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Abstract4

We show that Delaunay triangulations and compressed quadtrees are equivalent structures. More precisely,5

we give two algorithms: the first computes a compressed quadtree for a planar point set, given the Delaunay6

triangulation; the second finds the Delaunay triangulation, given a compressed quadtree. Both algorithms7

run in deterministic linear time on a pointer machine. Our work builds on and extends previous results by8

Krznaric and Levcopolous [38] and Buchin and Mulzer [9]. Our main tool for the second algorithm is the9

well-separated pair decomposition (WSPD) [12], a structure that has been used previously to find Euclidean10

minimum spanning trees in higher dimensions [26]. We show that knowing the WSPD (and a quadtree)11

suffices to compute a planar Euclidean minimum spanning tree (EMST) in linear time. With the EMST at12

hand, we can find the Delaunay triangulation in linear time [20].13

As a corollary, we obtain deterministic versions of many previous algorithms related to Delaunay trian-14

gulations, such as splitting planar Delaunay triangulations [18,19], preprocessing imprecise points for faster15

Delaunay computation [8, 40], and transdichotomous Delaunay triangulations [9, 14,15].16

1 Introduction17

Delaunay triangulations and quadtrees are among the oldest and best-studied notions in compu-18

tational geometry [3,6,24,28,42,43,45,47], captivating the attention of researchers for almost four19
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Fig. 1: A planar point set P , and a quadtree (a) and a Delaunay triangulation (b) on it.
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decades. Both are proximity structures on planar point sets; Figure 1 shows a simple example of1

these structures. Here, we will demonstrate that they are, in fact, equivalent in a very strong sense.2

Specifically, we describe two algorithms. The first computes a suitable quadtree for P , given the3

Delaunay triangulation DT(P ). This algorithm closely follows a previous result by Krznaric and4

Levcopolous [38], who solve this problem in a stronger model of computation. Our contribution5

lies in adapting their algorithm to the real RAM/pointer machine model.1 The second algorithm,6

which is the main focus of this paper, goes in the other direction and computes DT(P ), assuming7

that a suitable quadtree for P is at hand.8

The connection between quadtrees and Delaunay triangulations was first discovered and fruit-9

fully applied by Buchin and Mulzer [9] (see also [8]). While their approach is to use a hierarchy10

of quadtrees for faster conflict location in a randomized incremental construction of DT(P ), we11

pursue a strategy similar to the one by Löffler and Snoeyink [40]: we use the additional infor-12

mation to find a connected subgraph of DT(P ), from which DT(P ) can be computed in linear13

deterministic time [20]. As in Löffler and Snoeyink [40], our subgraph of choice is the Euclidean14

minimum spanning tree (EMST) for P , emst(P ) [26]. The connection between quadtrees and EM-15

STs is well known: initially, quadtrees were used to obtain fast approximations to emst(P ) in high16

dimensions [11, 49]. Developing these ideas further, several algorithms were found that use the17

well-separated pair decomposition (WSPD) [12], or a variant thereof, to reduce EMST computation18

to solving the bichromatic closest pair problem. In that problem, we are given two point sets R19

and B, and we look for a pair (r, b) ∈ R×B that minimizes the distance |rb| [1,11,39,51]. Given a20

quadtree for P , a WSPD for P can be found in linear time [8, 12, 13, 33]. EMST algorithms based21

on bichromatic closest pairs constitute the fastest known solutions in higher dimensions. Our ap-22

proach is quite similar, but we focus exclusively on the plane. We use the quadtree and WSPDs23

to obtain a sequence of bichromatic closest pair problems, which then yield a sparse supergraph of24

the EMST. There are several issues: we need to ensure that the bichromatic closest pair problems25

have total linear size and can be solved in linear time, and we also need to extract the EMST from26

the supergraph in linear time. In this paper we show how to do this using the structure of the27

quadtree, combined with a partition of the point set according to angular segments similar to Yao’s28

technique [51].29

1.1 Applications30

Our two algorithms have several implications for derandomizing recent algorithms related to DTs.31

First, we mention hereditary computation of DTs. Chazelle et al. [18] show how to split a Delaunay32

triangulation in linear expected time (see also [19]). That is, given DT(P ∪ Q), they describe a33

randomized algorithm to find DT(P ) and DT(Q) in expected time O(|P |+ |Q|). Knowing that DTs34

and quadtrees are equivalent, this result becomes almost obvious, as quadtrees are easily split in35

linear time. More importantly, our new algorithm achieves linear worst-case running time. Ailon36

et al. [2] use hereditary DTs for self-improving algorithms [2]. Together with the ε-net construction37

by Pyrga and Ray [44] (see [2, Appendix A]), our result yields a deterministic version of their38

algorithm for point sets generated by a random source (the inputs are probabilistic, but not the39

algorithm).40

Eppstein et al. [27] introduce the skip-quadtree and show how to turn a (compressed) quadtree41

into a skip-quadtree in linear time. Buchin and Mulzer [9] use a (randomized) skip-quadtree to42

1 Refer to Appendix A for a description of different computational models.
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Fig. 2: We show which can be computed from which in linear time. The black arrows depict known linear time
deterministic algorithms that work in the pointer machine/real RAM model. The red arrows depict our
new results. Furthermore, for reference, we also show known randomized linear time algorithms (in green)
and known deterministic linear time algorithms that work in a weaker model of computation (in blue).

find the DT in linear expected time. This yields several improved results about computing DTs.1

Most notably, they show that in the transdichotomous setting [14, 15, 29], computing DTs is no2

harder than sorting the points (according to some special order). Here, we show how to go directly3

from a quadtree to a DT, without skip-quadtrees or randomness. This gives the first deterministic4

transdichotomous reduction from DTs to sorting.5

Buchin et al. [8] use both hereditary DTs and the connection between skip-quadtrees and DTs6

to simplify and generalize an algorithm by Löffler and Snoeyink [40] to preprocess imprecise points7

for Delaunay triangulation in linear expected time (see also Devillers [25] for another simplified, but8

not worst-case optimal, solution). Löffler and Snoeyink’s original algorithm is deterministic, and9

the derandomized version of the Buchin et al. algorithm proceeds in a very similar spirit. However,10

we now have an optimal deterministic solution for the generalized problem as well.11

In Figure 2, we show a graphical representation of different proximity structures on planar point12

sets. The arrows show which structures can be computed from which in linear deterministic time13

on a pointer machine, before and after this paper. Please realize that there are several subtleties of14

different algorithms and their interactions that are hard to show in a diagram, it is included purely15

as illustration of the impact of our results.16

1.2 Organization of this paper17

The main result of our paper is an algorithm to compute a minimum spanning tree of a set of18

points from a given compressed quadtree. However, before we can describe this result in Section 4,19

we need to establish the necessary tools; to this end we review several known concepts in Section 220

and prove some related technical lemmas in Section 3. In Section 5, we describe the algorithm to21

compute a quadtree when given the Delaunay triangulation; this is an adaptation of the algorithm22

by Krznaric and Levcopoulos [38] to the real RAM model. Finally, we detail some important23

implications of our two new algorithms in Section 6.24
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2 Preliminaries1

We review some known definitions, structures, algorithms, and their relationships.2

2.1 Delaunay Triangulations and Euclidean Minimum Spanning Trees3

Given a set P of n points in the plane, an important and extensively studied structure is the4

Delaunay triangulation of P [3, 6, 24, 43, 47], denoted DT(P ). It can be defined as the dual graph5

of the Voronoi diagram, the triangulation that optimizes the smallest angle in any triangle, or in6

many other equivalent ways, and it has been proven to optimize many other different criteria [42].7

The Euclidean minimum spanning tree of P , denoted emst(P ), is the tree of smallest total edge8

length that has the points of P as its vertices, and it is well known that the EMST is a subgraph9

of the DT [47, Theorem 7]. In the following, we will assume that all the pairwise distances in P10

are distinct (a general position assumption), which implies that emst(P ) is uniquely determined.11

Finally, we remind the reader that emst(P ), like every minimum spanning tree, has the following12

cut property : let P = R ∪ B a partition of P , and let r and b be the two points with r ∈ R13

and b ∈ B that minimize the distance |rb|. Then rb is an edge of emst(P ). Note that this is14

very similar to the bichromatic closest pair reduction mentioned in the introduction, but the cut15

property holds for any partition of P , whereas the bichromatic closest pair reduction requires a16

very specific decomposition of P into pairs of subsets (which is usually not a partition).17

2.2 Quadtrees—Compressed and c-Cluster18

Let P be a planar point set. The spread of P is defined as the ratio between the largest and19

the smallst distance between any two distinct points in P . A quadtree for P is a hierarchical20

decomposition of an axis-aligned bounding square for P into smaller axis-aligned squares [3, 28,21

33, 45]. A regular quadtree is constructed by successively subdividing every square with at least22

two points into four congruent child squares. A node v of a quadtree is associated with (i) Sv, the23

square corresponding to v; (ii) Pv, the points contained in Sv; and (iii) Bv, the axis-aligned bounding24

square for Pv. Sv and Bv are stored explicitly at the node. We write |Sv| and |Bv| for the diameter25

of Sv and Bv, and cv for the center of Sv. We will also use the shorthand d(u, v) := d(Su, Sv) to26

denote the shortest distance between any point in Su and any point in Sv. Furthermore, we denote27

the parent of v by v. Regular quadtrees can have unbounded depth (if P has unbounded spread28

so in order to give any theoretical guarantees the concept is usually refined. In the sequel, we use29

two such variants of quadtrees, namely compressed and c-cluster quadtrees, which we show are in30

fact equivalent.31

A compressed quadtree is a quadtree in which we replace long paths of nodes with only one child32

by a single edge [4,5,8,21]. It has size O(|P |). Formally, given a large constant a, an a-compressed33

quadtree is a regular quadtree with additional compressed nodes.2 A compressed node v has only34

one child v with |Sv| ≤ |Sv|/a and such that Sv \ Sv has no points from P . Figure 3(a) shows35

an example. Note that in our definition Sv need not be aligned with Sv, which would happen if36

we literally “compressed” a regular quadtree. This relaxed definition is necessary because existing37

algorithms for computing aligned compressed quadtrees use a more powerful model of computation38

than our real RAM/pointer machine (see Appendix A). In the usual applications of quadtrees, this39

2 Such nodes are often called cluster -nodes in the literature [4, 5, 8], but we prefer the term compressed to avoid
confusion with c-cluster quadtrees defined below.
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(a) (b) (c)

Fig. 3: (a) A compressed quadtree on a set of 15 points. (b) A c-cluster tree on the same point set. (c) In a
c-cluster quadtree, the internal nodes of the c-cluster tree are replaced by quadtrees.

is acceptable. In fact, Har-Peled [33, Chapter 2] pointed out that some non-standard operation is1

inevitable if we require that the squares of the compressed quadtree are perfectly aligned. However,2

here we intend to derandomize algorithms that work on a traditional real RAM/pointer machine,3

so we prefer to stay in this model. This keeps our results comparable with the previous work.34

Now let c be a large enough constant. A subset U ⊆ P is a c-cluster if U = P or d(U,P \U) ≥5

c|BU |, where BU denotes the smallest axis-aligned bounding square for U , and d(A,B) is the6

minimum distance between a point in A and a point in B [37,38]. In other words, U is a c-cluster7

precisely if {U,P \U} is a (1/c)-semi -separated pair [33,50]. It is easily seen that the c-clusters for8

P form a laminar family, i.e., a set system in which any two sets A and B satisfy either A∩B = ∅;9

A ⊆ B; or B ⊆ A. Thus, the c-clusters define a c-cluster tree Tc. Figure 3(b) shows an example.10

These trees are a very natural way to tackle point sets of unbounded spread, and they have linear11

size. However, they also may have high degree. To avoid this, a c-cluster tree Tc can be augmented12

by additional nodes, adding more structure to the parts of the point set that are not strongly13

clustered. This is done as follows. First, recall that a quadtree is called balanced if for every node14

u that is either a leaf or a compressed node, the square Su is adjacent only to squares that are15

within a factor 2 of the size of Su.4 For each internal node u of Tc with set of children V , we build16

a balanced regular quadtree on a set of points containing one representative point from each node17

in V (the intuition being that such a cluster is so small and far from its neighbors, that we might18

as well treat it as a point). This quadtree has size O(|V |) (Lemma 3.4), so we obtain a tree of19

constant degree and linear size, the c-cluster quadtree. Figure 3(c) shows an example. The sets Pv,20

Sv and Bv for the c-cluster quadtree are just as for regular and compressed quadtrees, where in Pv21

we expand the representative points appropriately. Note that it is possible that Sv + Pv, but the22

points of Pv can never be too far from Sv. In Section 3.1 we elaborate more on c-cluster quadtrees23

and their properties, and in Section 3.3, we prove that c-cluster quadtrees and compressed quadtrees24

are equivalent (Theorem 3.12).25

3 Note that this constitutes a generalization of the traditional definition of quadtrees: all of our results can be easily
adapted to operate on and produce aligned quadtrees, if we allow the use of the required non-standard operations.

