {u, v̄} is ill-
separated and max{|Su|, |Sv̄|} = |Sv̄|. Therefore,
max{|Sū|, |Sv̄|} ≥ |Sv̄| > εd(u, v̄) ≥ εd(ū, v̄), and {ū, v̄}
is ill-separated. �

Claim 2.5. Let {u, v} ∈ wspd(T ). Then there exist
squares Ru and Rv such that (i) Su ⊆ Ru ⊆ Su and
Sv ⊆ Rv ⊆ Sv; (ii) |Ru| = |Rv|; and (iii) |Ru|/2ε ≤
d(Ru, Rv) ≤ 2|Ru|/ε.

Proof. Suppose wspd({u, v}) is called by wspd({u, v}),
the other case is symmetric. Let us define r :=
min{εd(u, v), |Sv|}. By Observation 2.3, we have
|Su|, |Sv| ≤ |Sv| ≤ |Su|. Since {u, v} is well-separated,
we have εd(u, v) ≥ max{|Su|, |Sv|}. Hence, |Su|, |Sv| ≥
r ≥ |Su|, |Sv|, and we can pick squares Ru and Rv of
diameter r that fulfill (i). Now (ii) holds by construc-
tion, and it remains to check (iii). First, note that
d(Ru, Rv) ≥ d(u, v) − 2r ≥ (1 − 2ε)d(u, v) ≥ r/2ε, for
ε ≤ 1/4. This proves the lower bound. For the up-
per bound, observe that εd(u, v) ≤ ε(d(u, v) + |Sv|) ≤
(1 + ε)|Sv|, because {u, v} is ill-separated. Thus, we
have r ≥ εd(u, v)/2, and d(Ru, Rv) ≤ d(u, v) ≤ 2r/ε, as
desired. �

3 From Delaunay Triangulations to c-Cluster
Quadtrees

For the first direction of our equivalence we need to
show how to compute a c-cluster quadtree for P when
given DT(P ). This was already done by Krznaric
and Levcopolous [39, 40], but their algorithm works in
a stronger model of computation which includes the



floor function and allows access to data at the bit
level. As argued above, we prefer the real RAM/pointer
machine, so we need to do some work to adapt their
algorithm to our computational model. In Appendix C,
we describe how Krznaric and Levcopolous’s algorithm
can be modified to avoid bucketing and bit-twiddling
techniques. The only difference is that in the resulting
c-cluster quadtree the squares for the c-clusters are
not perfectly aligned with the squares of the parent
quadtree. In our setting, this does not matter.

Theorem 3.1. Given DT(P ), we can compute a c-
cluster quadtree for P in linear deterministic time on
a pointer machine.

4 From a c-Cluster Quadtree to the Delaunay
Triangulation

We now go in the opposite direction, and show how to
construct a DT from a WSPD. Let P be a set of points,
and T a compressed quadtree for P . Throughout this
section, ε is a small enough constant (say, ε = π/400),
and k is a large enough constant (e.g., k = 100). Let
u and v be two unrelated nodes of T , i.e., neither
node is an ancestor of the other. Let Luv be the
set of directed lines that stab Su before Sv. The set
Φuv ⊆ [0, 2π) of directions for Luv is an interval modulo
2π whose extreme points correspond to the two diagonal
bitangents of Su and Sv, i.e., the two lines that meet Su
and Sv in exactly one point each and have Su and Sv
to different sides.

Observation 4.1. Let u and v be two unrelated nodes
of T , and let ũ be a descendant of u and ṽ be a
descendant of v. Then Φũṽ ⊆ Φuv.

Proof. This is clear, because Sũ ⊆ Su and Sṽ ⊆ Sv. �
Observation 4.2. If u and v are two nodes of T such
that {u, v} is ε-well-separated, then |Φuv| ≤ 8ε.

Proof. Let d := |cucv|, Du be the disk around cu with
radius εd, and Dv the disk around cv with the same
radius. By well-separation, Su ⊆ Du and Sv ⊆ Dv. Let
β be the angle between the diagonal bitangents of Du

and Dv. Then |Φuv| ≤ β, and β = 2 arcsin(εd/ 1
2d) =

2 arcsin(2ε) ≤ 8ε, as claimed. �

For a direction φ ∈ [0, 2π[ we define Φφ := {ψ mod
2π | ψ ∈ [φ− ε/2, φ+ ε/2]}, i.e., the set of all directions
that differ from φ by at most ε/2. We say that an
ordered pair (u, v) has direction φ if Φuv ∩ Φφ 6= ∅. We
also say that a pair of points (p, q) has direction φ if the
corresponding pair in the WSPD has direction φ. For
a given point p in the plane, we define the ε-cone Cφ(p)
as the cone with apex p and opening angle ε centered
around φ.

4.1 Constructing a Supergraph of the EMST.
In the following, we abbreviate P := wspd(T ). The
goal of this section is to construct a graph H with
vertex set P and O(n) edges, such that emst(P ) ⊆ H.
It is well known that if we take the graph H ′ on P
with edge set E := {euv | {u, v} ∈ P}, where each
euv connects the bichromatic closest pair for Pu and
Pv, then H ′ contains emst(P ) and has O(n) edges [27].
However, as defined, it is not clear how to find H ′ in
linear time. There are several major obstacles. Firstly,
even though the tree T has O(n) vertices, it may well be
that

∑
u∈T |Pu| = Ω(n2). Secondly, even if the total size

of all Pu’s was O(n), we still need to find bichromatic
closest pairs for all pairs in P. Thus, it could happen
that a large set Pu appears in many pairs of P, making
the total problem size superlinear. Thirdly, we need to
actually solve the bichromatic closest pair problems. A
straightforward solution to find the bichromatic closest
pair for sets R and B with sizes r and b would take
time O((r+ b) log(min(r, b)), by computing the Voronoi
diagram for the smaller set and locating all points from
the other set in it. We need to find a way to do it in
linear time.

To address these problems, we actually construct
a slightly larger graph H, by partitioning the pairs in
P according to their orientation. More precisely, let
Y = {0, ε, 2ε, . . . , (l − 1)ε} be a set of l directions,
where we assume that l = 2π/ε is an integer. For every
direction φ ∈ Y , we construct a graph Hφ with O(n)
edges and then let H =

⋃
φ∈Y Hφ. Given φ ∈ Y , the

graph Hφ is constructed in three steps:

1. For every node u ∈ T , select a subset Zu ⊆ Pu, such
that

∑
u∈T |Zu| = O(n), and such that {{p, q} |

p ∈ Zu, q ∈ Zv, {u, v} ∈ P} still contains all edges
of emst(P ) with orientation φ. This addresses the
first problem by making the total set size linear.

2. Find a subset P ′ ⊆ P, such that each u ∈ T
appears in O(1) pairs of P ′, and the set {{p, q} |
p ∈ Zu, q ∈ Zv, {u, v} ∈ P ′} contains all edges
of emst(P ) with orientation φ. In particular, we
choose for every node u ∈ T a subset Pu ⊆ P such
that P ′ =

⋃
u∈T Pu, each pair in Pu contains u, and

|Pu| = O(1). This addresses the second problem by
ensuring that every set appears in O(1) pairs.

3. For every pair {u, v} ∈ P ′, we include in Hφ

the edge pq such that {p, q} is the closest pair in
Zu ⊗ Zv (i.e., {p, q} = argmin{p′,q′}∈Zu⊗Zv

|p′q′|).
Here we actually solve all the bichromatic closest
pair problems.

Clearly, Hφ has O(n) edges, and we will show that H
is indeed a supergraph of emst(P ). Our strategy of



subdividing the edges according to their orientation goes
back to Yao, who used a similar scheme to find EMSTs
in higher dimensions [52].