4 We remind the reader that in our terminology, a compressed node is the node whose square contains a much
smaller quadtree, and not the root node of the smaller quadtree.
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2.3 Well-Separated Pair Decompositions1

For any two finite sets U and V , let U ⊗ V := {{u, v} | u ∈ U, v ∈ V, u 6= v}. A pair decomposition2

P for a planar5 n-point set P is a set of m pairs {{U1, V1}, . . . , {Um, Vm}}, such that (i) for all3

i = 1, . . . ,m, we have Ui, Vi ⊆ P and Ui ∩ Vi = ∅; and (ii) for any {p, q} ∈ P ⊗ P , there is exactly4

one i with {p, q} ∈ Ui ⊗ Vi. We call m the size of P. Fix a constant ε ∈ (0, 1), and let {U, V } ∈ P.5

Denote by BU , BV the smallest axis-aligned squares containing U and V . We say that {U, V }6

is ε-well-separated if max{|BU |, |BV |} ≤ εd(BU , BV ), where d(BU , BV ) is the distance between7

BU and BV (i.e., the smallest distance between a point in BU and a point in BV ). If {U, V } is8

not ε-well-separated, we say it is ε-ill-separated. We call P an ε-well-separated pair decomposition9

(ε-WSPD) if all its pairs are ε-well-separated [11,12,26,33].10

Now let T be a (compressed or c-cluster) quadtree for P . Given ε > 0, it is well known that11

T can be used to obtain an ε-WSPD for P in linear time [12,33]. Since we will need some specific12

properties of such an ε-WSPD, we give pseudo-code for such an algorithm in Algorithm 1. We call13

this algorithm wspd, and denote its output on input T by wspd(T ). The correctness of the algorithm14

wspd is immediate, since it only outputs well-separated pairs, and the bounds on the running time15

and the size of wspd(T ) follow from a well-known volume argument which we omit [8, 12,13,33].

Algorithm 1 Finding a well-separated pair decomposition.

1. Call wspd(r) on the root r of T .

wspd(v)

1. If v is a leaf, return ∅.

2. Return the union of wspd(w) and wspd({w1, w2}) for all children w and pairs of distinct
children w1, w2 of v.

wspd({u, v})

1. If Su and Sv are ε-well-separated, return {u, v}.

2. Otherwise, if |Su| ≤ |Sv|, return the union of wspd({u,w}) for all children w of v.

3. Otherwise, return the union of wspd({w, v}) for all children w of u.

16

Theorem 2.1. There is an algorithm wspd, that given a (compressed or c-cluster) quadtree T for17

a planar n-point set P , finds in time O(n) a linear-size ε-WSPD for P , denoted wspd(T ).18

Note that the WSPD is not stored explicitly: we cannot afford to store all the pairs {U, V },19

since their total size might be quadratic. Instead, wspd(T ) contains pairs {u, v}, where u and v are20

nodes in T , and {u, v} is used to represent the pair {Pu, Pv}.21

Note that the algorithm computes the WSPD with respect to the squares Sv, instead of the22

bounding squares Bv. This makes no big difference, since for compressed quadtrees Bv ⊆ Sv, and23

for c-cluster quadtrees Bv can be outside Sv only for c-cluster nodes, resulting in a loss of at most24

5 Although some of these notions extend naturally to higher dimensions, the focus of this paper is on the plane.
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a factor 1 + 1/c in separation. Referring to the pseudo-code in Algorithm 1, we now prove three1

observations. The first observation says that the size of the squares under consideration strictly2

decreases throughout the algorithm.3

Observation 2.2. Let {u, v} be a pair of distinct nodes of T . If wspd({u, v}) is executed by wspd4

run on T (in particular, if {u, v} ∈ wspd(T )), then max{|Su|, |Sv|} ≤ min{|Su|, |Sv|}.5

Proof. We use induction on the depth of the call stack for wspd({u, v}). Initially, u and v are6

children of the same node, and the statement holds. Furthermore, assuming that wspd({u, v}) is7

called by wspd({u, v}) (and hence |Su| ≤ |Sv|), we get max{|Su|, |Sv|} ≤ |Sv| = min{|Su|, |Sv|},8

where the last equation follows by induction.9

The next observation states that the wspd-pairs reported by the algorithm are, in a sense, as10

high in the tree as possible.11

Observation 2.3. If {u, v} ∈ wspd(T ), then u and v are ill-separated.12

Proof. If u = v, the claim is obvious. Otherwise, let us assume that wspd({u, v}) was called13

by wspd({u, v}). This means that {u, v} is ill-separated and max{|Su|, |Sv|} = |Sv|. Therefore,14

max{|Su|, |Sv|} ≥ |Sv| > εd(u, v) ≥ εd(u, v), and {u, v} is ill-separated.15

The last claim shows that for each wspd-pair, we can find well-behaved boxes whose size is16

comparable to the distance between the point sets. In the following, this will be a useful tool for17

making volume arguments that bound the number of wspd-pairs to consider.18

Claim 2.4. Let {u, v} ∈ wspd(T ). Then there exist squares Ru and Rv such that (i) Su ⊆ Ru ⊆ Su19

and Sv ⊆ Rv ⊆ Sv; (ii) |Ru| = |Rv|; and (iii) |Ru|/2ε ≤ d(Ru, Rv) ≤ 2|Ru|/ε.20

Proof. Suppose wspd({u, v}) is called by wspd({u, v}), the other case is symmetric. Let us define21

r := min{εd(u, v), |Sv|}. By Observation 2.2, we have |Su|, |Sv| ≤ |Sv| ≤ |Su|. Since {u, v} is22

well-separated, we have εd(u, v) ≥ max{|Su|, |Sv|}. Hence, |Su|, |Sv| ≥ r ≥ |Su|, |Sv|, and we can23

pick squares Ru and Rv of diameter r that fulfill (i). Now (ii) holds by construction, and it remains24

to check (iii). First, note that d(Ru, Rv) ≥ d(u, v)− 2r ≥ (1− 2ε)d(u, v) ≥ r/2ε, for ε ≤ 1/4. This25

proves the lower bound. For the upper bound, observe that εd(u, v) ≤ ε(d(u, v)+|Sv|) ≤ (1+ε)|Sv|,26

because {u, v} is ill-separated. Thus, we have εd(u, v)/2 ≤ r, and d(Ru, Rv) ≤ d(u, v) ≤ 2r/ε, as27

desired.28

3 More on Quadtrees29

In this section, we describe a few more properties of the c-cluster trees and c-cluster quadtrees30

defined in Section 2.2, and we prove that they are equivalent to the more standard compressed31

quadtrees (Theorem 3.12). Since most of the material is very technical, we encourage the impatient32

reader to skip ahead to Section 4.33

3.1 c-Cluster Quadtrees34

Krznaric and Levcopolous [37, Theorem 7] showed that a c-cluster tree can be computed in linear35

time from a Delaunay triangulation.36
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Theorem 3.1 (Krznaric-Levcopolous). Let P be a planar n-point set. Given a constant c ≥ 1 and1

DT(P ), we can find a c-cluster tree Tc for P in O(n) time and space on a pointer machine.2

Here, we will actually use a more relaxed notion of c-cluster trees: let c1, c2 be two constants3

with 1 ≤ c1 ≤ c2, and let P be a planar n-point set. A (c1, c2)-cluster tree T(c1,c2) is a rooted tree4

in which each inner node has at least two children and which has n leaves, one for each point in P .5

Each node v ∈ T(c1,c2) corresponds to a subset Pv ⊆ P in the natural way. Every node v must fulfill6

two properties: (i) if v is not the root, then d(Pv, P \ Pv) ≥ c1|BPv |; and (ii) if Pv has a proper7

subset Q ⊂ Pv with d(Q,P \ Q) ≥ c2|BQ|, then there is a child w of v with Q ⊆ Pw. In other8

words, each node of T(c1,c2) corresponds to a c1-cluster of P , and T(c1,c2) must have a node for every9

c2-cluster of P . Thus, the original c-cluster tree is also a (c, c)-cluster tree. Our relaxed definition10

allows for some flexibility in the construction of T(c1,c2) while providing the same benefits as the11

original c-cluster tree. Thus, outside this section we will be slightly sloppy and not distinguish12

between c-cluster trees and (c,Θ(c))-cluster trees.13

As mentioned above, the tree T(c1,c2) is quite similar to a well-separated pair decomposition:14

any two unrelated nodes in T(c1,c2) correspond to a (1/c1)-well-separated pair. However, T(c1,c2) has15

the huge drawback that it may contain nodes of unbounded degree. For example, if the points in16

P are arranged in a square grid, then T(c1,c2) consists of a single root with n children. Nonetheless,17

T(c1,c2) is still useful, since it represents a decomposition of P into well-behaved pieces. As explained18

above, the (c1, c2)-cluster quadtree T is obtained by augmenting T(c1,c2) with quadtree-like pieces19

to replace the nodes with many children.20

We will now prove some relevant properties of (c1, c2)-cluster quadtrees. For a node u of T(c1,c2),21

let TQu be the balanced regular quadtree on the representative points of u’s children. The direct22

neighbors of a square S in TQu are the 8 squares of size |S| that surround S. First, we recall how23

the balanced tree TQu is obtained: we start with a regular (uncompressed) quadtree T ′ for the24

representative points. While T ′ is not balanced, we take a leaf square S of T ′ that is adjacent to a25

leaf square of size less than |S|/2 and we split S into four congruent child squares. The following26

theorem is well known.27

Theorem 3.2 (Theorem 14.4 of [3]). Let T ′ be a quadtree with m nodes. The above procedure28

yields a balanced quadtree with O(m) nodes, and it can be implemented to run in O(m) time.29

Let v be a child of u in T(c1,c2). The properties of the balanced quadtree TQu and the fact that30

the children of u are mutually well-separated yield the following observation.31

Observation 3.3. If c1 is large enough, at most four leaf squares of TQu contain points from Pv.32

Proof. Let d := |Bv| be the diameter of the bounding square for Pv. By definition, Pv is a c1-cluster,33

so the distance from any point in Pv to any point in P \Pv is at least c1d. Suppose that S is a leaf34

square of TQu with S ∩ Pv 6= ∅, and let S be the parent of S.35

There are two possible reasons for the creation of S: either S is part of the original regular36

quadtree for the representative points, or S is generated during the balancing procedure. In the37

former case, S contains at least two representative points. Thus, since in S there is a point from38

Pv and a point from P \Pv, we have |S| ≥ c1d/2. In the latter case, S must be a direct neighbor of39

a square with at least two representative points (see [3, Proof of Theorem 14.4]). Therefore, since40

S contains a point from Pv and has a direct neighbor with a point from P \ Pv, the diameter of S41

is at least c1d/4. Either way, we certainly have |S| ≥ c1d/4.42
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Now if c1 ≥ 8, then c1d/4 ≥ 2d, so the side length of every leaf square S that intersects Pv is1

strictly larger than d. Thus, Pv can be covered by at most 4 such squares, and the claim follows.2

To see that (c1, c2)-cluster quadtrees have linear size, we need a property that is (somewhat3

implicitly) shown in [38, Section 4.3].4

Lemma 3.4. If u has m children v1, v2, . . ., vm in Tc, then TQu has O(m) nodes.5

Proof. Note that the total number of nodes in TQu is proportional to the number of squares that6

contain at least two representative points. Indeed, the number of squares in a balanced regular7

quadtree is proportional to the number of squares in the corresponding unbalanced regular quadtree8

(Theorem 3.2), and in that tree the squares with at least two points correspond to the internal9

nodes, each of which has exactly four children. Thus, it suffices to show that the number of squares10

in TQu with at least two representative points is O(m).11

Call a square S of TQu full if S contains a representative point. A full square S ∈ TQu is called12

merged if it has at least two full children. There are O(m) merged squares, so we only need to bound13

the number of non-merged full squares with at least two points. These squares can be charged to14

the merged squares, using the following claim.15

Claim 3.5. There exists a constant β (depending on c2) such that the following holds: for any full16

square S with at least two representative points, one of the β closest ancestors of S in TQu (possibly17

S itself) is either merged or has a merged direct neighbor.18

Proof. Let S be a non-merged full square with at least two representative points. Since S intersects19

more than one Pvi , the definition of T(c1,c2) implies that the set S ∩ Pu is not a c2-cluster. Thus,20

Pu \ S contains a point at distance at most c2|S| from S. Hence, S has an ancestor S′ in TQu that21

is at most O(log c2) levels above S and that has a full direct neighbor S′′ 6= S′ (note that TQu is22

balanced, so S′′ actually belongs to TQu ).23

We repeat the argument: since (S′∪S′′)∩Pu is not a c2-cluster, there is a point in Pu \ (S′∪S′′)24

at distance at most c2|S′ ∪ S′′| ≤ 2c2|S′| from S′ ∪ S′′. Thus, if we go up O(log c2) levels in TQu , we25

either encounter a common ancestor of S′ and S′′, in which case we are done, or we have found a26

set S of three full squares of TQu such that (i) one square in S is an ancestor of S; (ii) the squares27

in S have equal size; and (iii) the squares in S form a (topologically) connected set.28

We keep repeating the argument while going up the tree. In each step, if we do not encounter29

a common ancestor of at least two squares in S, we can add one more full square to S. However,30

as soon as we have five squares of equal size that form a connected set, at least two of them have a31

common parent. Thus, the process stops after at most two more iterations. Furthermore, since S is32

connected, once at least two squares in S have a common parent, the parents of the other squares33

must be direct neighbors of that parent. Hence, we found an ancestor of S that is only a constant34

number of levels above S and that is merged or has a merged direct neighbor, as desired.35

Now we use Claim 3.5 to charge each non-merged full node with at least two representative36

points to a merged node. Each merged node is charged at most 9 ·4β = O(1) times, and Lemma 3.437

follows.38

The proof of Lemma 3.4 implies the following, slightly stronger claim: Recall that TQu was39

constructed by building a regular quadtree for the representative points for u’s children, followed40

by a balancing step. Now, suppose that before the balancing step we subdivide each leaf that41
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(a) (b)

Fig. 4: (a) A regular quadtree on a set of 8 points. (b) A slight shift of the base square may cause many new
compressed nodes in the quadtree.

contains a representative point for a c-cluster C until it has size at most αd(C,P \ C), for some1

constant α > 0 (if the leaf is smaller than αd(C,P \ C), we do nothing). Call the tree that results2

after the balancing step T2.3

Corollary 3.6. The tree T2 has O(m) nodes.4

Proof. We only need to worry about the additional squares created during the subdivision of the5

leaves. If we take such a square and go up at most log(1/α) levels in the tree, we get a square with6

a direct neighbor that contains a point from another cluster. Now the argument from the proof of7

Lemma 3.4 applies and we can charge the additional squares to merged squares, as before.8

3.2 Balancing and Shifting Compressed Quadtrees9

In this section, we show that it is possible to “shift” a quadtree; that is, given a compressed quadtree10

on a set of points P with base square R, to compute another compressed quadtree on P with a11

base square that is similar to R, in linear time. The main difficulty lies in the fact that the clusters12

in the two quadtrees can be very different, as illustrated in Figure 4.13

Theorem 3.7. Suppose a is a sufficiently large constant and P a planar n-point set. Furthermore,14

let T be an a-compressed quadtree for P with base square R, and let S be a square with S ⊇ P and15

|S| = Θ(|R|). Then we can construct in O(m) time a balanced a-compressed quadtree T ′ for P with16

base square S and with O(m) nodes.17

The idea is to construct T ′ in the traditional way through repeated subdivision of the base18

square S, while using the information provided by T in order to speed up the point location. We19

will use the terms T -square and T ′-square to distinguish the squares in the two trees. During the20

subdivision process, we maintain the partial tree T ′, and for each square S′ of T ′ we keep track of21

the T -squares that have similar size as S′ and that intersect S′ (in an associated set). We call the22

leaves of the current partial tree the frontier of T ′. In each step, we pick a frontier T ′-square and23

split it, until we have reached a valid quadtree for P . We need to be careful in order to keep T ′24

balanced and in order to deal with compressed nodes. The former problem is handled by starting a25

cascading split operation as soon as a single split makes T ′ unbalanced. For the latter problem, we26
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would like to treat the compressed children in the same way as the points in P , and handle them1

later recursively. However, there is a problem: during the balancing procedure, it may happen that2

a compressed child becomes too large for its parent square and should be part of the regular tree.3

In order to deal with this, we must keep track of the compressed children in the associated sets of4

the T ′-squares. When we detect that a compressed child has become too large for its parent, we5

treat it like a regular square. Once we are done, we recurse on the remaining compressed children.6

Through a charging scheme, we can show that the overall work is linear in the size of T . The7

following paragraphs describe the individual steps of the algorithm in more detail.8

Initialization and Data Structures. We obtain from S a grid with squares of size in (|R|/2, |R|],9

either by repeatedly subdividing S, if |S| > |R|; or by repeatedly doubling S, if |S| ≤ |R|/2. Since10

|S| = Θ(|R|), this requires a constant number of steps. Then we determine the T ′-squares S′1, . . . , S
′
k11

of that grid that intersect R (note that k ≤ 9). Our algorithm maintains the following data12

structures: (i) a list L of active T ′-squares; and (ii) for each T ′-square S′ a list as(S′) of associated13

T -squares. We will maintain the invariant that as(S′) contains the smallest T -squares that have size14

at least |S′| and that intersect S′, as well as any compressed children that are contained in such a15

T -square and that intersect S′. This invariant implies that each S′ has O(1) associated squares. We16

call a T ′-square S′ active if as(S′) contains a T -square of size in [|S′|, 2|S′|) or a compressed child of17

size in [|S′|/22a, |S′|). Initially, we set L := {S′1, . . . , S′k} and as(S′1) = as(S′2) = · · · = as(S′k) = {R},18

fulfilling the invariant.19

The Split Operation. The basic operation of our algorithm is the split. A split takes a T ′-20

square S′ and subdivides it into four children S′1, . . . , S
′
4. Then it computes the associated sets21

as(S′1), . . . , as(S′4) as follows. For each i = 1, . . . , 4, we intersect S′i with all T -squares in as(S′),22

and we put those T -squares into as(S′i) that have non-empty intersection with S′i. Then we replace23

each T -square in as(S′) that is neither a leaf, nor a compressed node, nor a compressed child by24

those of its children that have non-empty intersection with S′i. Finally, we remove from as(S′i)25

those compressed nodes whose compressed children have size at least |S′i| and intersect S′i. Having26

determined as(S′i), we use it to check whether S′i is active. If so, we add it to L. The split operation27

maintains the invariant about the associated sets, and it takes constant time.28

Main Body and Point-Location. We now describe the main body of our algorithm. It consists29

of phases. In each phase, we remove a T ′-square S′ from L. We perform a split operation on S′ as30

described above. Then, we start the balancing procedure. For this, we check the four T ′-squares in31

the current frontier that are directly above, below, to the left and to the right of S′ to see whether32

any of them have size 2|S′|. We put each such T ′-square into a queue Q. Then, while Q is not33

empty, we remove a square N ′ from Q and perform a split operation on it (note that this may34

create new active squares). Furthermore, if N ′ is in L, we remove it from L. Finally, we consider35

the T ′-squares of the current frontier directly above, below, to the left and to the right of N ′. If any36

of them have size 2|N ′| and are not in Q yet, we append them to Q and continue. The balancing37

procedure, and hence the phase, ends once Q is empty.38

We continue this process until L is empty. Next, we do point-location. Let S′ be a T ′-square39

of the current frontier. Since L is empty, S′ is associated with O(1) T -squares, all of which are40

either leaves or compressed nodes or compressed children in T . For each T -leaf that intersects S′,41

we determine whether it contains a point that lies in S′. In the end, we have a set of at most four42
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Fig. 5: (a) A frontier square S′ of T ′ intersects several compressed children of T . We identify the list X of T ′

squares that intersect the same children. (b) To apply the shifting algorithm recursively, we choose base
squares R̃ and S̃ aligned with T and T ′.

points from P or compressed children of T that intersect S′, and we call this set the secondary1

associated set for S′, denoted by as2(S′). We do this for every T ′-square in the current frontier.2

The Secondary Stage. Next, the goal is to build a small compressed quadtree for the secondary3

associated set of each square in the current frontier. Of course, the tree needs to remain balanced.4

For this, we start an operation that is similar to the main body of the algorithm. We call a T ′-5

square S′ post-active if | as2(S′)| ≥ 2 and the smallest bounding square for the elements in as2(S′)6

has size larger than |S′|/128a. We put all the post-active squares into a list L2 and we proceed7

as before: we repeatedly take a post-active square from L2, split it, and then perform a balancing8

procedure. Here, the splitting operation is as follows: given a square S′, we split it into four children9

S′1, . . . , S
′
4. By comparing each child S′i to each element in the secondary associated set as2(S′), we10

determine the new secondary associated sets as2(S′1), . . . , as2(S′4). We use these associated sets to11

check which children S′i (if any) are post-active and add them to L2, if necessary. This splitting12

operation takes constant time. Again, it may happen that the balancing procedure creates new13

post-active squares. We repeat this procedure until L2 is empty.14

Setting Up the Recursive Calls. After the secondary stage, there are no more post-active squares,15

so for each square S′ in the current frontier we have (i) | as2(S′)| ≤ 1; or (ii) the smallest bounding16

square of as2(S′) has size at most |S′|/128a. Below in Lemma 3.9 we will argue that if as2(S′)17

contains a single compressed child C, then C has size at most |S′|/128a. Thus, (ii) holds in any18

case. The goal now is to set up a recursive call of the algorithm to handle the remaining compressed19

children. Unfortunately, a compressed child may intersect several leaf T ′-squares, so we need to be20

careful about choosing the base squares for the recursion.21

Let S′ be a square of the current frontier, and set X := {S′}. While there is a compressed22

child C in as2(X) :=
⋃
S′′∈X as2(S′′) that intersects the boundary of S(X) :=

⋃
S′′∈X S

′′, we add23

all the T ′-squares of the current frontier that are intersected by C to X. Since T ′ is balanced,24

the i-th square S(i) that we add to X has size at most 2i|S′| and hence the bounding square of25

as2(S(i)) has size at most 2i|S′|/128a. By construction, as2(S(i)) contains at least one element that26

intersects a square in the old X, so by induction we know that after i steps the set as2(X) has27
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a bounding square of size at most 2i+1|S′|/128a. It follows that the process stops after at most1

three steps (i.e., when X has four elements), because after four steps we would have a bounding2

square of size at most 25|S′|/128a ≤ |S′|/4a that is intersected by five disjoint squares of size at3

least |S′|/24 = |S′|/16 (since T ′ is balanced), which is impossible (for a large enough). Figure 5(a)4

shows an example.5

Now we put two base squares around as2(X): a square R̃ that is aligned with T , and a square6

S̃ that is aligned with T ′. For R̃, if as2(X) contains only one element, we just use the bounding7

square of as2(X). If | as2(X)| ≥ 2, then the elements of as2(X) are separated by an edge or8

a corner between leaf T -squares. Thus, we can pick a base square R̃ for as2(X) such that (i)9

|R̃| ≤ 26|S′|/128a = |S′|/2a; (ii) R̃ is aligned with T ; and (iii) the first split of R̃ separates the10

elements in as2(X). For S̃, if |X| = 1, we just use the bounding square for as2(X). If |X| ≥ 2, the11

squares in X must share a common edge or corner, and we can find a base square S̃ such that (i) S̃12

contains as2(X); (ii) the first split of S̃ produces squares that are aligned with this edge or corner13

of X; and (iii) |S̃| ≤ 26|S′|/128a = |S′|/2a. Figure 5(b) shows an example. We now construct14

an a-compressed quadtree T̃ with base square R̃ for the elements of as2(X) in the obvious way.15

(If as2(X) contains any compressed children, we reuse them as compressed children for T̃ . This16

may lead to a violation of the condition for compressed nodes at the first level of T̃ . However, our17

algorithm automatically treats large compressed children as active squares, so there is no problem.)18

This takes constant time. We call the algorithm recursively to shift T̃ to the new base square S̃.19

Note that this leads to a valid a-compressed quadtree since either S̃ is wholly contained in S′; or20

the first split of S̃ produces squares that are wholly contained in the T ′-leaf squares and have size21

at most |S′|/4a, while each square that intersects S̃ has size at least |S′|/4, as T ′ is balanced. We22

repeat the procedure for every leaf T ′-square whose secondary associated set we have not processed23

yet.24

Analysis. The resulting tree T ′ is a balanced a-compressed quadtree for P . It remains to prove25

that the algorithm runs in linear time. The initialization stage needs O(1) steps. Next, we consider26

the main body of the algorithm. Since each split takes constant time, the total running time for27

the main body is proportional to the number of splits. Recall that a T ′-square S′ is called active28

if it is put into L, i.e., if as(S′) contains a T -square of size in [|S′|, 2|S′|) or a compressed child of29

size in (|S′|/22a, |S′|]. Since each T -square can cause only a constant number of T ′-squares to be30

active, the total number of active T ′-squares is O(m). Thus, we can use the following lemma to31

conclude that the total number of splits in the main body of the algorithm is linear.32