Step 1: Finding the Zu’s. Recall that we fixed
a direction φ ∈ Y . Take the set Pφ ⊆ wspd(T ) of pairs
with direction φ. For a pair π ∈ Pφ, we write (u, v) for
the tuple such that π = {u, v} and cu comes before cv
in direction φ, it is a directed pair in Pφ. Call a node
u of T full if either (i) u is the root; (ii) u is a non-
empty leaf; or (iii) Pφ has a directed pair (u, v). Let
T ′ be the tree obtained from T by connecting every full
node to its closest full ancestor, and by removing the
other nodes. We can compute T ′ in linear time through
a post-order traversal. Now, for every leaf v of T ′, put
the point p ∈ Pv into the sets Zu, where u is one the k
closest ancestors of v in T ′. Repeat this procedure, while
changing property (iii) above so that Pφ has a directed
pair (v, u), and augment the Zu appropriately. This
takes linear time, and

∑
u∈T |Zu| = O(n). Intuitively,

Zu contains those points of Pu that are sufficiently on
the outside of the point set in direction φ. Figure 4.1
shows an example. Variants of the following claim
have appeared several times before [1, 52].

Claim 4.3. Let p ∈ P , and let C+
φ (p) denote the cone

with apex p and opening angle 17ε centered around φ.
Suppose that pq is an edge of emst(P ) and q ∈ C+

φ (p).

Then q is the nearest neighbor of p in C+
φ (p) ∩ P .

Proof. If pq is an edge of emst(P ), then the lune L
defined by p and q contains no point of P [4].9 Since
the opening angle of C+

φ (p) is at most π/3, for ε small

enough, the intersection of C+
φ (p) with L equals the

intersection of C+
φ (p) with the disk around p of radius

|pq|. Hence, q must be the nearest neighbor of p in
C+
φ (p) ∩ P . �

Lemma 4.4. Let pq be an edge of emst(P ) with direc-
tion φ, and let {u, v} be the corresponding wspd-pair.
Then {p, q} ∈ Zu ⊗ Zv.

Proof. Let w be the leaf for p, and suppose for con-
tradiction that p /∈ Zu, i.e., u is not among the k
closest ancestors of w in T ′. This means there ex-
ists a chain10 u1, u2, . . . , uk, u of k + 1 distinct an-
cestors of w, such that there are well-separated pairs
{u1, v1}, {u2, v2}, . . . , {uk, vk} ∈ Pφ.

Let C+
φ (p) be the cone with apex p and opening an-

gle 17ε centered around φ. By Observation 4.2, we have

9L is the intersection of two disks with radius |pq|, one centered

at p, the other centered at q.
10By a chain we mean a sequence v1, v2, . . . of nodes such that

vi is a descendant of vi+1, for all i.

cu

p C+
φ (p)

1 − 2ε
1 + εA

Figure 4: All squares Rw intersect the region A.

Sv, Sv1 , . . . , Svk ⊆ C+
φ (p). Furthermore, since {u, v} is

well-separated, d(u, v) ≥ |Su|/ε. Now Claim 2.5 implies
that there are squares Ru1

, Rv1 such that (i) Su1
⊆

Ru1 ⊆ Su2 and Sv1 ⊆ Rv1 ; (ii) |Ru1 | = |Rv1 |; and (iii)
d(Ru1 , Rv1) ≤ 2|Ru1 |/ε. This means that d(p, Pv1) ≤
2(1+1/ε)|Ru1

| ≤ 2(1+1/ε)|Su2
| ≤ 2(1+1/ε)|Su|/2k−1.

Since 2(1 + 1/ε)/2k−1 < 1/ε for k ≥ 3, this contradicts
Claim 4.3 and the fact that d(u, v) ≥ |Su|/ε. A sym-
metric argument shows q ∈ Zv. �

Step 2: Finding the Pu’s. For every node u ∈ T ,
we include in Pu the k shortest pairs in direction φ,
i.e., the pairs {u, v} ∈ wspd(T ) such that (i) cv is
contained in the ε-cone Cφ(cu) with apex cu centered
around direction φ; and (ii) there are less than k pairs
{u, v′} ∈ wspd(T ) that fulfill (i) and have |cucv′ | <
|cucv|. Since k is constant, the Pu’s can be constructed
in total linear time. Even though each Pu contains a
constant number of elements, a node might still appear
in many such sets, so we further prune the pairs: by
examining the Pu’s, determine for each v ∈ T the set
Qv = {u ∈ T | v ∈ Pu}. For each Qv, find the k closest
neighbors of v in Qv, and for all other Pu’s remove the
corresponding pairs {u, v}. Now each node appears in
only a constant number of pairs of P ′ =

⋃
u∈T Pu.

Lemma 4.5. Let pq be an edge of emst(P ) with orien-
tation φ, and let {u, v} be the corresponding wspd-pair.
Then {u, v} ∈ Pu.

Proof. We show that v is among the k closest neighbors
of u in direction φ, a symmetric argument shows that
u is among the k closest neighbors of v in direction
−φ. We may assume that |cucv| = 1. Suppose that
{u, v} is not among the k shortest pairs in direction φ.
Then there is a set W of k nodes of T such that for
all w ∈ W we have (i) cw ∈ Cφ(cu); (ii) |cucw| < 1;
and (iii) {u,w} ∈ wspd(T ). By Claim 2.5, there exists
for every w ∈ W a pair of squares Ru(w), Rw such
that Su ⊆ Ru(w), Sw ⊆ Rw and |Ru(w)| = |Rw| ≤
2εd(Ru(w), Rw) ≤ 2ε.

Let C+
φ (p) be the cone with apex p and opening

angle 17ε centered around φ. By Observation 4.2,
Sw ⊆ C+

φ (p) for all w ∈ W . Furthermore, every Sw
contains a point at distance at most 1 + ε from p,
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Figure 3: (a) A node u in the quadtree, with |Pu| = 8. (b) The relevant WSPD edges (in green) for the points in Pu in direction
φ (up). There are also WSPD edges connecting u to other nodes above and below it. (c) For k = 1, Zu contains those points
p ∈ Pu for which the smallest vertical WSPD pair involving p has u in the pair. In other words, they are the points that do not
have a green edge in both directions in (b).

because |cwp| ≤ |cwcu| + |cup| ≤ 1 + ε. Also, by
Claim 4.3, every Sw contains a point at distance at least
|pq| ≥ |cucv| − |cup| − |qcv| ≥ 1 − 2ε from p. Thus,
since d(Ru(w), Rw) ≤ 2|Rw|/ε and d(Ru(w), Rw) ≥
1 − 2ε − 2|Rw|, we get |Rw| ≥ ε/8, for ε small enough.
However, this implies that W has only constantly many
squares: all Sw (and hence all Rw) intersect the annular
segment A inside C+

φ (p) with inner radius 1 − 2ε and
outer radius 1 + ε (see Figure 4). All w ∈ W are
unrelated, since they are paired with u in wspd(T ).
Furthermore, the set A has diameter O(ε). If w ∈W is
a compressed node, then Rw intersects no other Sw′ ,
for w′ ∈ W . Otherwise, |Sw| ≥ |Rw|/2, and Sw is
disjoint from all other Sw′ . There can be only constantly
many disjoint squares of size Ω(ε) meeting a region of
diameter O(ε), so choosing k large enough leads to a
contradiction. �

Step 3: Finding the Nearest Neighbors. Un-
like in the previous steps, the algorithm for Step 3 is a
bit involved, so we switch the order and begin by show-
ing correctness.

Lemma 4.6. Let pq be an edge of emst(P ) with direc-
tion φ and let {u, v} be the corresponding wspd-pair.
Then {p, q} is the closest pair in Zu ⊗ Zv.

Proof. By Lemma 4.4, we have {p, q} ∈ Zu ⊗ Zv.
Furthermore, the cut property of minimum spanning
trees implies that pq ∈ emst(Zu ∪ Zv). Since {u, v} is
well-separated, we have

(4.1) max
{p′,q′}∈Zu⊗Zu∪Zv⊗Zv

|p′q′| < min
{p′,q′}∈Zu⊗Zv

|p′q′|.