Lemma 3.8. Every split in the main body of the algorithm can be charged to an active T ′-square33

such that each such square is charged a constant number of times.34

Proof. If we split an active square S′, we can trivially charge the split to S′. Hence, the critical35

splits are the ones during the balancing procedure. By induction on the number of steps of the36

balancing procedure, we see that if a square S′ is split, there must be a square N ′ in the current37

partial tree T ′ that is a direct neighbor of S′ and that has an active descendant whose removal38

from L triggered the balancing procedure.639

If N ′ has an active ancestor Ñ that is at most five levels above N ′ in T ′ (possibly Ñ = N ′), we40

charge the split of S′ to Ñ , and we are done. Otherwise, we know that as(N ′) contains at least one41

compressed child of size less than |N ′|/22a (otherwise, N ′ would not have an active descendant or42

6 Recall that a direct neighbor of S′ is one of the eight squares of size |S′| that surround S′.
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would itself be active) and T -squares of size at least 64|N ′| (otherwise, one of the five nodes above1

N ′ in T ′ would have been active). Now, before S′ is split, there must have been a split on N ′:2

otherwise the active descendant of N ′ that triggers the split on S′ would not exist. Thus, we repeat3

the argument to show that N ′ has a direct neighbor N ′′ with an active descendant that triggers4

the split of S′. Note that N ′′ 6= S′, because the split on N ′ happens before the split on S′. If N ′′5

has an active ancestor that is at most five levels higher up in T ′ (possibly N ′′ itself), we are done6

again. Otherwise, we repeat the argument again.7

We claim that this process finishes after at most 16 steps. Indeed, suppose we find 17 squares8

S′ = N (0), N (1), N (2), . . . , N (17) without stopping. We know that each N (j) is a direct neighbor9

of N (j−1) and that each N (j) is associated with a compressed child of size at most |S′|/22a and10

with T -squares of size at least 64|S′|. Since the set
⋃16
j=0N

(j) has diameter at most 17|S′|, the set11 ⋃16
j=0 as(N (j)) contains at most four T -squares of size at least 64|S′|. Now each compressed child12

in an associated set as(N (j)) is the only child of one of these four large T -squares, so there are at13

most four of them. Furthermore, each such compressed child is intersected by at most four disjoint14

T -squares of size |S′|, so there can be at most 16 squares N (j), a contradiction. Hence, we can15

charge each split to an active square in the desired fashion, and the lemma follows.16

Next, we analyze the running time of the secondary stage. Again, the running time is propor-17

tional to the number of splits, which is bounded by the following lemma.18

Lemma 3.9. Let S′ be a frontier T ′-square at the beginning of the secondary stage. Then after the19

secondary stage, the subtree rooted at S′ has height at most O(log a).20

Proof. Below, we will argue that for every descendant S′′ of S′, if as2(S′′) contains a compressed21

child C, then |C| ≤ |S′′|/2a. For now, suppose that this holds.22

First, we claim that there are O(log a) splits to post-active descendants of S′. The secondary23

associated set as2(S′) contains at most four elements, so as2(S′) has at most 11 subsets with two24

or more elements. Fix such a subset A. Then S′ has at most O(log a) post-active descendants25

with secondary associated set A. This is because each level of T ′ has at most two squares with26

secondary associated set A, and the post-active squares with secondary associated set A must have27

size between |B(A)|/2 and 128a|B(A)|, where B(A) denotes the smallest bounding square for the28

elements in A. (Here we use our claim that the compressed children in the secondary associated29

set of each frontier T ′-square S′′ are much smaller than S′′.) There are only O(log a) such levels, so30

adding over all A, we see that S′ has at most O(log a) post-active descendants, implying the claim.31

Each split creates at most one new level below S′, so there are only O(log a) new levels due to32

splits to post-active descendants of S′. Next, we bound the number of new levels that are created33

by splits during the balancing phases. Each balancing phase creates at most one new level below S′.34

Furthermore, by induction on the number of steps in the balancing phase, we see that the balancing35

phase was triggered by the split of a post-active square that is a descendant either of S′ or of a36

direct neighbor of S′. At the beginning of the secondary stage, there are O(1) T ′-squares that are37

descendants of direct neighbors of S′ (as T ′ is balanced). As we argued above, each of them has38

at most O(log a) post-active descendants. Thus, the balancing phases add at most O(log a) new39

levels below S′.40

Finally, we need to justify the assumption that for any descendant S′′ with a compressed child41

C ∈ as2(S′′), we have |C| ≤ |S′′|/2a. By construction, we have |C| ≤ |S′|/22a. Suppose that S′42

has a descendant S′′ that violates this assumption. The square S′′ was created through a split43
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in the secondary stage, and suppose that S′′ is the first such square during the whole secondary1

stage. This means that during all previous splits, the assumption holds, so by the argument above,2

there are at most O(log a) levels below S′. This means that |S′′| ≥ |S′|/aO(1), so we would get3

|S′|/22a ≥ |C| > |S′′|/2a > |S′|/22a, a contradiction (for a large enough). Thus, no S′′ can violate4

the assumption, as desired.5

The time to set up the recursion is constant for each square of the current frontier. From6

Lemmas 3.8 and 3.9, we can conclude that the total time of the algorithm is O(m), which also7

implies that T ′ has O(m) squares. This concludes the proof of Theorem 3.7.8

Special Cases. We note two useful special cases of Theorem 3.7. The first one gives an analog of9

Theorem 3.2 for compressed quadtrees.10

Corollary 3.10. Let T be a a-compressed quadtree with m nodes. There exists a balanced a-11

compressed quadtree that contains T , has O(m) nodes and can be constructed in O(m) time.12

Proof. Let R be the base square of T . We apply Theorem 3.7 with S = R.13

The second special case says that we can realign an uncompressed quadtree locally in any way14

we want, as long as we are willing to relax the definition of quadtree slightly.7 Let P be a planar15

point set. We call a quadtree for P λ-relaxed if it has at most λ points of P in each leaf, and is16

otherwise a regular quadtree.17

Corollary 3.11. Let P be a planar point set and T a regular quadtree for P , with base square R.18

Let S be another square with S ⊇ P and |S| = Θ(|R|). Then we can build a 4-relaxed quadtree T ′19

for P with base square S in O(|T |) time such that T ′ has O(|T |) nodes.20

Proof. We apply Theorem 3.7 to T , but we stop the algorithm before the beginning of the secondary21

stage. Since each secondary associated set for a leaf square has at most four elements, and since T22

contains no compressed nodes, the resulting tree T ′ has the desired properties.23

3.3 Equivalence of Compressed and c-Cluster Quadtrees24

The goal of this section is to prove the following theorem.25

Theorem 3.12. Let P be a planar n-point set. Given a (c1, c2)-cluster quadtree on P , we can26

compute in O(n) time an O(c1)-compressed quadtree on P ; and given an a-compressed quadtree on27

P , we can compute in O(n) time an (a1/5, 2a1/5)-cluster quadtree on P .28

We present the proof of Theorem 3.12 in two lemmas.29

Lemma 3.13. Let P be a planar n-point set. Given a (c1, c2)-cluster quadtree T for P , we can30

compute in linear time an O(c1)-compressed quadtree T ′ on P .31

7 We cannot get a non-relaxed (1-relaxed) uncompressed quadtree, since two points could be arbitrarily close to
each other if they were separated by a boundary. However, we can always turn a λ-relaxed quadtree into a non-relaxed
compressed quadtree in linear time again.
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Proof. We construct the compressed quadtree in a top-down fashion, beginning from the root.1

Suppose that we have constructed a partial compressed quadtree T ′, and let q be the representative2

point for a node u in the (c1, c2)-cluster tree T(c1,c2) that corresponds to T . We show how to expand3

q in T ′ to the corresponding quadtree TQu .4

First, we add to TQu a new root that is aligned with the old base square and larger by a5

constant factor, such that the old base square does not touch any boundary of the new one. Next,6

we determine by a search from q which leaf squares of T ′ intersect TQu . By Observation 3.3, there7

are at most four such leaves, so this step takes constant time. (Note that since we grow the base8

square of each quadtree that we expand, it cannot happen that TQu intersects the boundary of its9

parent quadtree.) Next, we repeatedly split each leaf that intersects TQu and that contains some10

other point or compressed child until there are no more such leaves.11

The proof of Observation 3.3 shows that every leaf square of T ′ that intersects TQu has size at12

least c1d/4, where d is the size of TQu ’s base square. If TQu lies completely inside a leaf of T ′, we add13

TQu as a compressed child to T ′. If TQu intersects more than one leaf square, we identify a square14

at most twice the size of TQu ’s base square that is aligned appropriately with the relevant edges15

of T , and apply Corollary 3.11 to shift TQu to this new base square. This results in a valid O(c1)16

compressed quadtree in which q has been expanded. We repeat this process until all the quadtree17

pieces of T have been integrated into a large compressed quadtree.18

The total time for the top-down traversal and for the realignment procedures is linear. Fur-19

thermore, Corollary 3.6 shows that the total work for splitting the leaves of T ′ is also linear, since20

the points in the different clusters are (1/c1)-semi-separated. Hence, the total running time is21

linear.22

Lemma 3.14. Let P be a planar n-point set, and T be an a-compressed quadtree for P . Then we23

can compute in linear time a (a1/5, 2a1/5)-cluster quadtree for P .24

Proof. We use Corollary 3.10 to balance T , but without the recursive calls for the remaining cluster25

nodes. This gives a balanced top-level quadtree Ttop (possibly with some compressed children of T26

now integrated in the tree), in which each leaf square is associated with at most four points from27

P or compressed children of T . Furthermore, for each leaf square S of Ttop, we have a bounding28

square for the associated elements that is aligned with T and has size at most |S|/a.29

We use Ttop to identify a partial cluster quadtree, and we then recurse on the compressed30

children. We say a square S ∈ Ttop is full if there is a leaf below S with a non-empty associated31

set. Otherwise, S is empty. First, we consider the squares of Ttop in top-down fashion and check32

for each full square S which direct neighbors of S are empty (this can be done in constant time33

since T is balanced). If S has at most three full direct neighbors, and if all these full squares share34

a common corner, we let U be a square that is aligned with S and contains the full squares (i.e.,35

either U = S or U is a square of size 2|S| that contains S and its full neighbors). Next, we consider36

the squares of size |U | in the (4a1/5 + 1)× (4a1/5 + 1) grid centered at U and check whether they37

are all empty (again, since T is balanced, this takes constant time). If so, the points associated38

with U define a a1/5-cluster. We put a representative point for the cluster into U , make a new39

quadtree with root U , and remove U ’s children from Ttop. We continue until all the squares of Ttop40

have been traversed, and then we process all the new trees in a similar way, iterating if necessary.41

After we are done, a part of the cluster quadtree has been created, and we need to consider the42

compressed children to set up a recursion.43
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Fig. 6: (a) The set of possible directions between two unrelated nodes u and v. (b) The set of possible directions
between well-separated pairs is small.

For this, we consider each non-empty leaf square S of the partial tree. Let B be the bounding1

square of the associated elements of S. We know that |B| ≤ |S|/a, so the disc D of radius 2|B|a1/5
2

centered at B intersects at most three other leaf squares. We check for each of these leaf squares3

whether D intersects the bounding square of its associated elements. If so, we make a new bounding4

square for the union of these elements and repeat. This can happen at most twice more, because in5

each step the size of the bounding square increases by a factor of at most a1/5. Hence, after three6

steps we have a disk D of radius O(|B|a4/5) that intersects four disjoint squares of size Ω(|B|a)7

that share a corner. Thus, D must be completely contained in those squares. This also implies8

that this procedure yields a a1/5-cluster. For each such cluster, we create a representative point9

and an appropriate base square for the child quadtree. Then, we process the cluster recursively. In10

the end, we can prune the resulting compressed trees to remove unnecessary nodes.11

By the proof of Corollary 3.10, and since be spend only constant additional time for each square,12

this procedure takes linear time. Furthermore, as we argued above, we create only a1/5-clusters. If13

Q ⊂ P is a 2a1/5-cluster, then Q is either contained in at most four leaf squares of Ttop that share14

a corner or the bounding square BQ intersects at most four squares of Ttop of size Θ(|BQ|) such15

that the surrounding (4a1/5 + 1)× (4a1/5 + 1) grid contains only empty squares. In either case, Q16

(or a superset) is discovered. It follows that the result is a valid (a1/5, 2a1/5)-cluster quadtree.17

4 From a c-Cluster Quadtree to the Delaunay Triangulation18

We now come to the heart of the matter and show how to construct a DT from a WSPD. Let P be19

a set of points, and T a compressed quadtree for P . Throughout this section, ε is a small enough20

constant (say, ε = π/400), and k is a large enough constant (e.g., k = 100). Let u and v be two21

unrelated nodes of T , i.e., neither node is an ancestor of the other. Let Luv be the set of directed22

lines that stab Su before Sv. The set Φuv ⊆ [0, 2π) of directions for Luv is an interval modulo 2π23

whose extreme points correspond to the two diagonal bitangents of Su and Sv, i.e., the two lines24

that meet Su and Sv in exactly one point each and have Su and Sv to different sides. Figure 6(a)25

illustrates this.26

Observation 4.1. Let u and v be two unrelated nodes of T , and let u be a descendant of u and v27

be a descendant of v. Then Φuv ⊆ Φuv.28

Proof. This is immediate, because Su ⊆ Su and Sv ⊆ Sv.29
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Observation 4.2. If u and v are two nodes of T such that {u, v} is ε-well-separated, then |Φuv| ≤1

8ε.2

Proof. Let d := |cucv|, Du be the disk around cu with radius εd, and Dv the disk around cv with3

the same radius.8 By well-separation, Su ⊆ Du and Sv ⊆ Dv. Let β be the angle between the4

diagonal bitangents of Du and Dv. Then |Φuv| ≤ β, and β = 2 arcsin(εd/1
2d) = 2 arcsin(2ε) ≤ 8ε,5

as claimed. Figure 6(b) illustrates this.6

For a number φ ∈ [0, 2π[ we define Φφ := {ψ mod 2π | ψ ∈ [φ − ε/2, φ + ε/2]}, i.e., the set7

of all directions that differ from φ by at most ε/2. We say that an ordered pair (u, v) of nodes8

has direction φ if Φuv ∩ Φφ 6= ∅. We also say that a pair of points (p, q) has direction φ if the9

corresponding pair in the WSPD has direction φ. The same definition also applies to an edge. For10

a given point p in the plane, we define the ε-cone Cφ(p) as the cone with apex p and opening angle11

ε centered around the direction φ.12

4.1 Constructing a Supergraph of the EMST13

In the following, we abbreviate P := wspd(T ). The goal of this section is to construct a graph H14

with vertex set P and O(n) edges, such that emst(P ) ⊆ H. It is well known that if we take the15

graph H ′ on P with edge set E := {euv | {u, v} ∈ P}, where each euv connects the bichromatic16

closest pair for Pu and Pv, then H ′ contains emst(P ) and has O(n) edges [26]. However, as defined,17

it is not clear how to find H ′ in linear time. There are several major obstacles. Firstly, even though18

the tree T has O(n) nodes, it could be that
∑

u∈T |Pu| = Ω(n2). Secondly, even if the total size of19

all Pu’s was O(n), we still need to find bichromatic closest pairs for all pairs in P. Thus, a large20

set Pu might appear in many pairs of P, making the total problem size superlinear. Thirdly, we21

need to actually solve the bichromatic closest pair problems. A straightforward solution to find the22

bichromatic closest pair for sets R and B with sizes r and b would take time O((r+b) log(min(r, b)),23

by computing the Voronoi diagram for the smaller set and locating all points from the other set in24

it. We need to find a way to do it in linear time.25

To address these problems, we actually construct a slightly larger graph H, by partitioning the26

pairs in P according to their direction. More precisely, let Y = {0, ε, 2ε, . . . , (l − 1)ε} be a set of l27

numbers, where we assume that l = 2π/ε is an integer. For every φ ∈ Y , we construct a graph Hφ28

with O(n) edges and then let H =
⋃
φ∈Y Hφ. Given φ ∈ Y , the graph Hφ is constructed in three29

steps:30

1. For every node u ∈ T , select a subset Zu ⊆ Pu, such that
∑

u∈T |Zu| = O(n), and such that31

{{p, q} | p ∈ Zu, q ∈ Zv, {u, v} ∈ P} still contains all edges of emst(P ) with orientation φ.32

This addresses the first problem by making the total set size linear.33

2. Find a subset P ′ ⊆ P, such that each u ∈ T appears in O(1) pairs of P ′, and the set34

{{p, q} | p ∈ Zu, q ∈ Zv, {u, v} ∈ P ′} contains all edges of emst(P ) with orientation φ. In35

particular, we choose for every node u ∈ T a subset Pu ⊆ P such that P ′ =
⋃
u∈T Pu, each36

pair in Pu contains u, and |Pu| = O(1). This addresses the second problem by ensuring that37

every set appears in O(1) pairs.38

8 Recall, cu is the center point of Bu.
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Su
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(c)

Fig. 7: (a) A node u in the quadtree, with |Pu| = 8. (b) The relevant wspd-pairs (in green) for the points in Pu

with direction φ (up). There are also wspd-pairs between u and other nodes above and below it. (c) For
k = 1, Zu contains those p ∈ Pu for which the lowest wspd-pair in the tree T ′ that involves p contains
u. In other words, Zu has the points that do not have a green edge in both directions in (b).

3. For every pair {u, v} ∈ P ′, we include in Hφ the edge pq such that {p, q} is the closest pair in1

Zu ⊗ Zv (i.e., {p, q} = argmin{p′,q′}∈Zu⊗Zv
|p′q′|). Here we actually solve all the bichromatic2

closest pair problems.3

Clearly, Hφ has O(n) edges, and we will show that H is indeed a supergraph of emst(P ). Our4

strategy of subdividing the edges according to their orientation goes back to Yao, who used a5

similar scheme to find EMSTs in higher dimensions [51].6

Step 1: Finding the Zu’s. Recall that we fixed a direction φ ∈ Y . Take the set Pφ ⊆ wspd(T ) of7

pairs with direction φ. For a pair π ∈ Pφ, we write (u, v) for the tuple such that π = {u, v} and8

cu comes before cv in direction φ, it is a directed pair in Pφ. Call a node u of T full if either (i)9

u is the root; (ii) u is a non-empty leaf; or (iii) Pφ has a directed pair (u, v). Let T ′ be the tree10

obtained from T by connecting every full node to its closest full ancestor, and by removing the11

other nodes. We can compute T ′ in linear time through a post-order traversal. Now, for every leaf12

v of T ′, put the point p ∈ Pv into the sets Zu, where u is one the k 9 closest ancestors of v in T ′.13

Repeat this procedure, while changing property (iii) above so that Pφ has a directed pair (v, u).14

This takes linear time, and
∑

u∈T |Zu| = O(n). Intuitively, Zu contains those points of Pu that are15

sufficiently on the outside of the point set in direction φ. Figure 7 shows an example. Variants16

of the following claim have appeared several times before [1, 51].17

Claim 4.3. Let p ∈ P , and let C+
φ (p) denote the cone with apex p and opening angle 17ε centered18

around φ. Suppose that pq is an edge of emst(P ) and q ∈ C+
φ (p). Then q is the nearest neighbor of19

p in C+
φ (p) ∩ P .20

Proof. If pq is an edge of emst(P ), then the lune L defined by p and q contains no point of P [3].1021

Since the opening angle of C+
φ (p) is at most π/3, for ε small enough, the intersection of C+

φ (p) with22

L equals the intersection of C+
φ (p) with the disk around p of radius |pq|. Hence, q must be the23

nearest neighbor of p in C+
φ (p) ∩ P .24

Lemma 4.4. Let pq be an edge of emst(P ) with direction φ, and let {u, v} be the corresponding25

wspd-pair. Then {p, q} ∈ Zu ⊗ Zv.26

9 Recall, k is a sufficiently large constant.
10 L is the intersection of two disks with radius |pq|, one centered at p, the other centered at q.
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Proof. Let w be the leaf for p, and suppose for contradiction that p /∈ Zu, i.e., u is not among1

the k closest ancestors of w in T ′. This means there exists a sequence u1, u2, . . . , uk, u of k + 12

distinct ancestors of w, such that each node is an ancestor of all previous nodes and such there are3

well-separated pairs {u1, v1}, {u2, v2}, . . . , {uk, vk} ∈ Pφ.4

Let C+
φ (p) be the cone with apex p and opening angle 17ε centered around φ. By Observation 4.2,5

we have Sv, Sv1 , . . . , Svk ⊆ C+
φ (p). Furthermore, since {u, v} is well-separated, d(u, v) ≥ |Su|/ε. Now6

Claim 2.4 implies that there are squares Ru1 , Rv1 such that (i) Su1 ⊆ Ru1 ⊆ Su2 and Sv1 ⊆ Rv1 ;7

(ii) |Ru1 | = |Rv1 |; and (iii) d(Ru1 , Rv1) ≤ 2|Ru1 |/ε. This means that8

d(p, Pv1) ≤ 2(1 + 1/ε)|Ru1 | ≤ 2(1 + 1/ε)|Su2 | ≤ 2(1 + 1/ε)|Su|/2k−1,

where in the first inequality we bounded the distance between any point in Ru1 and any point in9

Rv1 by the distance between the squares plus their diameter (since we do not know where the points10

lie inside the squares). The second inequality comes from Ru1 ⊆ Su2 and the third inequality is11

due to the fact that Su2 lies at least k − 1 levels below Su in T ′.12

Since 2(1 + 1/ε)/2k−1 < 1/ε for k ≥ 3 and since d(u, v) ≥ |Su|/ε, this contradicts the fact13

that q is the nearest neighbor of p inside C+
φ (p) (Claim 4.3). Thus, p must lie in Zu. A symmetric14

argument shows q ∈ Zv.15

Step 2: Finding the Pu’s. For every node u ∈ T , we include in Pu the k shortest pairs in direction16

φ, i.e., the pairs {u, v} ∈ wspd(T ) such that (i) cv is contained in the ε-cone Cφ(cu) with apex cu17

centered around direction φ; and (ii) there are less than k pairs {u, v′} ∈ wspd(T ) that fulfill (i)18

and have |cucv′ | < |cucv|. Since k is constant, the Pu’s can be constructed in total linear time.19

Even though each Pu contains a constant number of elements, a node might still appear in many20

such sets, so we further prune the pairs: by examining the Pu’s, determine for each v ∈ T the21

set Qv = {u ∈ T | v ∈ Pu}. For each Qv, find the k closest neighbors (measured by the distance22

between their center points) of v in Qv, and for all other Pu’s remove the corresponding pairs {u, v}.23

Now each node appears in only a constant number of pairs of P ′ = ⋃
u∈T Pu.24

Lemma 4.5. Let pq be an edge of emst(P ) with orientation φ, and let {u, v} be the corresponding25

wspd-pair. Then {u, v} ∈ Pu.26

Proof. We show that v is among the k closest neighbors of u in direction φ, a symmetric argument27

shows that u is among the k closest neighbors of v in direction −φ. We may assume that |cucv| = 1.28

Suppose that {u, v} is not among the k shortest pairs in direction φ. Then there is a setW of k nodes29

of T such that for all w ∈ W we have (i) cw ∈ Cφ(cu); (ii) |cucw| < 1; and (iii) {u,w} ∈ wspd(T ).30

By Claim 2.4, there exists for every w ∈ W a pair of squares Ru(w), Rw such that Su ⊆ Ru(w),31

Sw ⊆ Rw and |Ru(w)| = |Rw| ≤ 2εd(Ru(w), Rw) ≤ 2ε.32

Let C+
φ (p) be the cone with apex p and opening angle 17ε centered around φ. By Observation 4.2,33

Sw ⊆ C+
φ (p) for all w ∈W . Furthermore, every Sw contains a point at distance at most 1+ε from p,34

because |cwp| ≤ |cwcu|+ |cup| ≤ 1 + ε. Also, by Claim 4.3, every Sw contains a point at distance at35

least |pq| ≥ |cucv|− |cup|− |qcv| ≥ 1−2ε from p. Thus, since d(Ru(w), Rw) ≤ 2|Rw|/ε by Claim 2.436

and d(Ru(w), Rw) ≥ 1− 2ε− 2|Rw|, we get |Rw| ≥ ε/8, for ε small enough. However, this implies37

that W has only a constant number of squares: all Sw (and hence all Rw) intersect the annular38

segment A inside C+
φ (p) with inner radius 1− 2ε and outer radius 1 + ε (see Figure 8). All w ∈W39

are unrelated, since they are paired with u in wspd(T ). Furthermore, the set A has diameter O(ε).40
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Fig. 8: All squares Rw intersect the region A.