Now consider an execution of Kruskal’s MST algorithm
on Zu∪Zv [23, Chapter 23.2]. Let {p′, q′} be the closest
pair in Zu ⊗ Zv. By (4.1), the algorithm considers p′q′

only after processing all edges in Zu ⊗ Zu ∪ Zv ⊗ Zv.
Hence, at that point the sets Zu and Zv are each

p

q

Su

SvD

C↓(q)O(ε)

≥
√

2 − O(ε)

Figure 5: The intersection points of D and the boundary of
C↓(q) lie outside Sv, so Sv ∩ C↓(q) ⊆ D.

contained in a connected component of the partial
spanning tree, and emst(Zu ∪Zv) can have at most one
edge from Zu ⊗ Zv. Hence, it follows that {p, q} =
{p′, q′}, as claimed. �

We now describe the algorithm. For ease of exposi-
tion, we take φ = π/2 (i.e., we assume that P is rotated
so that φ points in the positive y-direction). Note that
now the squares are no longer axis-aligned, but this will
be no problem. Given a point p ∈ R2, we define the four
directional cones C←(p),C↑(p), C→(p), and C↓(p) as the
leftward, upward, rightward and downward cones with
apex p and opening angle π/2. The directional cones
subdivide the plane into four disjoint sectors. We will
also need the extended rightward cone C+

→(p) with apex
p and opening angle π/2 + 16ε.

Claim 4.7. Let (u, v) be a directed pair in Pφ, and
suppose that {p, q} with p ∈ Pu and q ∈ Pv is the closest
pair for (u, v). Then C↑(p)∩Pu = ∅ and C↓(q)∩Pv = ∅.11

Proof. We prove the claim for C↓(q), the argument for
C↑(p) is symmetric. We may assume that |pq| = 1.

11Recall that we set φ = π/2, so ↑ and ↓ mean “in direction φ”
and “in direction −φ”.



By assumption, the unit disk D through p contains no
points of Pv, so it suffices to show that C↓(q)∩ Sv ⊆ D.
Since {u, v} ∈ Pφ and by Observation 4.2, the direction
of the line pq differs from φ by at most 17ε. Therefore,
the intersections of the boundaries of C↓(q) and D have
distance at least

√
2 − O(ε) from q. However, the pair

{u, v} is well-separated, so all points in Pv have distance
at most ε from q, which implies the claim; see Figure 5.
�

Given a set Zu for a node u of T , we define the
upper chain of Zu, UC(Zu) as follows: remove from Zu
all points p such that C↑(p) contains a point from Zu in
its interior. Then sort Zu by x-coordinate and connect
consecutive points by line segments. All segments of
UC(Zu) have slopes in [−1, 1]. Similarly, we define the
lower chain of Zu, LC(Zu), by requiring the cones C↓(p)
for the points in LC(Zu) to be empty. The goal now is
to compute UC(Zu) and LC(Zu) for all nodes u.

Define a directed graph Γ as follows: we create two
copies of each vertex u in T , called start(u) and end(u),
and we add a directed edge from start(u) to end(u)
for each such vertex. Furthermore, we replace every
edge uv of T (u being the parent of v) by two edges:
one from start(u) to start(v), and one from end(v)
to end(u). We call these edges the tree-edges. Finally,
for every pair {u, v} ∈ wspd(T ), where Sv is wholly
contained in the extended rightward cone C+

→(cu), we
create a directed edge from end(u) to start(v). These
edges are called wspd -edges. Figure 4.1 shows a small
example.

Claim 4.8. The graph Γ is acyclic.

Proof. Suppose C is a cycle in Γ. The tree-edges form
an acyclic subgraph, so C has at least one wspd-edge.
Let e1, e2, . . . , ez be the sequence of wspd-edges along
C, and let u1, . . . , uz be such that the endpoint of ei
is of the form start(ui). Finally, write C = e1 →
C1 → e2 → C2 → · · · → ez → Cz, where Ci is the
sequence of tree-edges between two consecutive wspd-
edges. Each Ci consists of a (possibly empty) sequence
of start − start edges, followed by one start − end

edge and a (possibly empty) sequence of end−end edges.
Thus, the origin of the next wspd-edge ei+1 is an end-
node for an ancestor or a descendant of ui in T . In
either case, by the definition of wspd-edges, it follows
that the leftmost point of Sui+1

lies strictly to the right
of the leftmost point of Sui

. Thus, the leftmost point
of Sui+1

lies strictly to the right of the leftmost point
of Sui and the leftmost point of Su1 lies strictly to the
right of the leftmost point in Suz , which is absurd. �

Let ≤Γ be a topological ordering of the nodes of Γ.

Zu

Γ

(a)

Zu

≤Γ

(b)

Figure 7: (a) A set of points, and all edges with a slope in
[−1, 1]. By Claim 4.9, these edges are all (possibly implicitly)
present in Γ. (b) A possible ordering ≤Γ of the points that
respects Γ.

Claim 4.9. Any pair (p, q) of points in Zu with p ≤Γ q
satisfies q /∈ C←(p).

Proof. Suppose for the sake of contradiction that q ∈
C←(p). Let v, w be the descendants of u such that q ∈
Pv, p ∈ Pw, and {v, w} ∈ wspd(T ). By Observation 4.2,
Sw lies completely in the extended rightward cone
C+
→(cv), so Γ has an edge from end(v) to start(w). Now

the tree edges in Γ require that the leaf with q comes
before end(v) and the leaf with p comes after start(w),
and the claim follows. �

Since all edges on UC(Zu) have slopes in [−1, 1], we
immediately have the following corollary.

Corollary 4.10. The ordering ≤Γ respects the orders
of UC(Zu) and LC(Zu). �

For every node u ∈ T , let ≤u be the order that ≤Γ

induces on the leaf nodes corresponding to Zu.

Claim 4.11. All the orderings ≤u can be found in total
time O(n).

Proof. To find the orderings ≤u, perform a topological
sort on Γ, in linear time12 [23, Chapter 22.4]. With
each node u of T store a list Lu, initially empty. We
scan the nodes of Γ in order. Whenever we see a leaf for
a point p ∈ P , we append p to the at most 2k lists Lu
for the nodes u with p ∈ Zu. The total running time is
O(n +

∑
u∈T |Zu|) = O(n), and Lu is sorted according

to ≤u for each u ∈ T . �

Claim 4.12. For any node u ∈ T , if Zu is sorted
according to ≤u, we can find UC(Zu) and LC(Zu) in
time O(|Zu|).

Proof. We can find UC(Zu) by a Graham-type pass
through Lu. An example of such a list is shown in

12Note that Γ has O(n) edges, as | wspd(T )| = O(n).
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Figure 6: (a) A node u with |Zu| = 5, and the relevant part of the quadtree. (b) The graph Γ. Tree edges are black (going
right). To avoid clutter, we just show two wspd edges (green, going left).

Figure 7(b). That is, we scan Lu from left to right,
maintaining a tentative upper chain U , stored as a stack.
Let r be the rightmost point of U . On scanning a new
point p, we distinguish cases depending in which of the
four quadrants C←(r), C↑(r), C→(r), or C↓(r) it lies in.
By Claim 4.1, we know that p /∈ C←(r). If p ∈ C↓(r),
we discard p and continue to the next point in Lu. If
p ∈ C↑(r), we pop r from U and reassess p from the point
of view of the new rightmost point of U . If p ∈ C→(r),
we push p onto U .

The algorithm takes O(|Zu|) time, because every
point is pushed or popped from the stack at most once
and because it takes constant time to decide which point
to push or pop. For correctness, it suffices to observe
that the conflict set of any new point p along the current
upper chain must be contiguous. The lower chain is
computed in an analogous manner. �

Claim 4.13. For any node u ∈ T and any pair {u, v} in
Pu, given UC(Zu) and LC(Zv), we can find the closest
pair in Zu ⊗ Zv in time O(|Zu|+ |Zv|).
Proof. Connect the endpoints of UC(Zu) and LC(Zv)
to obtain a simple polygon (note that the two new
edges cannot intersect the chains, because {u, v} has
direction φ = π/2, so by Observation 4.2 Φuv ⊆
[π/2− 8 1

2ε, π/2 + 8 1
2ε] and all edges of the chains have

slopes in [−1, 1]). Then use the algorithm of Chin and
Wang [21] to find the constrained DT of the polygon in
time O(|Zu|+ |Zv|). The closest pair will appear as an
edge in this DT, and hence can be found in the claimed
time.13 �

Lemma 4.14. In total linear time, we can find for every
u ∈ T and for every pair {u, v} ∈ Pu the closest pair in
Zu ⊗ Zv.