If w ∈ W is a compressed child, then Rw is contained in the parent of w and intersects no other1

Sw′ , for w′ ∈W . Otherwise, |Sw| ≥ |Rw|/2. Thus, if we assign to each compressed child w ∈W the2

square Rw and to each other node w ∈ W the square Sw, we get a collection of k disjoint squares3

that meet A and each have diameter Ω(ε). Since A has diameter O(ε), there can be only a constant4

number of such squares, so choosing k large enough leads to a contradiction.5

Step 3: Finding the Nearest Neighbors. Unlike in the previous steps, the algorithm for Step 36

is a bit involved, so we switch the order and begin by showing correctness.7

Lemma 4.6. Let pq be an edge of emst(P ) with direction φ and let {u, v} be the corresponding8

wspd-pair. Then {p, q} is the closest pair in Zu ⊗ Zv.9

Proof. By Lemma 4.4, we have {p, q} ∈ Zu ⊗ Zv. Furthermore, the cut property of minimum10

spanning trees implies that pq ∈ emst(Zu ∪ Zv). Since {u, v} is well-separated, we have11

max
{p′,q′}∈Zu⊗Zu∪Zv⊗Zv

|p′q′| < min
{p′,q′}∈Zu⊗Zv

|p′q′|. (1)

Now consider an execution of Kruskal’s MST algorithm on Zu ∪Zv [22, Chapter 23.2]. Let {p′, q′}12

be the closest pair in Zu ⊗ Zv. By (1), the algorithm considers p′q′ only after processing all edges13

in Zu ⊗ Zu ∪ Zv ⊗ Zv. Hence, at that point the sets Zu and Zv are each contained in a connected14

component of the partial spanning tree, and emst(Zu∪Zv) can have at most one edge from Zu⊗Zv.15

Hence, it follows that {p, q} = {p′, q′}, as claimed.16

We now describe the algorithm. For ease of exposition, we take φ = π/2 (i.e., we assume17

that P is rotated so that φ points in the positive y-direction). Note that now the squares are18

not generally axis-aligned anymore, but this will be no problem. Given a point p ∈ R2, we define19

the four directional cones C←(p),C↑(p), C→(p), and C↓(p) as the leftward, upward, rightward and20

downward cones with apex p and opening angle π/2. The directional cones subdivide the plane21

into four disjoint sectors. We will also need the extended rightward cone C+
→(p) with apex p and22

opening angle π/2 + 16ε.23

Claim 4.7. Let (u, v) be a directed pair in Pφ, and suppose that {p, q} with p ∈ Pu and q ∈ Pv is24

the closest pair for (u, v). Then C↑(p) ∩ Pu = ∅ and C↓(q) ∩ Pv = ∅.1125

Proof. We prove the claim for C↓(q), the argument for C↑(p) is symmetric. We may assume that26

|pq| = 1. By assumption, the unit disk D centered at p contains no points of Pv, so it suffices to27

11 Recall that we set φ = π/2, so ↑ and ↓ mean “in direction φ” and “in direction −φ”.
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C↓(q)O(ε)

≥
√

2 − O(ε)

Fig. 9: The intersection points of D and the boundary of C↓(q) lie outside Sv, so Sv ∩ C↓(q) ⊆ D.

Su

Zuφ

LC(Zu)

(a) (b)

Fig. 10: (a) A node u with |Zu| = 5, and the relevant part of the quadtree. (b) The graph Γ. Tree edges are
black (going right). To avoid clutter, we just show two wspd edges (green, going left).

show that C↓(q) ∩ Sv ⊆ D. Since {u, v} ∈ Pφ and by Observation 4.2, the direction of the line pq1

differs from φ by at most 17ε. Therefore, the intersections of the boundaries of C↓(q) and D have2

distance at least
√

2− O(ε) from q. However, the pair {u, v} is well-separated, so all points in Pv3

have distance at most ε from q, which implies the claim; see Figure 9.4

Given a set Zu for a node u of T , we define the upper chain of Zu, UC(Zu) as follows: remove5

from Zu all points p such that C↑(p) contains a point from Zu in its interior. Then sort Zu by6

x-coordinate and connect consecutive points by line segments. All segments of UC(Zu) have slopes7

in [−1, 1]. Similarly, we define the lower chain of Zu, LC(Zu), by requiring the cones C↓(p) for the8

points in LC(Zu) to be empty. The goal now is to compute UC(Zu) and LC(Zu) for all nodes u.9

Define a directed graph Γ as follows: we create two copies of each vertex u in T , called start(u)10

and end(u), and we add a directed edge from start(u) to end(u) for each such vertex. Furthermore,11

we replace every edge uv of T (u being the parent of v) by two edges: one from start(u) to12

start(v), and one from end(v) to end(u). We call these edges the tree-edges. Finally, for every13

pair {u, v} ∈ wspd(T ), where Sv is wholly contained in the extended rightward cone C+
→(cu), we14

create a directed edge from end(u) to start(v). These edges are called wspd -edges. Figure 1015

shows a small example.16

Claim 4.8. The graph Γ is acyclic.17

Proof. Suppose C is a cycle in Γ. The tree-edges form an acyclic subgraph, so C has at least one18

wspd-edge. Let e1, e2, . . . , ez be the sequence of wspd-edges along C, and let v1, . . . , vz be such19

that the endpoint of ei is of the form start(vi). Finally, write C = e1 → C1 → e2 → C2 →20

· · · → ez → Cz, where Ci is the sequence of tree-edges between two consecutive wspd-edges. Each21

Ci consists of a (possibly empty) sequence of start − start edges, followed by one start − end22
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Γ
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Zu

≤Γ

(b)

Fig. 11: (a) A set of points, and all edges with a slope in [−1, 1]. By Claim 4.9, these edges are all (possibly
implicitly) present in Γ. (b) A possible ordering ≤Γ of the points that respects Γ.

edge and a (possibly empty) sequence of end− end edges. Thus, the origin of the next wspd-edge1

ei+1 is an end-node for an ancestor or a descendant of vi in T . In either case, by the definition of2

wspd-edges, it follows that the leftmost point of Svi+1 lies strictly to the right of the leftmost point3

of Svi . Indeed, write ei+1 = (ui+1, vi+1). Then Svi+1 lies strictly to the right of Sui+1 , because4

Svi+1 ⊆ C+
→(cui+1) and because {ui+1, vi+1} is well-separated. If ui+1 is a descendant of vi, then5

Sui+1 ⊆ Svi and the leftmost point of Sui+1 cannot lie to the left of the leftmost point of Svi , which6

implies the claim. If ui+1 is an ancestor of vi, then all of Svi+1 is strictly to the right of Svi , and the7

claim follows again. Thus, the leftmost point of Svi+1 lies strictly to the right of the leftmost point8

of Svi and the leftmost point of Sv1 lies strictly to the right of the leftmost point in Svz , which is9

absurd.10

Let ≤Γ be a topological ordering of the nodes of Γ.11

Claim 4.9. Any pair (p, q) of points in Zu with p ≤Γ q satisfies q /∈ C←(p).12

Proof. Suppose for the sake of contradiction that q ∈ C←(p). Let v, w be the descendants of u13

such that q ∈ Pv, p ∈ Pw, and {v, w} ∈ wspd(T ). By Observation 4.2, Sw lies completely in the14

extended rightward cone C+
→(cv), so Γ has an edge from end(v) to start(w). Now the tree edges in15

Γ require that the leaf with q comes before end(v) and the leaf with p comes after start(w), and16

the claim follows.17

Since all edges on UC(Zu) have slopes in [−1, 1], we immediately have the following corollary.18

Corollary 4.10. The ordering ≤Γ respects the orders of UC(Zu) and LC(Zu).19

For every node u ∈ T , let ≤u be the order that ≤Γ induces on the leaf nodes corresponding to20

Zu.21

Claim 4.11. All the orderings ≤u can be found in total time O(n).22

Proof. To find the orderings ≤u, perform a topological sort on Γ, in linear time12 [22, Chapter 22.4].23

With each node u of T store a list Lu, initially empty. We scan the nodes of Γ in order. Whenever24

we see a leaf for a point p ∈ P , we append p to the at most 2k lists Lu for the nodes u with p ∈ Zu.25

The total running time is O(n +
∑

u∈T |Zu|) = O(n), and Lu is sorted according to ≤u for each26

u ∈ T .27

12 Note that Γ has O(n) edges, as | wspd(T )| = O(n).
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Claim 4.12. For any node u ∈ T , if Zu is sorted according to ≤u, we can find UC(Zu) and LC(Zu)1

in time O(|Zu|).2

Proof. We can find UC(Zu) by a Graham-type pass through Lu. An example of such a list is3

shown in Figure 11(b). That is, we scan Lu from left to right, maintaining a tentative upper4

chain U , stored as a stack. Let r be the rightmost point of U . On scanning a new point p, we5

distinguish cases depending in which of the four quadrants C←(r), C↑(r), C→(r), or C↓(r) it lies in.6

By Claim 4.1, we know that p /∈ C←(r). If p ∈ C↓(r), we discard p and continue to the next point7

in Lu. If p ∈ C↑(r), we pop r from U and reassess p from the point of view of the new rightmost8

point of U . If p ∈ C→(r), we push p onto U .9

The algorithm takes O(|Zu|) time, because every point is pushed or popped from the stack10

at most once and because it takes constant time to decide which point to push or pop. Now we11

argue correctness. For this, we use induction in order to prove that after i steps, we have correctly12

computed the upper chain for the first i points in Lu, UC(Li). This clearly holds for the first point.13

Now consider the cases for the (i+ 1)-th point p.14

• If p ∈ C↓(r), then p is certainly not on the upper chain. Furthermore, C↓(p) ⊆ C↓(r), so p15

cannot conflict with any other point on UC(Li), so in this case UC(Li+1) = UC(Li).16

• If p ∈ C↑(r), then C↑(p) ⊆ C↑(r) and p must be on UC(Li+1). Furthermore, every point that17

we remove from UC(Li) has p in its upper cone and cannot be on UC(Li+1). Now let r′ be18

the first point of UC(Li) that is not popped. Since C←(r′) ⊆ C←(p) and since the remainder19

of UC(Li) lies inside of C←(r′), there are no conflicts between p and the points we have not20

popped. Thus UC(Li+1) is computed correctly.21

• If p ∈ C→(r), then C↑(p) ⊆ C↑(r) ∪ C→(r), and p is on UC(Li+1), because C→(r) contains no22

points from Li. Futhermore, UC(Li) is contained in C←(p), so p conflicts with no point on23

UC(Li) and the result is correct.24

This finished the inductive step and the correctness proof. The lower chain is computed in an25

analogous manner.26

Claim 4.13. For any node u ∈ T and any pair {u, v} in Pu, given UC(Zu) and LC(Zv), we can27

find the closest pair in Zu ⊗ Zv in time O(|Zu|+ |Zv|).28

Proof. Connect the endpoints of UC(Zu) and LC(Zv) to obtain a simple polygon (note that the two29

new edges cannot intersect the chains, because {u, v} has direction φ = π/2, so by Observation 4.230

Φuv ⊆ [π/2 − 81
2ε, π/2 + 81

2ε] and all edges of the chains have slopes in [−1, 1]). Then use the31

algorithm of Chin and Wang [20] to find the constrained DT of the polygon in time O(|Zu|+ |Zv|).32

The closest pair will appear as an edge in this DT, and hence can be found in the claimed time.1333

Lemma 4.14. In total linear time, we can find for every u ∈ T and for every pair {u, v} ∈ Pu the34

closest pair in Zu ⊗ Zv.35

13 Actually, the resulting polygon is x-monotone, so the most difficult part of the algorithm by Chin and Wang [20],
finding the visibility map of the polygon [16], becomes much easier [31]. The problem may allow a much more direct
solution, but since we will later require Chin and Wang’s algorithm in full generality, we do not pursue this direction.
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Proof. By Claims 4.11, 4.12, 4.13, the time to find all the closest pairs is proportional to1

O(n+
∑
u∈T

∑
{u,v}∈Pu

(|Zu|+ |Zv|)) = O(n+
∑
u∈T
|Zu|) = O(n),

because every v appears in only a constant number of Pu’s.2

Putting it together. We thus obtain the main result of this section.3

Theorem 4.15. Given a compressed quadtree T for P and wspd(T ), we can find a graph H with4

O(n) edges such that H contains all edges of emst(P ). It takes O(n) time to construct H.5

Proof. The fact that H contains the EMST follows from Lemmas 4.4, 4.5 and 4.6. The running6

time follows from the discussion at the beginning of Steps 1 and 2 and from Lemma 4.14.7

4.2 Extracting the EMST8

We want to extract emst(P ), but no general-purpose deterministic linear time pointer machine9

algorithm for this problem is known: the fastest such algorithm whose running time can be analyzed10

needs O(nα(n)) steps [17]. However, the special structure of the graph H and the c-cluster quadtree11

T make it possible to achieve linear time.12

We know that H contains all EMST edges. Furthermore, by construction each edge of H13

corresponds to a wspd-pair. Thus, we can associate each edge e of H with two nodes u and v such14

that {u, v} is the wspd-pair for the endpoints of e. The pruning operation in Step 2 of Section 4.115

ensures that each node is associated with O(1) edges of H, and we store a list of these edges at each16

node of T . Now we use Theorem 3.12 to convert our quadtree into a c-cluster quadtree T . During17

this conversion, we can preserve the information about which edges of H are associated with which18

nodes of T , because each old square overlaps with only a constant number of new squares of similar19

size. A special case are those edges that have an endpoint associated with a compressed child.20

During the conversion of Theorem 3.12, compressed children either become regular squares (during21

the balancing operation), or they correspond to c-clusters and are replaced by representative points22

in the parent tree. In the former case, we handle the compressed child just like any regular square,23

in the latter case, we associate e with the square that contains the representative point for the24

c-cluster.25

Next, we would like ensure for each edge e of H that the associated squares in T have size26

between ε|e|/2 and 2ε|e|, where |e| denotes the length of e. For the endpoints that were associ-27

ated with regular squares in the original quadtree, such a square can be found by considering a28

constant number of ancestors and descendants in T , by Claim 2.4. If the associated square was a29

compressed child that has become a regular square, we may need to consider more than a constant30

number of ancestors, but each such ancestor is considered only a constant number of times, since31

the compressed child has a constant number of associated edges. If e has an endpoint that is now32

associated with a representative point, we may need to subdivide the square containing the rep-33

resentative point, but by Corollary 3.6 the total work is linear. Thus, in total linear time we can34

obtain a c-cluster tree T such that each square of T is associated with O(1) edges of H and such35

that the two associated square of each edge e of H contain the endpoints of e and have size Θ(ε|e|).36

By the cut property of minimum spanning trees, emst(P ) is connected within each c-cluster.37

Thus, we can process the clusters bottom-up, and we only need to find the EMST within a c-38

cluster given that the points in each child are already connected. Within this cluster, T is a regular39
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uncompressed quadtree, and we can use the structure of T to perform an appropriate variant of1

Bor̊uvka’s MST algorithm [7,48] in linear time.2

Lemma 4.16. Let T ′ be a subtree of T corresponding to a c-cluster, and let E be the edges in H3

associated with T ′. Then emst(P ) ∩ E can be computed in time O(|E|+ |V (T ′)|).4

Proof. Let ` be the size of the root square of T ′. Through a level order traversal of T ′ we group the5

squares in V (T ′) by height into layers V1, V2, . . ., Vh (where V1 is the bottommost layer, and Vh6

contains only the root). The squares in Vi have size `/2h−i. As stated above, each square S has a7

constant number of associated edges in E that have one endpoint in S and length length between8

|S|/2ε and 2|S|/ε. To find the EMST, we subdivide the edges into sets Ei, where Ei contains all9

edges with length in [`/(ε2h−i), `/(ε2h−i−1)). Given the Vi, we can determine the sets Ei in total10

time O(|E| + |V (T ′)|), as the edges for Ei are associated only with squares in Vi−α, Vi−α+1, . . .,11

Vi+α, for some constant α. Note that every edge in Ei is crossed by O(1) other edges in Ei, because12

all e ∈ Ei have roughly the same length and because every pair of squares in Vi has only a constant13

number of associated edges in Ei.14

Now we compute the EMST by processing the sets E1, . . ., Eh in order. Here is how to process15

Ei. We consider the squares in Vi. Assume that we know for each square of Vi the connected16

component in the current partial EMST it meets (initially each c-cluster is its own component).17

By the cut property, every square S meets only one connected component, as S is much smaller18

than the edges in Ei. Eliminate all edges in Ei between squares in the same component, and19

remove duplicate edges between each two components, keeping only the shortest of these edges20

(this takes O(|Ei|) time with appropriate pointer manipulation). Then find the shortest edge out21

of each component and add these edges to the partial EMST. Determine the new components22

and merge their associated edge sets. This sequence of steps is called a Bor̊uvka-phase. Perform23

Bor̊uvka-phases until Ei has no edges left.24

By the crossing-number inequality [41, Theorem 4.3.1], the number of edges considered in each25

phase is proportional to the number r of components with an outgoing edge in that phase. Indeed,26

viewing each component as a supervertex, we have an embedding of a graph with r vertices and z27

edges such that there are O(z) crossings (since every edge e ∈ Ei is crossed by O(1) other edges28

in Ei). Thus, the crossing number inequality yields z3/r2 ≤ βz, for some constant β > 0, so29

z = O(r). Since the number of components at least halves in each phase, and since initially there30

are at most |Vi| components, the total time for Ei is O(|Ei| + |Vi|). Finally, label each square in31

Vi+1 with the component it meets and proceed with round i+ 1. In total, processing T takes time32

O(|V (T ′)|+ |E|), as desired.33

4.3 Finishing Up34

We conclude:35

Theorem 4.17. Let P be a planar point set and T be a compressed quadtree or a c-cluster quadtree36

for P . Then DT(P ) can be computed in time O(|P |).37

Proof. If T is a c-cluster quadtree, invoke Theorem 3.12 to convert it to a compressed quadtree.38

Then use Theorem 2.1 to obtain wspd(T ). Next, apply Theorem 4.15 to compute the supergraph H39

of emst(P ). After that, if necessary, convert T to a c-cluster quadtree for P via Theorem 3.12, and40

apply Lemma 4.16 to each c-cluster, in a bottom-up manner, to extract emst(P ). Finally, apply41

the algorithm by Chin and Wang [20] to find DT(P ). All this takes time O(|P |), as claimed.42
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5 From Delaunay Triangulations to c-Cluster Quadtrees1

For the second direction of our equivalence we need to show how to compute a c-cluster quadtree2

for P when given DT(P ). This was already done by Krznaric and Levcopolous [37, 38], but their3

algorithm works in a stronger model of computation which includes the floor function and allows4

access to data at the bit level. As argued in the introduction, we prefer the real RAM/pointer5

machine, so we need to do some work to adapt their algorithm to our computational model. In this6

section we describe how Krznaric and Levcopolous’s algorithm can be modified to avoid bucketing7

and bit-twiddling techniques. The only difference is that in the resulting c-cluster quadtree the8

squares for the c-clusters are not perfectly aligned with the squares of the parent quadtree. In our9

setting, this does not matter. The goal of this section is to prove the following theorem.10

Theorem 5.1. Given DT(P ), we can compute a c-cluster quadtree for P in linear deterministic11

time on a pointer machine.12

In the following, we will refer to the paper by Krznaric and Levcopolous [38] as KL. Our13

description is meant to be self-contained; however, we refer the reader to KL for more intuition and14

a more elaborate description of the main ideas.15

5.1 Terminology16

We begin by recalling some terminology from KL.17

• neighborhood. The neighborhood of a square S of a quadtree consists of the 25 squares of18

size |S| concentric around S (including S); see Figure 12.19

• direct neighborhood. The direct neighborhood of a square S consists of the 9 squares of20

size |S| directly adjacent to S (including S); see Figure 12.21

• star of a square. Let P be a planar point set, and let S be a square. The star of S, denoted22

by F(S), is the set of all edges e in DT(P ) such that (i) e has one endpoint inside S and one23

endpoint outside the neighborhood of S; and (ii) |e| ≤ 16|S|, where |e| is the length of e.24

• dilation. Let P be a planar point set, and G a connected plane graph with vertex set P .25

The dilation of P is the distortion between the shortest path metric in G and the Euclidean26

distance, i.e., the maximum ratio, over all pairs of distinct points p, q ∈ P , between the length27

of the shortest path in G from p to q, and |pq|. There are many families of planar graphs28

whose dilation is bounded by a constant [23]. In particular, for any planar point set P , the29

dilation of DT(P ) is bounded by 2π/(3 cos(π/6)) ≤ 2.42 [35].30

• orientation. The orientation of a line segment e is the angle the line through e makes with31

the x-axis.32

5.2 Preprocessing33

By Theorem 3.1, we can obtain a c-cluster tree Tc for P in linear time, given DT(P ). Thus, we only34

need to construct the regular quadtrees TQu for each node u in Tc. This is done by processing each35

node of Tc individually. First, however, we need to perform a preprocessing step in order to find for36
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S

Fig. 12: The neighborhood of a square S. The direct neighbors are shown in dark blue, the others in light blue.

each edge e of DT(P ) the node of Tc that is the least common ancestor of e’s endpoints. For every1

node u ∈ Tc, we define out(u) as the set of edges in DT(P ) that have exactly one endpoint in Pu and2

both endpoints in Pu. Clearly, every edge is contained in exactly two sets out(u) and out(v), where3

u and v are siblings in Tc. The following is a simple variant of a lemma from KL [38, Lemma 3].4

Lemma 5.2 (Krznaric-Levcopolous). Let P be a planar n-point set. Given DT (P ) and a c-cluster5

tree Tc for P , the sets out(u) for every node u ∈ Tc can be found in overall O(n) time and space6

on a pointer machine.7

Proof. KL show how to reduce the problem of determining the sets out(u) to O(n) off-line least-8

common ancestor (lca) queries in two appropriate trees. For the lca-queries, they invoke an al-9

gorithm by Harel and Tarjan [34] that requires the word RAM. However, since all lca-queries are10

known in advance (i.e., the queries are off-line), we may instead use an algorithm by Buchsbaum11

et al. [10, Theorem 6.1] which requires O(n) time and space on a pointer machine.12

5.3 Processing a Single Node of Tc13

We now describe the preprocessing that is necessary on a single node u of Tc before the quadtree TQu14

can be constructed. Let v1, v2, . . . , vm be the children of u. For each child vi, let δi := d(Pvi , Pu\Pvi).15

Claim 5.3. For i = 1, . . . ,m, out(vi) contains an edge of length δi.16

Proof. If DT(P ) contains an edge e with an endpoint in Pvi and with length δi, then e must be17

in out(vi), by the definition of a c-cluster. Since emst(P ) is a subgraph of DT(P ), it thus suffices18

to show that emst(P ) contains such an edge. Consider running Kruskal’s MST algorithm on P .19

According to the definition of a c-cluster, by the time the algorithm considers the edge e that20

achieves δi, the partially constructed EMST contains exactly one connected component that has21

precisely the points in Pvi . Therefore, e ∈ emst(P ), and the claim follows.22

Initialization. By scanning the sets out(vi), we determine a child vj with minimum δj (by Claim 5.323

a shortest edge in out(vi) has length δi). We may assume that j = 1. Let S1 be a square that24

contains Pv1 and that has side-length δ1/8. Let α be the smallest integer such that four squares of25

size 2α−1δ1/8 cover all of Pu. Lemma 3.4 implies that α = O(m).26
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S1

δ1/8

2αδ1/8

Fig. 13: The initial quadtree.

The goal is to compute TQu , the balanced regular quadtree aligned at S1 such that each Pvi1

is contained in squares of size δi/8. To begin, we use S1 to initialize TQu as the partial balanced2

quadtree TQu shown in Figure 13. Every square S of TQu stores the following fields:3

• parent: a pointer to the parent square, nil for the root;4

• children: pointers for the four children of S, nil for a leaf;5

• neighbors: links to the four orthogonal neighbors of S in the quadtree TQu with size |S| (or6

size 2|S|, if no smaller neighbor exists);7

The fields parent, children, and neighbors are initialized for all the nodes in TQ.8

Lemma 5.4. The total time for the initialization phase is O(m+
∑m

i=1 |out(vi)|).9

Proof. By Lemma 3.4, the initial size of TQu is O(m). All other operations consist of scanning the10

out-lists or are linear in the size of TQu .11

5.4 Building the Tree TQ
u12

Now we build the tree TQu by a traversing DT(P ) in a way reminiscent of Dijkstra’s algorithm [22].13

In their algorithm, KL make extensive use of the floor function in order to locate points inside their14

quadtree squares. The purpose of this section is to argue that this point location work can be done15

through local traversal of the quadtree, without the floor function. Refer to Algorithm 2. The heart16

of the algorithm is the procedure explore, which is initially called as explore({S1}, 2α−1δ1/8). The17

procedure explore builds the tree TQu level by level, beginning with the level of S1. At each point,18

it maintains a set active of all squares at the current level that contain a cluster that has already19

been processed. For each such square S, it calls a function findStar. This function returns all20
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Algorithm 2 Computing a c-cluster quadtree for the children of a c-cluster.

explore(S, maxsize)

1. Set active := S.

2. Set newActive := ∅.

3. Until the squares in active have size greater than maxsize:

(a) For every square S in active call the function findStar(S) to determine F(S). Append
S to newActive, if it is not present yet.

(b) For every edge e ∈ ⋃
S∈activeF(S), if e has an endpoint in an undiscovered cluster,

call the function newCluster(S, e), and append all the squares returned by this call to
newActive.

(c) Set active := newActive.

newCluster(S, e)

1. Walk along e through the current TQu to find the square S′ of TQu that contains the other
endpoint of e. This tracing is done by following the appropriate neighbor pointers from S.