13Actually, the resulting polygon is x-monotone, so the most

difficult part of the algorithm by Chin and Wang [21], finding
the visibility map of the polygon [17], becomes much easier [32].
The problem may allow a much more direct solution, but since

we will later require Chin and Wang’s algorithm in full generality,
we omit these details.

Proof. By Claims 4.11, 4.12, 4.13, the time to find
all the closest pairs is O(n +

∑
u∈T

∑
{u,v}∈Pu

(|Zu| +
|Zv|)) = O(n +

∑
u∈T |Zu|) = O(n), because every v

appears in only constantly many Pu’s. �

We thus obtain the main result of this section.

Theorem 4.15. Given a compressed quadtree T for P
and wspd(T ), we can find a graph H with O(n) edges
such that H contains all edges of emst(P ). It takes O(n)
time to construct H.

Proof. The fact that H contains the EMST follows from
Lemmas 4.4, 4.5 and 4.6. The running time follows from
the discussion at the beginning of Steps 1 and 2 and
Lemma 4.14. �

4.2 Extracting the EMST. At this point, we have
a sparse graph H on P that contains all EMST edges.
Furthermore, we can use Theorem 2.1 to convert our
compressed quadtree into a c-cluster quadtree T , such
that each edge is associated with two squares of T . (This
information can be preserved during the transforma-
tion from compressed quadtree to c-cluster quadtree,
because every old square overlaps with only constantly
many new squares of similar size.) We can ensure that
every edge e of H is associated with squares S such that
the length of e is between |S|/2ε and 2|S|/ε, by using
Claim 2.5 and inserting additional nodes into T if nec-
essary. Note that these nodes can be inserted in the
right order in total linear time, because by construction
every node of T is associated only with constantly many
edges. We want to extract emst(P ), but in general no
deterministic linear time algorithm for this problem is
known: the fastest deterministic algorithm whose run-
ning time can be analyzed needs O(nα(n)) steps [18].
However, the special structure of H and the c-cluster
quadtree T make it possible to achieve linear time.

By the cut property of minimum spanning trees,
emst(P ) is connected within each c-cluster. Thus, we
can process the clusters bottom-up, and we only need to



find the EMST within a c-cluster given that the points
in each child are already connected. Within this cluster,
T is a regular uncompressed quadtree, and we can use
the structure of T to perform an appropriate variant of
Bor̊uvka’s MST algorithm [8,50] in linear time.

Lemma 4.16. Let T ′ be a subtree of T corresponding
to a c-cluster, and let E be the edges in H associated
with T ′. Then emst(P ) ∩ E can be computed in time
O(|E|+ |V (T ′)|).

Proof. Let ` be the size of the root square of T ′.
Through a level order traversal of T ′ we group the
squares in V (T ′) by height into layers V1, V2, . . ., Vh
(where V1 is the bottommost layer, and Vh contains only
the root). The squares in Vi have size `/2h−i. Every
square has a set of associated edges in E. By Claim 2.5
(and the fact that T ′ is a regular quadtree so that the
parent of S has size at most 2|S|), the edges assigned
to a square S have length between |S|/2ε and 2|S|/ε+
2|S| ≤ 3|S|/ε, for ε small enough. To find the EMST,
we subdivide the edges into sets Ei, where Ei contains
all edges with length in [`/(ε2h−i), `/(ε2h−i−1)). Given
the Vi, we can determine the sets Ei in total time
O(|E| + |V (T ′)|), as the edges for Ei are associated
only with squares in Vi−α, Vi−α+1, . . . , Vi+α, for some
constant α. For each edge e ∈ Ei, we find the squares in
Vi that contain the endpoints of e. This takes constant
time, as we need to inspect only constantly many levels
above or below the squares associated with e. Thus,
the total work is O(|E| + |V (T ′)|). Note that every
edge in Ei is crossed by O(1) other edges in Ei, because
all e ∈ Ei have roughly the same length and because
every pair of squares in Vi has only constantly many
associated edges in Ei.

Now we compute the EMST by processing the sets
E1, . . ., Eh in order. Here is how to process Ei. We
consider the squares in Vi. Assume that we know
for each square of Vi the connected component in the
current partial EMST it meets (initially each c-cluster is
its own component). By the cut property, every square
S meets only one connected component, as S is much
smaller than the edges in Ei. Eliminate all edges in Ei
between squares in the same component, and remove
duplicate edges between each two components, keeping
only the shortest of these edges (this takes O(|Ei|)
time with appropriate pointer manipulation). Then
find the shortest edge out of each component and add
these edges to the partial EMST. Determine the new
components and merge their associated edge sets. This
sequence of steps is called a Bor̊uvka-phase. Perform
Bor̊uvka-phases until Ei has no edges left.

By the crossing-number inequality, the number of
edges considered in each phase is proportional to the

number r of components with an outgoing edge in
that phase. Indeed, viewing each component as a
supervertex, we have an embedding of a graph with r
vertices and z edges such that there are O(z) crossings
(since every edge e ∈ Ei is crossed by O(1) other edges
in Ei). Thus, the crossing number inequality [43] yields
z3/r2 ≤ βz, for some constant β > 0, so z = O(r). Since
the number of components at least halves in each phase,
and since initially there are at most |Vi| components,
the total time for Ei is O(|Ei| + |Vi|). Finally, label
each square in Vi+1 with the component it meets and
proceed with round i + 1. In total, processing T takes
time O(|V (T ′)|+ |E|), as desired. �

We conclude:

Theorem 4.17. Let P be a planar point set and T be a
compressed quadtree or a c-cluster quadtree for P . Then
DT(P ) can be computed in time O(|P |).

Proof. If T is a c-cluster quadtree, invoke Theorem 2.1
to convert it to a compressed quadtree. Then use The-
orem 2.2 to obtain wspd(T ). Next, apply Theorem 4.15
to compute the supergraph H of emst(P ). After that,
if necessary, convert T to a c-cluster quadtree for P via
Theorem 2.1, and apply Lemma 4.16 to each c-cluster,
in a bottom-up manner, to extract emst(P ). Finally, ap-
ply the algorithm by Chin and Wang [21] to find DT(P ).
All this takes time O(|P |), as claimed . �

5 Applications

Our result yields deterministic versions of several recent
randomized algorithms related to DTs. Firstly, we can
immediately derandomize an algorithm for hereditary
DTs by Chazelle et al. [19, 20]:

Corollary 5.1. Let P a planar n-point set, and let
S ⊆ P . Given DT(P ), we can find DT(S) in determin-
istic time O(n) on a pointer machine.

Proof. Use Theorem 3.1 to find a c-cluster quadtree T
for P , remove the leaves for P \ S from T and trim it
appropriately.14 Finally, apply Theorem 4.17 to extract
DT(S) from T , in time O(n). �

Secondly, we obtain deterministic analogues of the
algorithms by Buchin et al. [9] to preprocess imprecise
point sets for faster DTs. For example, we can prove
the following:

14Deleting P \S might create new c-clusters. However, since we
are aiming for running time O(n), we can apply Theorem 4.17 to

a partly compressed quadtree that may contain long paths where
every node has only one child.



Corollary 5.2. Let R = 〈R1, R2, . . . , Rn〉 be a se-
quence of n β-fat planar regions so that no point in
R2 meets more than k of them. We can preprocess
R in O(n log n) deterministic time into an O(n)-size
data structure so that given a sequence of n points
P = 〈p1, p2, . . . , pn〉 with pi ∈ Ri for all i, we can find
DT(P ) in deterministic time O(n log(k/β)) on a pointer
machine.

Proof. The method of Buchin et al. [9, Theorem 4.3 and
Corollary 5.6] proceeds by computing a representative
quadtree T for R. Given P , the algorithm finds for
every point in P the leaf square of T that contains it,
and then uses this information to obtain a compressed
quadtree T ′ for P in time O(n log(k/β)). However, T ′

is skewed in the sense that not all its squares need
to be perfectly aligned and that some squares can be
cut off. However, the authors argue that even in this
case wspd(T ) takes O(n) time and yields a linear-size
WSPD [9, Appendix B]. The main observation [9,
Observation B.1] is that any (truncated) square S in T ′

is adjacent to at least one square whose area is at least
a constant fraction of the area S would have without
clipping. Since in skewed quadtrees the size of a node
is at most half the size of its parent, the argument
of Lemma 4.4 still applies. To see that Lemma 4.5
still holds, we need to check that the volume argument
still goes through. For this, note that by the main
observation of Buchin et al., we can assign every square
Rw (the notation is as in the proof of Lemma 4.5)
to an adjacent square of comparable size at distance
O(ε) from A. Since every such square is charged by
disjoint descendants from constantly many neighbors,
the volume argument still applies, and Lemma 4.5 still
holds. Lemma 4.14 only relies on well-separation and
the combinatorial structure of T , and hence is still
valid. Finally, in order to apply Lemma 4.16, we need
to turn T ′ into a c-cluster quadtree, which takes linear
time by Theorem 2.1. Thus, the total running time is
O(n log(k/β), as claimed. �

Finally, Buchin and Mulzer [10] showed that for
word RAMs, DTs are no harder than sorting. We can
now do it deterministically. Let sort(n) be the time
to sort n integers on a w-bit word RAM. The best
deterministic bound for sort(n) is O(n log log n) [33].15

Corollary 5.3. Let P be a planar n-point set given
by w-bit integers, for some w ≥ log n. We can find
DT(P ) in deterministic time O(sort(n)) on a word

15For specific ranges of w, we can do better. For example, if
w = O(logn), radix sort shows that sort(n) = O(n) [23].

RAM supporting the shuffle-operation.16

Proof. Buchin and Mulzer [10] show how to find a
compressed quadtree T for P in time O(sort(n)), using
the shuffle-operation. They actually do not find
the squares of the quadtree, only the combinatorial
structure of T and the bounding boxes Bv. It is easily
seen that the algorithm wspd also works in this case.

To apply Lemma 4.4, we need to check that the
sizes of the bounding boxes decrease geometrically down
the tree. For this, consider a node v ∈ T with
associated point set Pv and the quadtree square Sv
(i.e., the smallest aligned square of size 2l such that
the coordinates of all points in Pv share the first w − l
bits). Let Bv be the bounding box of Pv, and let l′

be such that 2l
′+1 ≥ |Bv| ≥ 2l

′
. Clearly, Bv meets at

most nine aligned squares of size 2l
′
, arranged in a 3×3

grid. Hence, any descendant ṽ of v that is at least five
levels below v must have |Bṽ| ≤ |Sṽ| ≤ |Bv|/2, since
after at most four (compressed) quadtree divisions the
squares for Bv have been separated. Thus, the proof
of Lemma 4.4 goes through as before, if we choose k
larger and consider every fifth node along the chain
u1, u2, . . . , uk, u.

Lemma 4.5 still holds, because every bounding box
Bv is contained in a (possibly much larger) square Sv,
so the volume argument still applies. Furthermore,
Lemma 4.14 only relies on well-separatedness and the
combinatorial structure of T , so we can find the graph H
in linear time. After that, it takes O(n) time to compute
emst(P ), using the transdichotomous minimum span-
ning tree algorithm by Fredman and Willard [30]. �
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define shuffle(x, y) as the 2w-bit word z = x1y1x2y2 . . . xwyw.
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A Computational Models

Since our results concern different computational mod-
els, we use this appendix to describe them in more de-
tail. Our two models are the real RAM/pointer machine
and the word RAM.

The Real RAM/Pointer Machine. The stan-
dard model in computational geometry is the real RAM.
Here, data is represented as an infinite sequence of stor-
age cells. These cells can be of two different types: they
can store real numbers or integers. The model supports
standard operations on these numbers in constant time,
including addition, multiplication, and elementary func-
tions like square-root. The floor function can be used to
truncate a real number to an integer, but if we were al-
lowed to use it arbitrarily, the real RAM could solve
PSPACE-complete problems in polynomial time [48].
Therefore, we usually have only a restricted floor func-
tion at our disposal, and in this paper it will be banned
altogether.

The pointer machine [38] models the list processing
capabilities of a computer and disallows the use of
constant time table lookup. The data structure is
modeled as a directed graph G with bounded out-
degree. Each node in G represents a record, with a
bounded number of pointers to other records and a
bounded number of (real or integer) data items. The
algorithm can access data only by following pointers
from the inputs (and a bounded number of global entry
records); random access is not possible. The data can
be manipulated through the usual real RAM operations
(again, we disallow the floor function).

Word RAM. The word RAM is essentially a real
RAM without support for real numbers. However,
on a real RAM, the integers are usually treated as
atomic, whereas the word RAM allows for powerful bit-
manipulation tricks. More precisely, the word RAM
represents the data as a sequence of w-bit words, where
w ≥ log n (n being the problem size). Data can be
accessed arbitrarily, and standard operations, such as
Boolean operations (and, xor, shl, . . .), addition, or
multiplication take constant time. There are many
variants of the word RAM, depending on precisely
which instructions are supported in constant time. The
general consensus seems to be that any function in AC0

is acceptable.17 However, it is always preferable to rely
on a set of operations as small, and as non-exotic, as
possible. Note that multiplication is not in AC0 [31].
Nevertheless, it is usually included in the word RAM
instruction set [30].

17AC0 is the class of all functions f : {0, 1}∗ → {0, 1}∗ that can
be computed by a family of circuits (Cn)n∈N with the following
properties: (i) each Cn has n inputs; (ii) there exist constants

a, b, such that Cn has at most anb gates, for n ∈ N; (iii) there is a
constant d such that for all n the length of the longest path from
an input to an output in Cn is at most d (i.e., the circuit family

has bounded depth); (iv) each gate has an arbitrary number of
incoming edges (i.e., the fan-in is unbounded).



B On Quadtrees

B.1 c-Cluster Quadtrees. We elaborate on a few
more properties of the c-cluster trees and c-cluster
quadtrees defined in Section 2.2. Krznaric and Lev-
copolous [39, Theorem 7] showed that a c-cluster tree
can be computed in linear time from a Delaunay trian-
gulation.

Theorem B.1. (Krznaric-Levcopolous) Let P be
a planar n-point set. Given a constant c ≥ 1 and
DT(P ), we can find a c-cluster tree Tc for P in O(n)
time and space on a pointer machine. �

The c-cluster tree Tc is quite similar to a well-
separated pair decomposition: all of its unrelated nodes
are mutually (1/c)-well-separated. However, Tc can be
much too weak, since nodes in Tc may have arbitrarily
many children. For example, if the points in P lie on a
grid, then Tc consists of a single root with n children.
Nonetheless, Tc gives us valuable information, since it
represents a decomposition of the point set into pieces
of bounded spread. Therefore, we define the c-cluster
quadtree T , which is obtained by augmenting the c-
cluster tree with quadtree-like pieces that replace each
high-degree node in Tc. For a node u of Tc, let TQu be the
balanced regular quadtree on the representative points
of u’s children in Tc. Let v be one of those children.
Since the children of u are mutually well-separated, we
can show:

Observation B.2. If c is sufficiently large, at most
four leaf squares of TQu can contain points from Pv.