2. Refine TQu for the new cluster, and let S ′ be the set of leaf squares containing the newly
discovered cluster.

3. Call explore(S ′, size of squares in active). Afterwards, return the active squares from the
recursive call.

edges of the Delaunay triangulation that have one endpoint in S and have length α|S|, for a constant1

α. Using findStar we can new clusters whose distance from the active clusters is comparable to2

the size of the squares in the current level. We will say more about the implementation findStar3

below. For each new cluster, we call the procedure newCluster which adds more squares to TQu4

to accommodate the new cluster and recursively explores the short edges out of this new cluster.5

After the recursive call has finished, we can continue the exploration of the tree at the current level.6

We now give the details for the refinement in Step 2 of newCluster: Let vj be the cluster that7

contains the other endpoint q of e (we can find vj in constant time, since e ∈ out(vj), and since for8

each edge we store the two clusters whose out-lists contain it). Subdivide the current leaf square9

containing q (and possibly also its neighbors if they contain points from Pvj ) in quadtree-fashion10

until Pvj is contained in squares of size δj/8. Then balance the quadtree and update the neighbor11

pointers accordingly.12

The algorithm is recursive, and at each point there exists a sequence E1, E2, . . ., Ez of instan-13

tiations (i.e., stack frames) of explore, where Ei+1 was invoked by Ei. Each Ei has a set activei14

of active squares, such that all squares in each activei have the same size, and such that the15

squares in activei+1 are not larger than the squares in activei. We say that a square is active16

if it is contained in activeT :=
⋃
i activei. The neighborhood of activeT is the union of the17

neighborhoods of all boxes in active. We maintain the following invariant:18

Invariant 5.5. At all times during the execution of explore, all undiscovered c-clusters lie outside19
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the neighborhood of activeT .1

Claim 5.6. Invariant 5.5 is maintained by explore.2

Proof. The set activeT only changes in Steps 1 and 3c. The invariant is maintained in Step 1,3

since the size of the squares in S (i.e., δi/8) is chosen such that their neighborhoods can contain4

no point from any other cluster.5

Let us now consider Step 3c. The set newActive contains two kinds of squares: (i) the parents6

of squares processed in the current iteration of the main loop; and (ii) squares that were added to7

newActive after a recursive call. We only need to focus on squares of type (i), since squares of8

type (ii) are already added to activeT during the recursive call. Suppose that activeT contains9

a square S whose neighborhood has a point p ∈ P in an undiscovered cluster. Since S ∈ activeT ,10

there is a point q ∈ P ∩S, and by the definition of neighborhood, we have d(p, q) ≤ 3|S|. However,11

since the dilation of DT(P ) is at most 2.5 [35], DT(P ) contains a path π of length at most 8|S|12

from p to q. Let p′ be the last discovered point along π. The point p′ lies in an active square S′13

with |S′| ≥ |S|, and the edge e leaving p′ on π has length at most 8|S′|. Therefore, e ∈ F(S′′) for14

a descendant S′′ of S′, which contradicts the fact that p′ is the last discovered point along π.15

Lemma 5.7. The total running time of explore, excluding the calls to findStar, is O(m +16 ∑m
i=1 |out(vi)|).17

Proof. All squares appearing in activeT are ancestors of non-empty leaf squares in the final tree18

TQu . Therefore, by Lemma 3.4, the total number of iterations for the loop in Step 3a is O(m).19

Furthermore, F(S) contains only edges of length Θ(|S|), so every edge appears in only a constant20

number of stars. It follows that the total size of the F-lists, and hence the total number of iterations21

of the loop in Step 3b is O(
∑m

i=1 |out(vi)|).22

It remains to bound the time for tracing the edges and balancing the tree. Since TQu is balanced23

and since F(S) contains only edges of length Θ(|S|), the tracing along the neighbor pointers of24

an edge takes constant time (since we traverse a constant number of boxes of size Θ(|S|)). By25

Invariant 5.5, the other endpoint of the edge is contained in a leaf square of the current TQu of size26

Θ(|S|). (This is because the quadtree is balanced and because the other endpoint of the edge lies27

outside the neighborhood of the active squares.) Therefore, the time to build the balanced quadtree28

for the new leaf squares containing the newly discovered cluster can be charged to the corresponding29

nodes in the final TQu , of which there are O(m). Furthermore, note that by Invariant 5.5, balancing30

the quadtree for the newly discovered leaf squares does not affect any descendants of the active31

squares.32

5.5 Implementing findStar33

KL show how to exploit the geometric properties of the Delaunay triangulation in order to imple-34

ment the function findStar, quickly. For this, they store two additional fields with each active35

square, called characteristic and shortcuts [38, Section 6], and they explain how to maintain36

these lists throughout the procedure. This part of the algorithm works on a real RAM/pointer37

machine without any further modification, so we just state their result.38

Lemma 5.8. The total time for all calls to findStar and the maintenance of the required data39

structures is O(m+
∑m

i=1 |out(vi)|).40
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5.6 Putting Everything Together1

We can now finally prove Theorem 5.1.2

Proof of Theorem 5.1. First, we use Theorem 3.1 to find a c-cluster tree Tc for P in O(n) time.3

Next, we use the algorithm from Section 5.2 to preprocess the tree. By Lemma 5.2, this also4

takes O(n) time. Finally, we process each node of Tc using the algorithm from Section 5.3. By5

Lemmas 5.4, 5.7, and 5.8, this takes total time
∑

j 1 + |out(vj)|, where the sum ranges over all6

the nodes of Tc. This sum is O(n) because there are O(n) nodes in Tc, and because every edge of7

DT(P ) appears in exactly two out-lists. Hence, the total running time is linear, as claimed.8

6 Applications9

As mentioned in the introduction, our result yields deterministic versions of several recent ran-10

domized algorithms related to DTs. Firstly, we can immediately derandomize an algorithm for11

hereditary DTs by Chazelle et al. [18, 19]:12

Corollary 6.1. Let P a planar n-point set, and let S ⊆ P . Given DT(P ), we can find DT(S) in13

deterministic time O(n) on a pointer machine.14

Proof. Use Theorem 5.1 to find a c-cluster quadtree T for P , remove the leaves for P \S from T and15

trim it appropriately.14 Finally, apply Theorem 4.17 to extract DT(S) from T , in time O(n).16

Secondly, we obtain deterministic analogues of the algorithms by Buchin et al. [8] to preprocess17

imprecise point sets for faster DTs. For example, we can prove the following:18

Corollary 6.2. Let R = 〈R1, R2, . . . , Rn〉 be a sequence of n β-fat planar regions so that no point19

in R2 meets more than k of them. We can preprocess R in O(n log n) deterministic time into an20

O(n)-size data structure so that given a sequence of n points P = 〈p1, p2, . . . , pn〉 with pi ∈ Ri for21

all i, we can find DT(P ) in deterministic time O(n log(k/β)) on a pointer machine.22

Proof. The method of Buchin et al. [8, Theorem 4.3 and Corollary 5.6] proceeds by computing23

a representative quadtree T for R. Given P , the algorithm finds for every point in P the leaf24

square of T that contains it, and then uses this information to obtain a compressed quadtree T ′25

for P in time O(n log(k/β)). However, T ′ is skewed in the sense that not all its squares need to26

be perfectly aligned and that some squares can be cut off. However, the authors argue that even27

in this case wspd(T ) takes O(n) time and yields a linear-size WSPD [8, Appendix B]. The main28

observation [8, Observation B.1] is that any (truncated) square S in T ′ is adjacent to at least29

one square whose area is at least a constant fraction of the area S would have without clipping.30

Since in skewed quadtrees the size of a node is at most half the size of its parent, the argument of31

Lemma 4.4 still applies. To see that Lemma 4.5 holds, we need to check that the volume argument32

goes through. For this, note that by the main observation of Buchin et al., we can assign every33

square Rw (the notation is as in the proof of Lemma 4.5) to an adjacent square of comparable size34

at distance O(ε) from A. Since every such square is charged by disjoint descendants from a constant35

number of neighbors, the volume argument still applies, and Lemma 4.5 holds. Lemma 4.14 only36

relies on well-separation and the combinatorial structure of T , and hence remains valid. Finally, in37

14 Deleting P \ S might create new c-clusters. However, since we are aiming for running time O(n), we can apply
Theorem 4.17 to a partly compressed quadtree that may contain long paths where every node has only one child.
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order to apply Lemma 4.16, we need to turn T ′ into a c-cluster quadtree, which takes linear time1

by Theorem 3.12. Thus, the total running time is O(n log(k/β), as claimed.2

Finally, Buchin and Mulzer [9] showed that for word RAMs, DTs are no harder than sorting.3

We can now do it deterministically. Let sort(n) be the time to sort n integers on a w-bit word4

RAM. The best deterministic bound for sort(n) is O(n log log n) [32].155

Corollary 6.3. Let P be a planar n-point set given by w-bit integers, for some word-size w ≥ log n.6

We can find DT(P ) in deterministic time O(sort(n)) on a word RAM supporting the shuffle-7

operation.168

Proof. Buchin and Mulzer [9] show how to find a compressed quadtree T for P in time O(sort(n)),9

using the shuffle-operation. They actually do not find the squares of the quadtree, only the10

combinatorial structure of T and the bounding boxes Bv. It is easily seen that the algorithm wspd11

also works in this case.12

To apply Lemma 4.4, we need to check that the sizes of the bounding boxes decrease geo-13

metrically down the tree. For this, consider a node v ∈ T with associated point set Pv and the14

quadtree square Sv (i.e., the smallest aligned square of size 2l such that the coordinates of all15

points in Pv share the first w − l bits). Let Bv be the bounding box of Pv, and let l′ be such that16

2l
′+1 ≥ |Bv| ≥ 2l

′
. Clearly, Bv meets at most nine aligned squares of size 2l

′
, arranged in a 3×3 grid.17

Hence, any descendant v of v that is at least five levels below v must have |Bv| ≤ |Sv| ≤ |Bv|/2,18

since after at most four (compressed) quadtree divisions the squares for Bv have been separated.19

Thus, the proof of Lemma 4.4 goes through as before, if we choose k larger and consider every fifth20

node along the chain u1, u2, . . . , uk, u.21

Lemma 4.5 still holds, because every bounding box Bv is contained in a (possibly much larger)22

square Sv, so the volume argument applies. Also, Lemma 4.14 only relies on well-separatedness and23

the combinatorial structure of T , so we can find the graph H in linear time. After that, it takes24

O(n) time to compute emst(P ), using the transdichotomous minimum spanning tree algorithm by25

Fredman and Willard [29].26

7 Conclusions27

We strengthen the connections between proximity structures in the plane and sharpen several28

known results between them. Even though our results are optimal, the underlying algorithms are29

still quite subtle, and it may be of interest to see whether some of them can be simplified. It is30

also interesting to see whether systematic derandomization techniques, like ε-nets, can be useful to31

yield alternative deterministic algorithms for some of the problems considered here. Finally, some32

of the previous results also apply to higher dimensions, whereas we focus exclusively on the plane.33

Can we obtain analogous derandomizations for d ≥ 3?34

15 For specific ranges of w, we can do better. For example, if w = O(logn), radix sort shows that sort(n) =
O(n) [22].
16 For two w-bit words, x = x1 . . . xw and y = y1 . . . , yw, we define shuffle(x, y) as the 2w-bit word z =
x1y1x2y2 . . . xwyw.
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A Computational Models28

Since our results concern different computational models, we use this appendix to describe them29

in more detail. Our two models are the real RAM/pointer machine and the word RAM.30

The Real RAM/Pointer Machine. The standard model in computational geometry is the real31

RAM. Here, data is represented as an infinite sequence of storage cells. These cells can be of two32

different types: they can store real numbers or integers. The model supports standard operations33

on these numbers in constant time, including addition, multiplication, and elementary functions34

like square-root. The floor function can be used to truncate a real number to an integer, but if35

we were allowed to use it arbitrarily, the real RAM could solve PSPACE-complete problems in36

polynomial time [46]. Therefore, we usually have only a restricted floor function at our disposal,37

and in this paper it will be banned altogether.38

The pointer machine [36] models the list processing capabilities of a computer and disallows39

the use of constant time table lookup. The data structure is modeled as a directed graph G with40

36



bounded out-degree. Each node in G represents a record, with a bounded number of pointers to1

other records and a bounded number of (real or integer) data items. The algorithm can access data2

only by following pointers from the inputs (and a bounded number of global entry records); random3

access is not possible. The data can be manipulated through the usual real RAM operations (again,4

we disallow the floor function).5

Word RAM. The word RAM is essentially a real RAM without support for real numbers. How-6

ever, on a real RAM, the integers are usually treated as atomic, whereas the word RAM allows for7

powerful bit-manipulation tricks. More precisely, the word RAM represents the data as a sequence8

of w-bit words, where w ≥ log n (n being the problem size). Data can be accessed arbitrarily, and9

standard operations, such as Boolean operations (and, xor, shl, . . .), addition, or multiplication10

take constant time. There are many variants of the word RAM, depending on precisely which11

instructions are supported in constant time. The general consensus seems to be that any function12

in AC0 is acceptable.17 However, it is always preferable to rely on a set of operations as small, and13

as non-exotic, as possible. Note that multiplication is not in AC0 [30]. Nevertheless, it is usually14

included in the word RAM instruction set [29].15

17 AC0 is the class of all functions f : {0, 1}∗ → {0, 1}∗ that can be computed by a family of circuits (Cn)n∈N with
the following properties: (i) each Cn has n inputs; (ii) there exist constants a, b, such that Cn has at most anb gates,
for n ∈ N; (iii) there is a constant d such that for all n the length of the longest path from an input to an output
in Cn is at most d (i.e., the circuit family has bounded depth); (iv) each gate has an arbitrary number of incoming
edges (i.e., the fan-in is unbounded).
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