Proof. Let d = |Bv| be the diameter of the bounding
box of the points in Pv. By construction, Pv is c-semi-
separated from the rest of P , that is, the distance from
any point in Pv to any other point is at least cd. Now,
let p ∈ Pv be the chosen representative point. Any leaf
node ν of TQu that can potentially contain points of Pv
must be within distance d of p. Furthermore, any such
square must have diameter at least |Sν | ≥ 1

2 (c − 1)d,
since otherwise its parent could not possibly contain any
points other than p, and therefore would not have been
subdivided. Now, clearly, there cannot be more than
four such squares if they are all larger than 2d, that is,
the observation is true whenever 1

2 (c − 1)d ≥ 2d, i.e.
when c ≥ 5. �

To see that c-cluster quadtrees have linear size, we
need a property that is (somewhat implicitly) shown
in [40, Section 4.3].

Lemma B.3. If u has m children v1, v2, . . ., vm in Tc,
then TQu has O(m) nodes.

Proof. Call a square S ∈ TQu full if S ∩Pu 6= ∅. Clearly,
it suffices to bound the number of full squares. Call a
full square S ∈ TQu merged if it has at least two full
children. Since there are O(m) merged squares, we only
need to bound the number of non-merged squares. For
this we use the following claim to charge non-merged
squares to merged squares. The direct neighbors of a
square S in TQu are the 8 squares of size |S| adjacent to
S.

Claim B.4. Let S be a full square. There exists a
constant β (depending on c), such that at least one of
the β closest ancestors of S (possibly S itself) is either
merged or has a merged direct neighbor.

Proof. If S contains only a single point, then its parent
must be a merged node, otherwise S would not be part
of the tree. Otherwise, S contains points from more
than one Pvi , so S ∩ Pu is not a c-cluster, and there
has to be a point from Pu \ S at distance at most c|S|
from S. Hence, after constantly many levels up the
tree, we arrive at an ancestor S′ of S with a full direct
neighbor S′′ 6= S′. If S′ and S′′ are merged at the next
step, we are done, so we assume this does not happen.
In this case, since (S′ ∪ S′′) ∩ Pu is not a c-cluster,
there is a point in Pu \ (S′ ∪ S′′) at distance at most
cD(S′ ∪ S′′) ≤ 2c|S′|, contained in a square of size at
most (c/4)|S′|. Thus, again after constantly many levels
up the tree, if no merge occurs, we find a connected
set of three full squares (connected with respect to the
direct neighborhood adjacency relationship). This can
repeat at most twice more, because any connected set of
at least five full squares at the same level of a quadtree
must have a merged node among its ancestors. �

Now, we charge each full non-merged node to the
merged node as in the claim. Since each merged node
can be charged at most 9 · 4β times this way, the
Lemma B.3 follows. �

B.2 Equivalence of Compressed and c-Cluster
Quadtrees. Before proving Theorem 2.1, we will re-
call some known facts and make some observations.
First, we make an observation about (uncompressed)
quadtrees, which says we can realign a quadtree locally
any way we want. We call a quadtree for P λ-relaxed if
it has at most λ points of P in each leaf, and is otherwise
a normal quadtree.

Lemma B.5. Let P a set of points and T a regular
quadtree for P , with base square R. Let S be another
square with P ⊆ S and |S| = O(|R|). Then we can
build a 4-relaxed quadtree T ′ for P with base square S
in O(|T |) time such that T ′ has O(|T |) nodes.



Proof. First, if S is larger than R, we subdivide S in
quadtree-like fashion until we get a grid with squares
of size between |R|/2 and |R|. If S is smaller than R,
we keep doubling its size, keeping the top left corner
fixed, again until it is of size between |R|/2 and R.
By assumption, this takes constant time. Then we
determine the squares S′1, . . . , S

′
k of the current grid that

intersect R (note that k ≤ 9). Let L := {S′1, . . . , S′k}.
The set L contains all the active squares of T ′. We
will maintain the invariant that each active square S′ is
associated with a set as(S′) of constantly many squares
of T that intersect it. Initially, we set as(S′1) = · · · =
as(S′k) = {R}. Now the algorithm proceeds as follows:
remove a square S′ from L. Subdivide S′ into four
squares S′1, S′2, S′3, and S′4. Let C be the set of children
of the nodes in as(S′). For each S′i, determine which
squares in C intersect S′i, if any. This can be done
in constant time, because | as(S′)| = O(1). Now, we
associate S′i with the squares in C that intersect it, and
also with the squares in as(S′) that have no children
and intersect S′i. If S′i intersects at least one square in
C, we add it to L, otherwise we declare it a relaxed leaf.
This process continues until L becomes empty.

Clearly, for any square S′ in L we have that as(S′)
contains only squares that intersect S′ and have size
at least |S′|. Furthermore, at least one square in
as(S′) has size at most 4|S′| (we call such a square
a principal square for S′). Thus, we maintain the
invariant that each square in L has O(1) associated
squares. Conversely, since any square of T can be a
principal square for only O(1) many squares that appear
in L, the total number of squares that appear in L,
and hence the total time for the refinement process, is
proportional to the number of nodes in T .

Finally, we process the relaxed leaves of T ′: each
relaxed leaf S′ is associated with O(1) leaves of T . Thus,
we can find in constant time the O(1) points of P that
are contained in S′. �

A quadtree is said to be balanced if for every node
u that is either a leaf or a compressed node, the square
Su is only adjacent to squares that are within a factor
2 of the size of Su. It is well known that regular
(uncompressed) quadtrees can be balanced in linear
time:

Theorem B.6. (Theorem 14.4 of [4]) Let T be a
quadtree with m nodes. Then the balanced version of T
has O(m) nodes and can be constructed in O(m) time.
�

Furthermore, we can also add pointers between the
(constantly many) adjacent squares of each square dur-
ing the construction. It is not hard, but cumbersome,
to extend the result to compressed quadtrees.

Lemma B.7. Let T be a compressed quadtree with m
nodes. Then the balanced version of T has O(m) nodes
and can be constructed in O(m) time.

Proof. We provide an algorithm for a more general
problem: let T be a compressed quadtree for P with m
nodes and base square R. Let S be another square with
P ⊆ S and |S| = O(|R|). The goal is to build a balanced
compressed quadtree T ′ for P with base square S. For
this we proceed similarly as in the proof of Lemma B.5:
first we subdivide S until we get a grid with squares of
size between |R|/2 and |R|. As before, we then maintain
a list L of active squares, initialized with the squares of
the current grid that intersect R, and we maintain for
each active square S′ in T ′ a list as(S′) of constantly
many associated squares in T . Now as(S′) may also
contain compressed children that meet S′.

When processing an active square S′, we first
proceed as in the proof of Lemma B.5: subdivide S′ into
four children and consider the children of the regular
nodes in as(S′), updating the associations as before.
We then consider the compressed children in as(S′) and
associate them with the children of S′ that meet them.
Finally, if as(S′) contains compressed nodes, we consider
their compressed children and associate them with the
appropriate children of S′. A square S′ becomes inactive
once it has no associated nodes of size between |S′| and
2|S′| and no associated compressed child of size as least
|S|/25a. After that, we check the four neighbors of
S′ (directly to the left, right, above, and below). If
any of these neighbors N is not active and has size
at least 2|S′|, we subdivide N into four children, and
update the information about which children contain
the points in N ∩ P . Since N is not active, we have
|N∩P | = O(1), so this takes constant time. We keep the
new squares inactive, unless N meets a compressed child
that is larger than |N |/25a. In this case, we make the
children of N that meet the compressed child active and
insert them into L appropriately (e.g., right after S′).
If necessary, we propagate this step to the neighbors of
N to ensure that the quadtree is balanced.

We continue this process until L is empty. At
that point all the relaxed leaves of T ′ meet constantly
many points in P or compressed children of T (at most
four). We then construct a local compressed quadtree
for each relaxed leaf, creating new compressed nodes
if necessary. Finally, we recurse on the remaining
compressed children. Each such child can be associated
with at most four relaxed leaves, and by choosing the
new bounding box in the recursion appropriately, we
can align them with the parent tree.

All this takes time O(m), because each split can
be charged to an active square in L, and each active
square has either an associated principal square or an



associated large cluster child in T , and by construction
each node of T can be associated with O(1) active
squares. �

We now present the proof of Theorem 2.1 in two
lemmas.

Lemma B.8. Let P be a set of points in the plane.
Given a c-cluster quadtree on P , we can compute in
linear time an O(c)-compressed quadtree on P .

Proof. We will build the compressed quadtree top-
down, starting with the root of the c-cluster tree.
Consider a node u with children V in the c-cluster
tree, and let q be the representative point of Pu in the
quadtree of u’s parent, and Q the set of representative
points of the nodes in V for u. Suppose we have already
built a valid compressed quadtree for a set of points
that includes q. We will show how to change it into a
compressed quadtree where the other points of Q have
also been added.

Let T be the current quadtree, and TQu the quadtree
in the c-cluster quadtree associated with u (which has
Q as its points). We know that the root box of TQu
must be much smaller than the leaf of T that contains
q, since Pu is (1/c)-semi-separated from the rest of P .
So, if the root box of TQu falls completely within this
leaf square, we just add it as a child. However, by
Observation B.2 it is also possible that it intersects up
to four leaf squares of T . If this is the case, we identify
a square at most twice the size of TQu ’s root box that is
aligned appropriately with the relevant edges of T , and
apply Lemma B.5 to realign TQu with T . Similarly, if
TQu ’s root box falls partially outside the rootbox of T ,
we simply grow T to become four times as big and then
do the same thing.

Note that once we add a node to T , it stays there,
and we only realign the small local quadtrees. This
takes linear time in their sizes, so the total time spent
is linear. �

Lemma B.9. Let P be a set of points in the plane.
Given an a-compressed quadtree on P , we can compute
in linear time a O(a)-cluster quadtree on P .

Proof. We are given a compressed quadtree on P , and
have to determine the c-clusters and reuse the quadtree
pieces for the high-degree nodes of the c-cluster tree.
First we balance the tree according to Lemma B.7. If
a set C ⊂ P is a c-cluster for, say, c = 2a, then the
nodes in the compressed quadtree containing C must
be compressed nodes, and there can be at most four
such nodes. The converse is not true: the compressed
quadtree may contain compressed nodes that are not

part of c-clusters. Nonetheless, we can identify the
clusters by traversing the tree top-down and for each
node with a compressed child check in constant time
whether any of its neighbors also have compressed
children, since the tree is balanced, and whether any
combination of these child point sets forms a c-cluster.
We proceed down the tree until all c-clusters have been
found.

Now, for each node u in the c-cluster tree, we reuse
part of the compressed quadtree to create a quadtree
of the representative points of u’s children. Since Pu
is divided into at most four pieces in the compressed
quadtree, we can take those four compressed nodes
and realign them according to Lemma B.5 and add a
new root above them. The new relaxed tree can have
constantly many points in each leaf. We now first select
an arbitrary representative point for each of the point
sets Pv for v ∈ V a child of u in the c-cluster tree, and
prune the quadtree of any leaves that do not contain
such a representative point. This takes time O(|V |) for
one node, so linear time in total. Finally, we refine the
leaves that still contain multiple points using a standard
quadtree. By Lemma B.3 we know that the total tree
has linear size, so this takes linear time. �

C Adapting the Algorithm by Krznaric and
Levcopolous to the Pointer Machine

We now describe how to adapt the algorithm by Krz-
naric and Levcopolous (KL) for finding a c-cluster
quadtree for a planar point set P given DT(P ). The
goal is to make the algorithm work on a pointer ma-
chine/real RAM.

C.1 Terminology. We begin by recalling some ter-
minology from KL.

• neighborhood. The neighborhood of a square S
of a quadtree consists of the 25 squares of size |S|
concentric around S (including S); see Figure 8.

• direct neighborhood. The direct neighborhood
of a square S consists of the 9 squares of size |S|
directly adjacent to S (including S); see Figure 8.

• star of a square. Let P be a planar point set,
and let S be a square. The star of S, denoted by
F(S), is the set of all edges e in DT(P ) such that
(i) e has one endpoint inside S and one endpoint
outside the neighborhood of S; and (ii) |e| ≤ 16|S|.

• dilation. Let P be a planar point set, and G
a connected plane graph with vertex set P . The
dilation of P is the distortion between the shortest
path metric in G and the Euclidean distance, i.e.,



S

Figure 8: The neighborhood of a square S. The direct
neighbors are shown in dark blue, the others in light blue.

the maximum ratio, over all pairs of distinct points
p, q ∈ P , between the length of the shortest path
in G from p to q, and |pq|. There are many
families of planar graphs whose dilation is bounded
by a constant [24]. In particular, the dilation for
any planar point set P , the dilation of DT(P ) is
bounded by 2π/(3 cos(π/6)) ≤ 2.42 [37].

• orientation. The orientation of a line segment e is
the angle the line through e makes with the x-axis.

C.2 Preprocessing. By Theorem B.1, we can ob-
tain a c-cluster tree Tc for P in linear time, given DT(P ).
Thus, we only need to construct the regular quadtrees
TQu for each node u in Tc. This is done by processing
each node of Tc individually, but first we need to per-
form some preprocessing in order to assign the edges
from DT(P ) to the nodes of Tc. For every node u ∈ Tc,
we define out(u) as the set of edges in DT(P ) that
have exactly one endpoint in Pu and both endpoints
in Pū. Clearly, every edge is contained in exactly two
sets out(u) and out(v), where u and v are siblings in
Tc. The following is a simple variant of a lemma from
KL [40, Lemma 3].

Lemma C.1. (Krznaric-Levcopolous) Let P be a
planar n-point set. Given DT (P ) and a c-cluster tree
Tc for P , the sets out(u) for every node u ∈ Tc can
be found in overall O(n) time and space on a pointer
machine.

Proof. Our proof is almost identical to the one in KL,
with the only difference that we invoke the off-line
least-common-ancestor (lca) algorithm by Buchsbaum
et al. [11] instead of the online algorithm by Harel and
Tarjan [36] to obtain a linear-time algorithm for the
pointer machine. More precisely, KL describe how to

transform Tc in linear time into two binary trees TL
and TR with O(n) nodes such that the following holds:
given an edge pq of DT(P ), we can find the two nodes
u, v ∈ Tc with pq ∈ out(u), out(v) by performing one
lca-query each in TL and TR. Thus, the sets out(u) can
be found by O(n) off-line lca queries in TL and TR, and
using the result by Buchsbaum et al. [11, Theorem 6.1],
this takes O(n) time and space on a pointer machine.
�

C.3 Processing a Single Node of Tc. Now let u
be a node in Tc, and let v1, v2, . . . , vm be the children of
u. For each child vi, let δi := d(Pvi , Pu \ Pvi).

Claim C.2. For i = 1, . . . ,m, out(vi) contains an edge
of length δi.

Proof. Note that if DT(P ) contains an edge e incident
to Pvi with length δi, then e must be in out(vi), by the
definition of a c-cluster. Since emst(P ) is a subgraph of
DT(P ), it thus suffices to show that emst(P ) contains
such an edge. Consider running Kruskal’s MST algo-
rithm on P . According to the definition of a c-cluster,
by the time the algorithm considers the edge e that
achieves δi, the partially constructed EMST contains
exactly one connected component that has precisely the
points in Pvi . Therefore, e ∈ emst(P ), and the claim
follows. �

Initialization. By scanning the sets out(vi), de-
termine a child vj with minimum δj (by Claim C.2 a
shortest edge in out(vi) has length δi). We may assume
that j = 1. Let S1 be a square that contains Pv1 and
that has side-length δ1/8. Let α be the smallest integer
such that four squares of size 2α−1δ1/8 cover all of Pu.
Lemma B.3 implies that α = O(m).

The goal is to compute TQu , the balanced regular
quadtree aligned at S1 such that each Pvi is contained in
squares of size δi/8. To begin, we use S1 to initialize TQu
as the partial balanced quadtree TQu shown in Figure 9.
Every square S of TQu stores the following fields:

• parent: a pointer to the parent square, nil for the
root;

• children: pointers for the four children of S, nil
for a leaf;

• neighbors: links to the four orthogonal neighbors
of S in the quadtree TQu with size |S| (or size 2|S|,
if no smaller neighbor exists);

• characteristic: a list of the at most eight char-
acteristic edges of S, that is, the i-th entry in
the list characteristic contains a shortest edge



S1

δ1/8

2αδ1/8

Figure 9: The initial quadtree.

ei in DT(P ) such that (i) e has exactly one end-
point inside S; (ii) e has one endpoint outside the
neighborhood of S; and (iii) e has orientation in
[iπ/4, (i+ 1)π/4);

• shortcuts: a list of shortcuts, one for each side of
S.

The fields parent, children, and neighbors are
initialized for all the nodes in TQ; characteristic is
initialized only for S1, by scanning out(v1). shortcuts
is initialized to be empty. The precise function of the
lists characteristic and shortcuts is described in
KL [40], and we will not discuss them much further
here.

Lemma C.3. The total time for the initialization phase
is O(m+

∑m
i=1 |out(vi)|).

Proof. By Lemma B.3, the initial size of TQu is O(m).
All other operations consist of scanning the out-lists or
are linear in the size of TQu . �

C.4 Building the Tree TQu . Now we build the tree
TQu by a traversing DT(P ) in a way reminiscent of Di-
jkstra’s algorithm [23]. Refer to Algorithm 2. The al-
gorithm is started by calling explore({S1}, 2α−1δ1/8),
and it proceeds according to the levels of TQu . At each
point, it maintains a set active of squares that con-
tain a cluster that has already been processed, and it
uses a function findStar to discover new clusters whose
distance from the active clusters is comparable to the
size of the squares in the current level. We will say

Algorithm 2 Computing a c-cluster quadtree for the
children of a c-cluster.
explore(S, maxsize)

1. Set active := S.

2. Set newActive := ∅.

3. Until the squares in active have size greater than
maxsize:

(a) For every square S in active call the function
findStar(S) to determine F(S). Append S̄
to newActive, if it is not present yet.

(b) For every edge e ∈ ⋃
S∈activeF(S), if e has an

endpoint in an undiscovered cluster, call the
function newCluster(S, e), and append all the
squares returned by this call to newActive.

(c) Set active := newActive.

newCluster(S, e)

1. Walk along e through the current TQu to find the
square S′ of TQu that contains the other endpoint of
e. This tracing is done by following the appropriate
neighbor pointers from S.

2. Refine TQu for the new cluster, and let S ′ be the
set of leaf squares containing the newly discovered
cluster.

3. Call explore(S ′, size of squares in active). After-
wards, return the active squares from the recur-
sive call.

more about findStar below. For each new cluster, we
call newCluster which refines TQu to accommodate the
new cluster and recursively explores the short edges out
of this new cluster. We give the details for the refine-
ment in Step 2 of newCluster: Let vj be the cluster
that contains the other endpoint q of e (we can find vj
in constant time, since e ∈ out(vj), and since for each
edge we store the two clusters whose out-lists contain
it). Subdivide the current leaf square containing q (and
possibly also its neighbors if they contain points from
Pvj ) in quadtree-fashion until Pvj is contained in squares
of size δj/8. Then balance the quadtree and update the
neighbor pointers accordingly. Scan out(vj) in order
to initialize characteristic for the leaf squares con-
taining points in Pvj .

The algorithm is recursive, and at each point there
exists a sequence E1, E2, . . ., Ez of instantiations of
explore, where Ei+1 was invoked by Ei. Each Ei has
a set activei of active squares, such that all squares



in each activei have the same size, and such that the
squares in activei+1 are not larger than the squares in
activei. We say that a square is active if it is contained
in activeT :=

⋃
i activei. The neighborhood of

activeT is the union of the neighborhoods of all boxes
in active. We maintain the following invariant:

Invariant C.4. At all times during the execution of
explore, all undiscovered c-clusters lie outside the
neighborhood of activeT .

Claim C.5. Invariant C.4 is maintained by explore.

Proof. The set activeT only changes in Steps 1 and 3c.
The invariant is maintained in Step 1, since the size of
the squares in S is chosen such that their neighborhoods
contain no points from any other cluster.

Let us now consider Step 3c. The set newActive

contains two kinds of squares: (i) the parents of squares
processed in the current iteration of the main loop;
and (ii) squares that were added to newActive after
a recursive call. We only need to focus on squares of
type (i), since squares of type (ii) are already added
to activeT during the recursive call. Suppose that
activeT contains a square S whose neighborhood has
a point p ∈ P in an undiscovered cluster. Since
S ∈ activeT , there is a point q ∈ P ∩ S, and by
the definition of neighborhood, we have d(p, q) ≤ 3|S|.
However, since the dilation of DT(P ) is at most 2.5 [37],
DT(P ) contains a path π of length at most 8|S| from p
to q. Let p′ be the last discovered point along π. The
point p′ lies in an active square S′ with |S′| ≥ |S|, and
the edge e leaving p′ on π has length at most 8|S′|.
Therefore, e ∈ F(S′′) for a descendant S′′ of S′, which
contradicts the fact that p′ is the last discovered point
along π. �

Lemma C.6. The total running time of explore, ex-
cluding the calls to findStar, is O(m+

∑m
i=1 |out(vi)|).

Proof. All squares appearing in activeT are ancestors
of non-empty leaf squares in the final tree TQu . There-
fore, by Lemma B.3, the total number of iterations for
the loop in Step 3a is O(m). Furthermore, F(S) con-
tains only edges of length Θ(|S|), so every edge appears
in only constantly many stars. It follows that the to-
tal size of the F-lists, and hence the total number of
iterations of the loop in Step 3b is O(

∑m
i=1 |out(vi)|).

It remains to bound the time for tracing the edges
and balancing the tree. Since TQu is balanced and since
F(S) contains only edges of length Θ(|S|), the tracing
along the neighbor pointers of an edge takes constant
time (since we traverse constantly many boxes of size
Θ(|S|)). By Invariant C.4, the other endpoint of the

edge is contained in a leaf square of the current TQu
of size Θ(|S|) (this is because the quadtree is balanced
and because the other endpoint of the edge lies outside
the neighborhood of the active squares). Therefore, the
time to build the balanced quadtree for the new leaf
squares containing the newly discovered cluster can be
charged to the corresponding nodes in the final TQu , of
which there are O(m) many. Furthermore, note that
by Invariant C.4, balancing the quadtree for the newly
discovered leaf squares does not affect any descendants
of the active squares. �

C.5 Implementing findStar. KL show how to
exploit the geometric properties of the Delaunay
triangulation in order to implement the function
findStar, quickly, by appropriately maintaining the
characteristic and shortcuts lists of the active
squares [40, Section 6]. This part of the algorithm works
on a real RAM/pointer machine without any further
modifications, so we just state their result.

Lemma C.7. The total time for all calls to findStar

is O(m+
∑m
i=1 |out(vi)|). �

C.6 Putting Everything Together. We can now
finally prove Theorem 3.1.

Proof. (of Theorem 3.1) First, we use Theorem B.1 to
find a c-cluster tree Tc for P in O(n) time. Next,
we use the algorithm from Section C.2 to preprocess
the tree. By Lemma C.1, this also takes O(n) time.
Finally, we process each node of Tc using the algorithm
from Section C.3. By Lemmas C.3, C.6, and C.7, this
takes total time

∑
j 1 + |out(vj)|, where the sum ranges

over all the nodes of Tc. This sum is O(n) because
there are O(n) nodes in Tc, and because every edge of
DT(P ) appears in exactly two out-lists. Hence, the
total running time is linear, as claimed. �


