
Delaunay Triangulations in O(sort(n)) Time and More

KEVIN BUCHIN

TU Eindhoven

and

WOLFGANG MULZER

Freie Universität Berlin

We present several results about Delaunay triangulations (DTs) and convex hulls in transdichoto-
mous and hereditary settings: (i) the DT of a planar point set can be computed in expected time

O(sort(n)) on a word RAM, where sort(n) is the time to sort n numbers. We assume that the

word RAM supports the shuffle operation in constant time; (ii) if we know the ordering of a planar
point set in x- and in y-direction, its DT can be found by a randomized algebraic computation

tree of expected linear depth; (iii) given a universe U of points in the plane, we construct a data
structure D for Delaunay queries: for any P ⊆ U , D can find the DT of P in expected time

O(|P | log log |U |); (iv) given a universe U of points in 3-space in general convex position, there is

a data structure D for convex hull queries: for any P ⊆ U , D can find the convex hull of P in
expected time O(|P |(log log |U |)2); (v) given a convex polytope in 3-space with n vertices which

are colored with χ ≥ 2 colors, we can split it into the convex hulls of the individual color classes

in expected time O(n(log logn)2).
The results (i)–(iii) generalize to higher dimensions, where the expected running time now

also depends on the complexity of the resulting DT. We need a wide range of techniques. Most

prominently, we describe a reduction from DTs to nearest-neighbor graphs that relies on a new
variant of randomized incremental constructions using dependent sampling.

Categories and Subject Descriptors: F.2.2 [Nonnumerical Algorithms and Problems]: Geometrical problems and compu-

tations

General Terms: Algorithms, Theory

Additional Key Words and Phrases: Convex hull, Delaunay triangulation, Word RAM

1. INTRODUCTION

Everyone knows that it takes Ω(n log n) time to sort n numbers (in a comparison model)—and yet this
lower bound can often be beaten. Under the right assumptions, radix sort and bucket sort run in linear
time [Cormen et al. 2009]. Using van Emde Boas (vEB) trees [van Emde Boas 1977; van Emde Boas
et al. 1976], we can sort n elements from a universe U in O(n log log |U |) time on a pointer machine. In a
transdichotomous model, we can surpass the sorting lower bound with fusion trees, achieving expected time
O(n
√

log n) (without randomization, the running time is O(n log n/ log log n)). Fusion trees were introduced
in 1990 by Fredman and Willard [1993] and triggered off a development (see, for example, [Andersson et al.
1998; Raman 1996; Han 2004; Han and Thorup 2002; Thorup 1998]) that culminated in the O(n

√
log log n)

expected time integer sorting algorithm by Han and Thorup [2002]. For small and large word sizes (that
is, for word size w = Θ(log n) or w = Ω(log2+ε n)), we can even sort in linear time (via radix sort [Cormen
et al. 2009] or signature sort [Andersson et al. 1998], respectively).

In computational geometry, there have been many results that use vEB trees or similar structures to
surpass traditional lower bounds (e.g., [Amir et al. 2001; de Berg et al. 1995; Chew and Fortune 1997; Iacono
and Langerman 2000; Karlsson 1985; Karlsson and Overmars 1988; Overmars 1987]). However, these results
assume that the input is rectilinear or can be efficiently approximated by a rectilinear structure, like, for
example, a quadtree. In this sense, the above results are all orthogonal. Similarly, Willard [2000] applied

K. Buchin was supported by the Netherlands Organisation for Scientific Research (NWO) under FOCUS/BRICKS grant no.
642.065.503 and project no. 639.022.707. W. Mulzer was supported in part by NSF grant CCF-0634958 and NSF CCF 083279
and a Wallace Memorial Fellowship in Engineering.

Permission to make digital/hard copy of all or part of this material without fee for personal or classroom use provided that

the copies are not made or distributed for profit or commercial advantage, the ACM copyright/server notice, the title of the
publication, and its date appear, and notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to

republish, to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.
c© 20YY ACM 0004-5411/20YY/0100-0001 $5.00

Journal of the ACM, Vol. V, No. N, Month 20YY, Pages 1–22.

fusion trees to achieve better bounds for orthogonal range searching, axis-parallel rectangle intersection, and
others. Again, his results are all orthogonal, and he asked whether improved bounds can be attained for
Voronoi diagrams, an inherently non-orthogonal structure. The breakthrough came in 2006, when Chan
and Pǎtraşcu [2009] discovered transdichotomous algorithms for point location in non-orthogonal planar
subdivisions. This led to better bounds for many classic computational geometry problems. In a follow-
up paper [Chan and Pǎtraşcu 2007], they considered off-line planar point location and thereby improved
the running time for Delaunay triangulations, three-dimensional convex hulls, and other problems. The
running time is a rather unusual n2O(

√
log logn), which raises the question whether the result is optimal.

More generally, Chan and Pǎtraşcu asked if the approach via point location is inherent, or if there are more
direct algorithms for convex hulls or Delaunay triangulations. Finally, they also briefly discussed the merits
of various approaches to transdichotomous algorithms and why fusion trees seemed most feasible for planar
point location [Chan and Pǎtraşcu 2009, Section 3]. In particular, this leaves the question open whether
the vEB approach can provide any benefits for computational geometry, apart from the orthogonal results
mentioned above.

Let us compare the respective properties of the vEB and the fusion method. The latter is more recent
and makes stronger use of the transdichotomous model. The main idea is to “fuse” (parts of) several data
items into one word and then use constant time bit operations for parallel processing. Unfortunately, since
results based on fusion trees need all the transdichotomous power, they usually do not generalize to other
models of computation. The vEB method, on the other hand, is the older one and is essentially based on
hashing: the data is organized as a tree of high degree, and the higher-order bits of a data item are used
to locate the appropriate child at each step. Thus, they apply in any model in which the hashing step can
be performed quickly, for example a pointer machine [Mehlhorn 1984]. This becomes particularly useful for
hereditary results [Chazelle and Mulzer 2009a], where we would like to preprocess a large universe U in order
to quickly answer queries about subsets of U . In this setting, vEB trees show that it suffices to sort a big
set once in order to sort any given, large enough, subset of U faster than in Θ(n log n) time, and we can ask
to what extent similar results are possible for problems other than sorting.

Coming back to geometric problems, there are many incremental algorithms for the Delaunay triangulation
that use orthogonal data structures (such as quadtrees or kd-trees) [Amenta et al. 2003; Bentley et al. 1980;
Isenburg et al. 2006; Liu and Snoeyink 2005; Ohya et al. 1984a; 1984b; Su and Drysdale 1997; Zhou and
Jones 2005], and they perform well in experiments (and on random points). Empirically, the overhead for
constructing, say, a quadtree is negligible compared to the time for the Delaunay triangulation, even though
there is no difference asymptotically. The reason for the good results in practice is that typically the running
time is dominated by the point location cost, which can often be drastically reduced with an orthogonal
data structure. However, in the worst case all these heuristics need quadratic time (unless we use an optimal
point location structure as a fall-back).

Some algorithms bucket the points into an
√
n×√n grid [Bentley et al. 1980; Su and Drysdale 1997], so

that they can then be located by spiral search. However, if too many points end up in one grid cell, we get
quadratic running time. Other heuristics insert the points according to a space-filling curve corresponding
to a depth-first traversal of a quadtree (see Figure 1 for the so-called Morton curve or Z-order). But again,
this insertion order cannot avoid quadratic worst-case behavior, even in the plane [Buchin 2009] (without an
additional point location structure). Traversal orders of kd-trees have also been used [Amenta et al. 2003].
In the light of these algorithms, it is natural to ask whether we can exploit ideas from these heuristics to
design better worst-case optimal algorithms.

Our results. We begin with a randomized reduction from Delaunay triangulations (DTs) to nearest-
neighbor graphs (NNGs). Our method uses a new variant of the classic randomized incremental construction
(RIC) paradigm [Amenta et al. 2003; Clarkson and Shor 1989; Mulmuley 1994] that relies on dependent
sampling for faster conflict location (see also [Chazelle and Mulzer 2009b] for another look at RICs with
dependencies in the underlying randomness). If NNGs can be computed in linear time, the running time
of our reduction is proportional to the structural change of a standard RIC, which is always linear for
planar point sets and also in many other cases, e.g., point sets suitably sampled from a (d− 1)-dimensional
polyhedron in Rd [Amenta et al. 2007; Attali and Boissonnat 2004].1 The algorithm is relatively simple

1The bound in the references is only proved for the complexity of the final DT, but we believe that it can be extended to the

2

and works in any dimension, but the analysis turns out to be rather subtle.2 It is a well-known fact that
given a quadtree for a point set, its nearest-neighbor graph can be computed in linear time [Callahan and
Kosaraju 1995; Chan 2008; Clarkson 1983]. This leads to our main discovery: Given a quadtree for a point
set P ⊆ Rd, we can compute the Delaunay triangulation of P , DT(P), in expected time proportional to the
expected structural change of an RIC. This may be surprising, since even though DTs appear to be inherently
non-orthogonal, we actually need only the information encoded in quadtrees, a highly orthogonal structure.
Using this connection between quadtrees and DTs, we obtain several results.

—DTs on a word RAM. We answer Willard’s seventeen-year-old open question by showing that planar
DTs, and hence planar Voronoi diagrams and related structures like Euclidean minimum spanning trees,
can be computed in expected time O(sort(n)) on a word RAM. By sort(n) we denote the time to sort
n numbers, which is at most O(n

√
log log n) if randomization is allowed [Han and Thorup 2002]. In case

of word size Θ(log n) or Ω(log2+ε n), the expected running time of our algorithm is O(n) using radix-
sort [Cormen et al. 2009] or signature sort [Andersson et al. 1998], respectively. Our algorithm requires
one non-standard, but AC0, operation, the shuffle. However, we believe that it should be straightforward
to adapt existing integer sorting algorithms so that our result also holds on a more standard word RAM. In
Appendix A, we exemplify this by showing how to adapt the (comparatively simple) O(n log log n) sorting
algorithm by Andersson et al. [1998].

—DTs from a fixed universe. We can preprocess a point set U ⊆ Rd such that for any subset P ⊆ U it
takes O(|P | log log |U |+C(P)) expected time to find DT(P). Here, C(P) denotes the expected structural
change of an RIC on P .

—DTs for presorted point sets. Since a planar quadtree can be computed by an algebraic computation
tree (ACT) [Arora and Barak 2009, Chapter 16.2] of linear depth once the points are sorted according
to the x- and y-direction, we find that after presorting in two orthogonal directions, a planar DT can be
computed by an ACT of expected linear depth. This should be compared with the fact that there is an
Ω(n log n) lower bound when the points are sorted in one direction [Djidjev and Lingas 1995], and also
for convex hulls in R3 when the points are sorted in any constant number of directions [Seidel 1984]. This
problem has appeared in the literature for at least twenty years [Aggarwal 1988; Djidjev and Lingas 1995;
Chew and Fortune 1997]. Our result seems to mark the first non-trivial progress on this question, and it
shows that unlike for convex hulls and point sets sorted in one direction, a Ben-Or style lower bound in
the algebraic decision tree model [Ben-Or 1983] does not exist. However, we do not know if a quadtree
for presorted points can indeed be constructed in linear time, since the algorithms we know still need
an Ω(n log n) overhead for data handling. It would be interesting to see if there is a connection to the
notorious Sorting X + Y problem [Fredman 1976], which seems to exhibit a similar behavior.

In the second part, we extend the result about hereditary DTs to 3-polytopes and describe a vEB-like data
structure for this problem: preprocess a point set U ⊆ R3 in general convex position such that the convex
hull of any P ⊆ U can be found in expected time O(|P |(log log |U |)2). These queries are called convex hull
queries. We use a relatively recent technique [Chazelle and Mulzer 2009a; Clarkson and Seshadhri 2008;
van Kreveld et al. 2008] which we call scaffolding : in order to find many related structures quickly, we first
compute a “typical” instance—the scaffold S—in a preprocessing phase. To answer a query, we insert the
input points into S and use a fast hereditary algorithm [Chazelle and Mulzer 2009a] to remove the scaffold.
We also need a carefully balanced recursion and a bootstrapping method similar to the one by Chan and
Pǎtraşcu [2007]. This also improves a recent algorithm for splitting a 3-polytope whose vertices are colored
with χ ≥ 2 colors into its monochromatic parts [Chazelle and Mulzer 2009a, Theorem 4.1]: now we can
achieve an expected running time of O(n(log log n)2) instead of O(n

√
log n).

All our algorithms are randomized. In subsequent work, Löffler and Mulzer [2011] gave a deterministic
way to find the Delaunay triangulation of a planar point set P in linear time, given a quadtree for P . This
yields deterministic versions for many of the algorithms we present here. In particular, the result by Löffler
and Mulzer [2011] shows that on a word RAM Delaunay triangulations can be computed deterministically in
time O(n log logn) [Han 2004]. Nonetheless, their results do not extend to higher dimensions. In particular,

structural change of an RIC.
2At least for d > 2. For the planar case, the analysis can be simplified considerably, see below.

3

p13 p11p12p14p15

p23 p21

p22p24p25 p31p32p33p34p35

p13 p11p12p14p15

p23 p21

p22p24p25 p31p32p33p34p35

Fig. 1. The shuffle operation for a 3-dimensional point with 5-bit coordinates.

it would still be very interesting to find a deterministic algorithm for splitting convex polytopes in three
dimensions [Chazelle and Mulzer 2009a].

Computational models. We use two different models of computation, a word RAM and a pointer
machine. The word RAM represents the data as a sequence of w-bit words, where w ≥ log n. Data
can be accessed randomly, and standard operations, such as Boolean operations, addition, or multipli-
cation take constant time. We will also need one nonstandard operation: given a point p ∈ Rd with
w-bit coordinates p1w . . . p12p11, p2w . . . p21, . . ., pdw . . . pd1, the result of shuffle(p) is the dw-bit word
p1wp2w . . . pdw . . . p12 . . . pd2p11 . . . pd1; see Figure 1. Clearly, shuffle is in AC0, and we assume that it takes
constant time on our RAM. In Appendix A, we shall explain how this assumption can be dropped.

On a pointer machine, the data structure is modeled as a directed graph G with bounded out-degree. Each
node in G represents a record, with a bounded number of pointers to other records and a bounded number
of (real or integer) data items. For each point in the universe U there is a record storing its coordinates,
and the input sets are provided as a linked list of records, each pointing to the record for the corresponding
input. The output is provided as a DCEL [de Berg et al. 2008, Chapter 2.2]. The algorithm can access data
only by following pointers from the inputs (and a bounded number of global entry records); random access
is not possible. The data can be manipulated through the usual real RAM operations, such as addition,
multiplication, or square root. However, we assume that the floor function is not supported, to prevent our
computational model from becoming too powerful [Schönhage 1979].

2. FROM NEAREST-NEIGHBOR GRAPHS TO DELAUNAY TRIANGULATIONS

We now describe our reduction from Delaunay triangulations (DTs) to nearest-neighbor graphs (NNGs), for
a d-dimensional point set P . This is done by a randomized algorithm that we call BrioDC, an acronym for
Biased Random Insertion Order with Dependent Choices; see Algorithm 1.

Algorithm 1 The reduction from Delaunay triangulation to nearest-neighbor graph.

BrioDC(P)

(1) If |P | = O(1), compute DT(P) directly and return.

(2) Compute NN(P), the nearest-neighbor graph for P .

(3) Let S ⊆ P be a random sample such that (i) S meets every connected component of NN(P) and (ii)
Pr[p ∈ S] = 1/2, for all p ∈ P .

(4) Call BrioDC(S) to compute DT(S).

(5) Compute DT(P) by inserting the points in P \ S into DT(S), using NN(P) as a guide.

In the following we assume that the reader is familiar with the standard randomized incremental construc-
tion of Delaunay triangulations [de Berg et al. 2008; Mulmuley 1994]. To find S in Step 3, we define a partial
matchingM(P) on P by pairing up two arbitrary points in each component of NN(P), the nearest-neighbor
graph of P . Then S is obtained by picking one random point from each pair in M(P) and sampling the
points in P \M(P) independently with probability 1/2 (although they could also be paired up). In Step 5,
we successively insert the points from P \ S as follows: pick a point p ∈ P \ S that has not been inserted
yet and is adjacent in NN(P) to a point q in the current DT. Such a point always exists by the definition of

4

S. Walk along the edge qp to locate the simplex containing p in the current DT, and insert p by performing
the appropriate edge flips [de Berg et al. 2008; Mulmuley 1994]. Repeat until all of P has been processed.

NN(P) the sample S DT(S) DT(P)

Fig. 2. The algorithm BrioDC: the edges of M(P) are shown dashed, the remaining edges of NN(P) are solid.

Theorem 2.1. Suppose the nearest-neighbor graph of an m-point set can be found in f(m) time, where
f(m)/m is monotonically increasing. Let P ⊆ Rd be an n-point set. The expected running time of BrioDC

is O(C(P) + f(n)), where C(P) is the expected structural change of an RIC on P . The constant in the
O-notation depends exponentially on d.

Before proving Theorem 2.1 in general, we give a simple proof of the theorem for the case that P is planar
(which implies that C(P) = O(n)). For the planar case, we later (Remark 3.6) also give an alternative
linear-time reduction from DTs to quadtrees that uses a combination of known results.

Proof of Theorem 2.1 for d = 2. Since f(m)/m increases, the expected cost to compute the NNGs
for all the samples is O(f(n)). Furthermore, the cost of tracing an edge pq of NN(P), where p is in the
current DT and q will be inserted next, consists of (a) the cost of finding the starting simplex at p and (b)
the cost of walking through the DT. Part (a) can be bounded by the degree of p in the current DT. In total,
any simplex appears at most as often as the total degree of its vertices in NN(P), which is constant [Miller
et al. 1997, Corollary 3.2.3]. Hence, (a) is proportional to the structural change. The same holds for (b),
since every traversed simplex will be destroyed when the next point is inserted. Note that the argument
above also holds for d > 2.

We now use induction to show that there exists a constant c such that the expected structural change
is at most cn. This clearly holds for n = O(1). Now we suppose that DT(S) can be found with expected
structural change at most c|S|, and we examine what happens in Step 5 of BrioDC. Let t be a triangle
defined by three points of P , and let Bt denote the points of P inside the circumcircle of t. The points in
Bt are called stoppers, and the size of Bt is referred to as the conflict size for t. The triangle t can only
appear in Step 5 if S ∩ Bt = ∅. Now let ps be the probability that a given triangle t with conflict size s
appears in Step 5. Clearly, we have ps ≤ 1/2s: if the stoppers of t are sampled independently of each other,
we directly get this bound, and otherwise S includes a stopper and t cannot be created at all. By the well-
known Clarkson-Shor bound [Clarkson and Shor 1989], the number of triangles with conflict size at most s
is O(ns2), so the expected number of triangles created in Step 5 is O

(∑∞
s=0 ns

2/2s
)
≤ dn, for some constant

d. Since the expected size of S is n/2, the total expected structural change is therefore cn/2 +dn ≤ cn, for c
large enough, which completes the induction. Note that this argument does not help in higher dimensions,
because there the Clarkson-Shor bound gives O(nb(d+1)/2csd(d+1)/2e) simplices with conflict size at most s,
which might yield a bound that is much larger than the expected structural change of an RIC.

Coming back to the general case, let P = S0 ⊇ · · · ⊇ S` be the sequence of samples taken by BrioDC. Fix
a set u of d+ 1 distinct points in P . Let ∆ be the simplex spanned by u, and let Bu ⊆ P denote the points
inside ∆’s circumsphere. We call u the trigger set and Bu the conflict set for ∆. The elements of Bu are
called stoppers. Consider the event Aα that ∆ occurs during the construction of DT(Sα) from DT(Sα+1),
for some α. Clearly, Aα can only happen if u ⊆ Sα and Bu ∩ Sα+1 = ∅. To prove Theorem 2.1, we bound
Pr[Aα].

Lemma 2.2. We have

Pr[Aα] ≤ e2d+2 2−(d+1)α
(
1− 2−α−1

)|Bu|
.

5

Since Lemma 2.2 constitutes the most technical part of our proof, let us first provide some intuition. We
visualize the sampling process as follows [Motwani and Raghavan 1995, Chapter 1.4]: imagine a particle that
moves at discrete time steps on the nonnegative x-axis and always occupies integer points. Refer to Figure 3.
The particle starts at position |Bu|, and after β steps, it is at position |Sβ ∩ Bu|, the number of stoppers
in the current sample. Since we are looking to bound Pr[Aα], the goal is to upper-bound the probability
of reaching 0 in α + 1 steps while retaining all triggers u. However, the random choices in a step not only
depend on the current position, but also on the matching M(S). Even worse, the probability distribution
in the current position may depend on the previous positions of the particle. We avoid these issues through
appropriate conditioning and show that the random walk essentially behaves like a Markov process that in
each round eliminates d+ 1 stoppers and samples the remaining stoppers independently. The elimination is
due to trigger-stopper pairs in M(S), since we want all triggers to survive. The remaining stoppers are not
necessarily sampled independently, but dependencies can only help, because in each stopper-stopper pair one
stopper is guaranteed to survive. Eliminating d+ 1 stoppers in the i-th step has a similar effect as starting
with about (d+1)2i fewer stoppers: though a given trigger can be matched with only one stopper per round,
these pairings can vary for different instances of the walk, and since a given stopper survives a round with
probability roughly 1/2, the “amount” of stoppers eliminated by one trigger in all instances roughly doubles
per round.

0 1 |Bu||Bu ∩ S1||Bu ∩ S2| s

ps,k

(a) (b)
0

Fig. 3. (a) We visualize the sampling process as a particle moving from on the positive x-axis from |Bu| towards 0; (b) ps,k
roughly corresponds to the probability of reaching 0 from s in k steps, while retaining all the triggers. We use appropriate

conditioning in order to deal with the dependencies between the different events.

Proof of Lemma 2.2. For S ⊆ P , let the matching profile for S be the triple (a, b, c) ∈ N3
0 that counts

the number of trigger-stopper, stopper-stopper, and trigger-trigger pairs inM(S). For a given α we consider

ps,k = max
Pk

Pr[Aα | Xs,k,Pk], (1)

where s and k ≤ α are integers and Xs,k = {u ⊆ Sα−k} ∩ {|Bu ∩ Sα−k| = s} is the event that the sample
Sα−k contains all triggers and exactly s stoppers. The maximum in (1) is taken over all possible sequences
Pk = m0, . . ., mα−k−1, Y0, . . ., Yα−k−1 of matching profiles mi for Si and events Yi of the form Xti,α−i
for some ti. Since Pr[Aα] = p|Bu|,α, it suffices to upper-bound ps,k. We describe a recursion for ps,k. For
that, let Tk = {u ⊆ Sα−k} be the event that Sα−k contains all the triggers, and let Ui,k = {|Bu ∩ Sα−k| = i}
denote the event that Sα−k contains exactly i stoppers (note that Xs,k = Tk ∩ Us,k).

Proposition 2.3. We have

ps,k ≤ max
m

Pr[Tk−1 | Xs,k,m] ·
s∑
i=0

pi,k−1 Pr[Ui,k−1 | Tk−1, Xs,k,m],

where the maximum is over all possible matching profiles m = (a, b, c) for Sα−k.

Proof. Fix a sequence Pk as in (1). Then, by distinguishing how many stoppers are present in Sα−k+1,

Pr[Aα | Xs,k,Pk] =

s∑
i=0

Pr[Xi,k−1 | Xs,k,Pk] Pr[Aα | Xi,k−1, Xs,k,Pk].

Now if we condition on a matching profile m for Sα−k, we get

Pr[Xi,k−1 | Xs,k,Pk,m] = Pr[Tk−1 | Xs,k,m] Pr[Ui,k−1 | Tk−1, Xs,k,m],

6

since the distribution of triggers and stoppers in Sα−k+1 becomes independent of Pk once we know the
matching profile and the number of triggers and stoppers in Sα−k. Furthermore,

Pr[Aα | Xi,k−1,m, Xs,k,Pk] ≤ max
Pk+1

Pr[Aα | Xi,k−1,Pk+1] = pi,k−1.

The claim follows by taking the maximum over m.

We use Proposition 2.3 to bound ps,k: if m = (a, b, c) pairs up two triggers (i.e., c > 0), we get u 6⊆ Sα−k+1

and Pr[Tk−1 | Xs,k,m] = 0. Hence we can assume c = 0 and therefore Pr[Tk−1 | Xs,k,m] = 1/2d+1, since all
triggers are sampled independently. Furthermore, none of the a stoppers paired with a trigger and half of
the 2b stoppers paired with a stopper end up in Sα−k+1, while the remaining tm = s− a− 2b stoppers are
sampled independently. Thus, Proposition 2.3 gives

ps,k ≤ max
m
c=0

s−a−b∑
i=b

pi,k−1
2d+1

Pr
[
Btm1/2 = i− b

]
, (2)

where Btm1/2 denotes a binomial distribution with tm trials and success probability 1/2.

Proposition 2.4. We have

ps,k ≤ 2−(d+1)k
(
1− 2−k−1

)s k∏
j=1

(
1− 2−j

)−d−1
.

Proof. The proof is by induction on k. For k = 0, we have ps,0 ≤ (1− 1/2)
s
, since we require that none

of the s stoppers in Sα be present in Sα+1, and this can only happen if they are sampled independently of
each other. For the inductive step, by (2),

ps,k+1 ≤ max
m
c=0

s−a−b∑
i=b

pi,k
2d+1

Pr
[
Btm1/2 = i− b

]
= max

m
c=0

1

2d+1+tm

tm∑
i=0

(
tm
i

)
pi+b,k. (3)

Using the inductive hypothesis and the binomial theorem, we bound the sum as

tm∑
i=0

(
tm
i

)
pi+b,k ≤

∑tm
i=0

(
tm
i

) (
1− 2−k−1

)i+b
2(d+1)k

k∏
j=1

(
1− 2−j

)−d−1
=

(
2− 2−k−1

)tm
2(d+1)k

(
1− 2−k−1

)b k∏
j=1

(
1− 2−j

)−d−1
=

(
1− 2−k−2

)tm
2(d+1)k−tm

(
1− 2−k−1

)b k∏
j=1

(
1− 2−j

)−d−1
.

Now, since tm = s− a− 2b ≥ s− d− 1− 2b and since(
1− 2−k−1

)b
(1− 2−k−2)

2b
=

(
1− 2−k−1

1− 2−k−1 + 2−2k−4

)b
≤ 1,

it follows that

tm∑
i=0

(
tm
i

)
pi+b,k ≤

(
1− 2−k−2

)s
2(d+1)k−tm

k+1∏
j=1

(
1− 2−j

)−d−1
,

and hence (3) gives

ps,k+1 ≤
(
1− 2−k−2

)s
2(d+1)(k+1)

k+1∏
j=1

(
1− 2−j

)−d−1
,

which finishes the induction.

7

Now, since 1− x ≥ exp(−2x) for 0 ≤ x ≤ 1/2, we have

k∏
j=1

(1− 2−j)−d−1 ≤ exp

2(d+ 1)

∞∑
j=1

2−j

 = e2(d+1),

so we get by Proposition 2.4

Pr[Aα] ≤ p|Bu|,α ≤ e2d+22−(d+1)α(1− 2−α−1)|Bu|,

which proves Lemma 2.2.

The following lemma was proven by Buchin [2007, Lemma 3.5], and it allows us to relate the Pr[Aα]’s to
the probability that the simplex ∆ appears in a traditional RIC. For completeness we include a short proof.

Lemma 2.5. Let pR denote the probability that the simplex spanned by u ⊆ P occurs in an RIC and let
pα = 2−(d+1)α(1− 2−d−1)(1− 2−α−1)|Bu|. Then

∑∞
α=0 pα ≤ 2d+1pR.

Proof. Consider the following way to obtain a random permutation of the points: for each p ∈ P
randomly pick a positive integer zp, where Pr[zp = α] = 2−α for α > 0 and all the zp are drawn independently.
Then subdivide the points into groups according to their label zp, choose a random permutation in each group,
and concatenate the groups in decreasing order according to their label. Note that Pr[zp ≥ α] = 2−(α−1) for

p ∈ P and Pr[{zp ≥ α | p ∈ P ′}] = 2−|P
′|(α−1) for P ′ ⊆ P .

For a simplex spanned by u ⊆ P we derive a lower bound on the probability that its last trigger (in the
random permutation) has label α0 > 0 and that the simplex occurs in an RIC. A sufficient condition for this
event is that the last trigger u has zu = α0 (which happens with probability Pr[{zu ≥ α0 | u ∈ u}]−Pr[{zu ≥
α0+1 | u ∈ u}] = 2−(d+1)(α0−1)(1−2−d−1)) and that all stoppers q ∈ Bu have zq < α0 (which independently
happens with probability (1 − 2−α0)|Bu|). A sufficient condition gives us a lower bound for an event, thus
summing over α we get

pR ≥
∞∑
α=1

2−(d+1)α(1− 2−d−1)(1− 2−α)|Bu| = 2−(d+1)
∞∑
α=0

pα.

Proof of Theorem 2.1. As we argued at the beginning of the proof for the planar case, it suffices to
bound the structural change. It therefore is sufficient to show that the probability that the simplex spanned
by u ⊆ P occurs in BrioDC is asymptotically upper-bounded by the corresponding probability in an RIC. In
the case of BrioDC, this probability is bounded by

∑∞
α=0 Pr[Aα]. By Lemmas 2.2 and 2.5 we have

∞∑
α=0

Pr[Aα] ≤ e2d+2
∞∑
α=0

2−(d+1)α
(
1− 2−α−1

)|Bu| ≤ e2d+22d+1

1− 2−d−1
pR,

where pR denotes the probability that the simplex occurs in an RIC.

Remark 2.6. The reduction also shows that it takes Ω(n log n) time to compute NNGs and well-separated
pair decompositions, even if the input is sorted along one direction [Djidjev and Lingas 1995].

Remark 2.7. The dependent sampling has more advantages than just allowing for fast point location. For
instance, assume P samples a region, e.g., a surface [Attali and Boissonnat 2004], in the sense that for any
point in the region there is a point in P at distance at most ε. Now, the length of edges in the NNG is
bounded by 2ε, and S1 (if it is not empty) contains for any p ∈ P a point from the 2-neighborhood of p in
the NNG. Therefore, also S1 samples the region with ε1 ≤ 4ε, or more generally for i > 1, Si samples the
region with εi ≤ 4iε if Si is not empty.

Remark 2.8. Lemma 2.2 directly extends to the more general setting of configuration spaces [Mulmuley
1994] if we replace d+ 1 by the degree bound, i.e., the maximum number of triggers. Thus, our dependent
sampling scheme can be used in the incremental construction of a wide range of structures, and may be
useful in further applications.

8

Remark 2.9. Buchin [2008] gave an alternative reduction from DTs to nearest-neighbor graphs that is also
based on a randomized incremental construction, but with unbiased sampling. Like BrioDC, his algorithm
uses a sequence P = S0 ⊇ · · · ⊇ S` of samples. But since the algorithm uses unbiased sampling, Si+1 does
not necessarily meet every component of NN(Si) in contrast to BrioDC. For the remaining components the
algorithm uses a combination of nearest neighbor graphs of smaller subsets and the history structure for
conflict location. Thus, the algorithm by Buchin [2008] is somewhat more involved, but the analysis is a
little less technical (at least for d > 2).

3. DELAUNAY TRIANGULATIONS

Let P ⊆ Rd be an n-point set whose coordinates are w-bit words. The shuffle order of P is obtained by
taking shuffle(p) for every p ∈ P , as described above, and sorting the resulting numbers in the usual order.
The shuffle order is also known as the Morton-order [Morton 1966] or the Z-order, and it is intimately related
to quadtrees [Bern et al. 1999; Chan 2008]; see Figure 4.

Fig. 4. The shuffle order corresponds to the left-to-right traversal of the leaves of a quadtree.

Lemma 3.1. Suppose our computational model is a word RAM, and that P ⊆ {0, . . . , 2w − 1}d is given
in shuffle order. Then, a compressed quadtree for P can be computed in O(|P |) time.

Proof. Our argument mostly follows Chan’s presentation [Chan 2008, Step 2]. We define a hierarchy H
of quadtree boxes, by taking the hypercube {0, . . . , 2w − 1}d as the root box and by letting the children of a
box b be the hypercubes that divide b into 2d equal axis-parallel parts. For two points p, q, let box(p, q) be
the smallest quadtree box that contains p and q, and let |box(p, q)| be the side length of this box. Both can
be found by examining the most significant bits in which the coordinates of p and q differ. A compressed
quadtree for a point set P is the compressed subtree of H induced by the leaves in H that correspond to
the points in P (obtained by contracting all paths that consist of nodes with only one child). The crucial
observation that connects compressed quadtrees with the shuffle order is that if the children of each node in
H are ordered lexicographically, then the leaves of H are sorted according to the shuffle order. The quadtree
is constructed by BuildQuadTree; see Algorithm 2. The algorithm is similar to the construction of Cartesian

Algorithm 2 Building a compressed quadtree.
BuildQuadTree

(1) q0.box = {0, . . . , 2w − 1}d, q0.children = (p1), k = 0

(2) for i = 2, . . . , n
(a) while |box(pi−1, pi)| > |qk.box| do k = k − 1
(b) if |qk.box| = |box(pi−1, pi)|, let pi be the next child of qk; otherwise, create qk+1 with qk+1.box =

box(pi−1, pi), and move the last child of qk to the first child of qk+1, make pi the second child of
qk+1, and qk+1 the last child of qk. Set k = k + 1.

9

trees [Gabow et al. 1984]. Assuming our model supports the msb (most significant bit) operation3 in constant
time, the algorithm runs in linear time: the total number of iterations in Step 2a is bounded by the number
of times k is decremented, which is clearly at most n, and the box sizes can be computed in constant time.

With some more effort, we can avoid the msb operation. First, as observed by Chan [2002], note that box
sizes can be compared without the need for msb, because for two binary numbers x, y, we have

msb(x) < msb(y) ⇐⇒ (x ≤ y) ∧ (x < x⊕ y), (4)

where x⊕ y denotes the bitwise xor operation. Thus, BuildQuadTree can find the combinatorial structure
of the compressed quadtree T for P in linear time. Using a postorder traversal of T , we can find for each
node b in T a minimum bounding box for the points under b, again in linear time. This information suffices
to apply Lemma 3.2 below, as we can see by inspecting the proof of Callahan and Kosaraju [1995].

Via well-separated pair decompositions, we can go from quadtrees to NNGs in linear time as was shown
by Callahan and Kosaraju [1995] and by Clarkson [1983] (see also [Chan 2008]). Their result is stated as
follows:

Lemma 3.2. Let P ⊆ Rd. Given a compressed quadtree for P , we can find NN(P) in O(|P |) time in a
traditional model (and also on a word RAM).

Combining Theorem 2.1 with Lemma 3.2, we establish a connection between quadtrees and Delaunay
triangulations.

Theorem 3.3. Let P ⊆ Rd. Given a compressed quadtree for P , we can find DT(P) in expected time
O(n+ C(P)), where C(P) denotes the structural change of an RIC on P .

Proof. BrioDC from Theorem 2.1 generates a sequence of samples P = S0 ⊇ S1 ⊇ · · · ⊇ S`, and we need
to find the nearest-neighbor graphs NN(S0), . . . ,NN(S`) in total O(n) time. By Lemma 3.2, and the fact
that E

[∑
i |Si|

]
= O(n), it suffices to have quadtrees for S0, . . . , S`. This can be achieved in total linear

time as follows: start with the quadtree for P = S0 and in each round i remove the points from Si−1 \ Si
and prune the tree.

Theorem 3.3 immediately gives us an improved transdichotomous algorithm for Delaunay triangulations.

Theorem 3.4. Suppose our computational model is a word RAM with a constant-time shuffle operation.
Let P ⊆ {0, . . . , 2w−1}d be an n-point set. Then DT(P) can be computed in expected time O(sort(n)+C(P)),
where C(P) denotes the expected structural change of an RIC on P and sort(n) denotes the time needed for
sorting n numbers.

Proof. First use Lemma 3.1 to build a compressed quadtree for P in O(sort(n)) time, and then apply
Theorem 3.3; see Figure 5.

WSPD

shuffle order of P quadtree for P NN(P) DT(P)

Fig. 5. An illustration of Theorem 3.4: from shuffle sorting to quadtree to well-separated pair decomposition to nearest-neighbor

graph to Delaunay triangulation.

Remark 3.5. For planar point sets, C(P) is always linear, and this also often holds in higher dimensions.

3The operation msb returns the index of the first nonzero bit in a given word, and −1 if the word is 0.

10

Remark 3.6. In the plane there is another approach to Theorem 3.4, which we sketch here: we sort P in
shuffle order and compute a quadtree for P using Lemma 3.1. Then we use the techniques of Bern et al.
[1994] and Bern et al. [1999] to find a point set P ′ ⊇ P and DT(P ′) in O(n) time, where |P ′| = O(n).
Finally, we extract DT(P) with a linear-time algorithm for splitting Delaunay triangulations [Chazelle et al.
2002; Chazelle and Mulzer 2009a]. However, the details of the construction of DT(P ′) are fairly intricate,
and it is not clear how to split DT(P ′) efficiently in higher dimensions.

Our reduction has a curious consequence about presorted point sets, since we can find quadtrees for such
point sets by an algebraic computation tree [Arora and Barak 2009, Chapter 16.2] of linear depth.

Theorem 3.7. Let P ⊆ Rd be an n-point set, such that the order of P along each coordinate axis is
known. Then DT(P) can be computed by an algebraic computation tree with expected depth O(n + C(P)),
where C(P) denotes the expected structural change of an RIC on P .

Proof. Build the quadtree in the standard way [Bern et al. 1994; Callahan and Kosaraju 1995], but with
two changes: (i) before splitting a box into 2d subboxes, shrink it to a smallest enclosing box by using the
minimum and maximum values for each coordinate axis (this is more convenient for the algebraic computation
tree framework); and (ii) when partitioning the points in each box, use simultaneous exponential searches
from both sides. The modification (i) ensures that in each step of the search we compare a coordinate
of an input point with the average of the corresponding coordinates of two other input points, and it is
known that Lemma 3.2 still holds for this modified quadtree (as can also be seen by inspecting the proof
presented by Chan [2008, Step 3]). We see that the number of such comparisons obeys a recursion of the
type T (n) = O(log(min(n1, n2))) + T (n1) + T (n2), with n1, n2 ≤ n − 1 and n1 + n2 = n, which solves to
T (n) = O(n). This recursion holds only for nodes in which we are making progress in splitting the point set,
but in all other nodes we perform only constantly many comparisons, and there are linearly many such nodes.
Although the algorithm needs only O(n) comparisons, it is not clear how to implement it in time o(n log n),
because while building the tree we must maintain the sorted order of the points in each box according to
every coordinate axis.

As mentioned in the introduction, van Emde Boas trees [van Emde Boas et al. 1976; van Emde Boas 1977]
give us a way to preprocess a large universe so that its subsets can be sorted more quickly. We will now
derive an analogous result for planar Delaunay triangulations.

Theorem 3.8. Let U ⊆ Rd be a u-point set. In O(u log u) time we can preprocess U into a data structure
for the following kind of queries: given P ⊆ U with n points, compute DT(P). The time to answer a query
is O(n log log u+ C(P)). The algorithm runs on a traditional pointer machine.

Proof. Compute a compressed quadtree T for U in time O(u log u) [Bern et al. 1994]. We use T in order
to find NNGs quickly. Let S ⊆ U be a subset of size m. The compressed induced subtree for S, TS , is
obtained by taking the union of all paths from the root of T to a leaf in S and by compressing all paths with
nodes that have only one child. We now show that Ts can be found in time O(m log log u).

Claim 3.9. We can preprocess T into a data structure of size O(u log log u) such that for any subset
S ⊆ U of m points we can compute the compressed induced subtree TS in time O(m log log u).

Proof. Build a vEB tree [van Emde Boas et al. 1976; Mehlhorn 1984] for U (according to the order
of the leaves in T), and preprocess T into a pointer-based data structure for least-common-ancestor (lca)
queries.4 Recall that lca queries on a pointer machine take Θ(log log u) time per query [Harel and Tarjan
1984; van Leeuwen and Tsakalides 1988]. Furthermore, compute the depth for each node of T and store
it with the respective node. These data structures need O(u log log u) space. Given S, we use the vEB
tree to sort S according to the order of T . Then we use the lca structure to compute TS as follows: apply
BuildQuadTree (Algorithm 2) to S according to the sorted order, but with two changes: for the nodes qk
we take the appropriate nodes in T , and instead of box we use lca queries. More precisely, we initialize q0
as the root of T . Whenever we need to compare box(pi−1, pi) with qk.box, we compute the lca q of pi−1 and

4Given a rooted tree T and two nodes u, v ∈ T , the least common ancestor of u and v is the last node that appears both on
the path from the root to u and on the path from the root to v.

11

pi to see whether q lies below or above qk in T (by comparing the depths). Instead of creating a new node
qk+1 in Step 2b, we just let qk+1 = q and set pointers appropriately.

Since there are O(m) queries to the vEB tree, and O(m) queries to the lca structure (as BuildQuadTree

only executes O(m) steps in total), the whole process takes time O(m log log u), as claimed.

In order to find NN(S), use Claim 3.9 to compute TS and then use Theorem 3.3. This takes O(m log log u)
time, and now the claim follows from Theorem 2.1.

Remark 3.10. As is well known [de Berg et al. 2008; Boissonnat and Yvinec 1998; Mulmuley 1994;
Preparata and Shamos 1985], once we have computed the DT, we can find many other important geo-
metric structures in O(n) time, for example, the Voronoi diagram, the Euclidean minimum spanning tree,
or the Gabriel graph. Given the Voronoi diagram of a planar point set P , we can also find the largest empty
circle inside convP in linear time [Preparata and Shamos 1985].

4. SCAFFOLD TREES

We now extend Theorem 3.8 to three-dimensional convex hulls and describe a data structure that allows us
to quickly find the convex hull of subsets of a large point set U ⊆ R3 in general and convex position (gcp),
i.e., no four points of U lie in a common plane and no point p ∈ U is contained in the convex hull of U \ {p}.
We call our data structure the scaffold tree. Our description starts with a simple structure that handles
convex hull queries in expected time O(n

√
log u log log u), which we then bootstrap for the final result.

4.1 The basic structure

For a point set U ⊆ R3, let convU denote the convex hull of U , and let E[U], F [U] be the edges and facets of
convU . Let S ⊆ U , and for a facet f ∈ F [S], let h+f denote the open half-space whose bounding hyperplane
is spanned by f and which does not contain S. For a point p ∈ U \ S and a facet f ∈ F [S], we say that p
is in conflict with f if p ∈ h+f . For f ∈ F [S], let Bf ⊆ U denote the points in conflict with f , the conflict
set of f . Similarly, for p ∈ U , we let the conflict set Dp ⊆ F [S] be the facets in convS in conflict with p.
Furthermore, we call |Bf | and |Dp| the conflict sizes of f and p, respectively. We will need a recent result
about splitting convex hulls [Chazelle and Mulzer 2009a, Theorem 2.1].

Theorem 4.1. Let U ⊆ R3 be a u-point set in gcp, and let P ⊆ U . There exists an algorithm SplitHull

that, given convU , computes convP in total expected time O(u).

We will also need the following sampling lemma for the recursive construction of the scaffold tree [Chazelle
and Mulzer 2009a, Lemma 4.2]. After stating the lemma formally, we will say a bit more about its meaning
and how it can be used for the construction of scaffold trees.

Lemma 4.2. Let U ⊆ R3 be a u-point set in gcp, and let µ ∈ (0, 1) be a constant. There exists a constant
α0 such that the following holds: pick an integer α with α0 ≤ α ≤ µu. Given convU , in O(u) expected time
we can compute subsets S,R ⊆ U and a partition R1, . . . , Rβ of R such that

(1) |S| = α, |R| = Ω(u), maxi |Ri| = O (u(logα)/α).

(2) For each Ri, there exists a facet fi ∈ F [S] such that all points in Ri are in conflict with fi.

(3) Every point in R conflicts with constantly many facets of convS.

(4) The conflict sets for points p ∈ Ri, q ∈ Rj, i 6= j, are disjoint and no conflict facet of p shares an edge
with a conflict facet of q.

We can find convS, convR1, . . ., convRβ, and conv (U \ (R ∪ S)) in total expected time O(u).

The idea behind Lemma 4.2 is as follows: it is well known that if we take a random subset S ⊆ U of size
α, the total expected conflict size for convS is O(u), and with high probability the maximum conflict size
over all facets in F [S] is O(u(logα)/α) [Clarkson and Shor 1989; Mulmuley 1994]. In particular, a typical
point p ∈ U \ S will conflict with constantly many facets of convS. Lemma 4.2 says that if we discard a
constant fraction of the points (the set U \ (S ∪R)), not only can we turn this into a worst-case bound, but
we can also partition the conflict sets into independent parts (the Ri’s), which means that no two points in
different Ri’s share a conflict facet (by Property (4)).

12

This last property is the key to the scaffold tree. Recall that given an n-subset P ⊆ U , our goal is to find
convP . In view of Theorem 4.1, our strategy is to construct the convex hull of a (not too large) superset
P ′ ⊇ P , from which we then extract convP in expected time O(|P ′|). The larger hull convP ′ is obtained
through divide and conquer: we use Lemma 4.2 to find an appropriate convex hull convS, the scaffold. As
stated in the lemma, convS partitions (a constant fraction of) the universe into several parts Ri, and we
recurse on the Ri’s. This yields subhulls conv(P ∩Ri) that need to be combined. Here Property (4) is crucial:
together with Property (3), it enables us to insert the subhulls conv(P ∩Ri) into convS in total linear time,
since we can process each subhull in isolation. Hence, we obtain the hull conv(P ′) for P ′ = S ∪ P , and we
then remove the points in P ′ \ P in expected time O(|S|+ |P |). There is a trade-off for the size of S: if the
scaffold is too small, we do not make enough progress in the recursion; if it is too large, removing the scaffold
takes too long. It turns out that the optimum is achieved for |S| = 2

√
log u. Finally, note that in Lemma 4.2

we discard a constant fraction of the universe U , so we need to iterate the algorithm several times and then
compute the union of the resulting hulls, for which we pay another factor of log log u. The details follow.

Theorem 4.3. Let U ⊆ R3 be a u-point set in gcp. In O(u log u) time, we can construct a data struc-
ture of size O(u

√
log u) such that for any n-point set P ⊆ U we can compute convP in expected time

O(n
√

log u log log u). If convU is known, the preprocessing time is O(u
√

log u).

Proof. We first describe the preprocessing phase. If necessary, we construct convU in time O(u log u).
The scaffold tree is computed through the recursive procedure BuildTree(U); see Algorithm 3.

Algorithm 3 Building the basic scaffold tree.

BuildTree(U)

(1) If |U | = O(1), store U and return, otherwise, let U1 = U and i = 1

(2) While |Ui| > u/2
√
log u.

(a) Apply Lemma 4.2 to Ui with α = 2
√
log u to obtain subsets Si, Ri ⊆ Ui, as well as a partition

R
(1)
i , . . . , R

(β)
i of Ri, and the hulls convSi, convR

(j)
i , conv(Ui \ (Si ∪Ri)) described in the lemma.

(b) Call BuildTree
(
R

(j)
i

)
for j = 1, . . . , β.

(c) Let Ui+1 = Ui \ (Si ∪Ri) and increment i.

(3) Let ` = i and call BuildTree(U`).

By Property (1) of Lemma 4.2, the sizes of the sets Ui decrease geometrically, so we get ` = O(
√

log u) and

∑̀
i=1

|Si| = O
(

2
√
log u

√
log u

)
. (5)

The geometric decrease of the Ui’s, together with the running time bound from Lemma 4.2, also implies
that the total expected time for Step 2a is O(u). Thus, since by Property (1) of Lemma 4.2 the sets for

the recursive calls in Steps 2b and 3 have size O(|Ui|(logα)/α) = O(u
√

log u/2
√
log u), the expected running

time P2(u) of BuildTree obeys the recursion

P2(u) = O(u) +
∑
i

P2(mi),

where ∑
i

mi < u and max
i
mi = O(u

√
log u/2

√
log u).

Thus, the total expected work in each level of the recursion is O(u), and for the number of levels L(u) we
get

L(u) ≤ 1 + L
(
σu
√

log u/2
√
log u

)
,

13

for some constant σ > 0. To see that L(u) ≤ c√log u for some appropriate constant c, we use induction and
note that for u sufficiently large we have

L(u) ≤ 1 + c

√
log u+ log σ + (1/2) log log u−

√
log u ≤ 1 + c

√
log u

√
1− 1/(2

√
log u) ≤ c

√
log u,

since for c large enough c
√

log u
√

1− 1/(2
√

log u) ≤ c√log u− 1. Therefore, we get P2(u) = O
(
u
√

log u
)
.

Queries are answered by a recursive procedure called Query(P); refer to Algorithm 4. Step 1 takes time

Algorithm 4 Querying the simple scaffold tree.

Query(P)

(1) If n ≤ 2
√
log u
√

log u, use a traditional algorithm to find convP and return.

(2) For i = 1, . . . , `− 1

(a) Let Pi = P ∩Ri and determine the intersections P
(j)
i of Pi with the sets R

(j)
i .

(b) For all nonempty P
(j)
i , call Query(P

(j)
i) to compute convP

(j)
i .

(c) Merge convP
(j)
i into convSi.

(d) Use SplitHull to extract convPi from the convex hull conv (Pi ∪ Si).
(3) Let P` = U` ∩ P . If P` 6= ∅, call Query(P`) for convP`.

(4) Compute convP as the union of convP1, . . ., convP`.

O(n log n) = O(n
√

log u + n log log u) = O
(
n
√

log u
)

[de Berg et al. 2008; Boissonnat and Yvinec 1998;
Mulmuley 1994; Preparata and Shamos 1985]. With an appropriate pointer structure that provides links for
the points in U to the corresponding subsets (as in the pointer-based implementation of vEB trees [Mehlhorn
1984]), the total time for Step 2a is O(n). The next claim handles Step 2c.

Claim 4.4. Step 2c takes O(|Pi|) time.

Proof. Fix a j with P
(j)
i 6= ∅. We show how to insert P

(j)
i into convSi in time O(|P (j)

i |). This implies the
claim, since Property (4) of Lemma 4.2 combined with simple geometric arguments [Chazelle and Mulzer

2009a, Lemma 4.5] shows that there can be no edge between two points p ∈ P
(j1)
i and q ∈ P

(j2)
i , for

j1 6= j2. The only facets in convSi that are destroyed are facets in ∆ =
⋃
p∈P (j)

i
Dp, by definition of Dp. By

Properties (2) and (3) of Lemma 4.2, the size of ∆ is constant, because all the Dp’s have constant size, form
connected components in the dual of convSi (a 3-regular graph), and have one facet in common. Thus, all

we need is to insert the constantly many points in Si incident to the facets in ∆ into convP
(j)
i , which takes

time O(|P (j)
i |), as claimed.

By Theorem 4.1, Step 2d needs O(|Pi|+ |Si|) time. Using an algorithm for merging convex hulls [Chazelle
1992], Step 4 can be done in time O(n log `) = O(n log log u). Thus, the total expected time for Steps 2

to 4, excluding the recursive calls, is O(n log log u +
∑`
i=1 |Si|) = O(n log log u), by (5) and Step 1 of the

algorithm, which ensures that P is large enough. Since there are O(
√

log u) levels in the recursion, and since
the computation in Step 1 is executed only once for each point in P , the result follows.

4.2 Bootstrapping the tree

We now describe the bootstrapping step. As mentioned above, the reason for the O(
√

log n) factor in the
running time of the basic structure lies in a trade-off between the depth of the recursion and the time to
remove the scaffold S \ P . To improve the running time, we increase the size of S in order to make the
recursion more shallow. However, now it may happen that S is much larger than P , and hence the application
of SplitHull might take too long. Recall how we used the scaffold in the basic algorithm: every recursively
computed subhull conv(P ∩R(j)) is inserted into convS by connecting it appropriately with the vertices that
bound the facets in a conflict set ∆(j) of constant size. Now, if S is much larger than P , most intersections
P∩R(j) will be empty. Hence, it would suffice to insert the subhulls into a smaller scaffold conv S̃ with S̃ ⊆ S,
so that S̃ contains only the vertices of the facets in the ∆(j)’s for those R(j)’s that meet P . Since the R(j)’s

14

have constant size, |S̃| = O(|P |). But how do we construct conv S̃? Here is where the bootstrapping comes

into play, because finding conv S̃ given convS is exactly an instance of the problem we are trying to solve
in the first place. By choosing the parameters carefully, and by taking the bootstrapping process through
several steps in which the size of the scaffold gradually increases, we can improve the multiplicative factor in
the running time from

√
log u log log u to (log log u)2. The details are given below. First, however, there is

one more subtlety we need to address: for best results, we would not only like |S̃| = O(|P |), but |S̃| ≤ |P |, so
that the problem size does not increase during the bootstrapping process. This is not quite possible, because
the conflict facets for a R(j) are bounded by more then one vertex. Nonetheless, the following lemma shows
that it suffices to find convS′ for a subset S′ ⊆ S̃ that contains a random point from each vertex set for a
relevant ∆(j), so that |S′| ≤ |P |.

Theorem 4.5. Let S ⊆ U be in gcp, and let S1, . . . , Sk ⊆ S such that |Si| ≤ c, for some constant c and

all i, and such that the subgraphs convS|Si are connected and available. Set m =
∑k
i=1 |Si|. Furthermore, let

S′ ⊆ S be obtained by choosing one random point from each Si, uniformly at random, and suppose convS′

is available, and that we have a van Emde Boas structure for the neighbors of each vertex in convS. Then

we can find conv
(⋃k

i=1 Si

)
in expected time O(m log log u).

Note that the Si’s are not necessarily disjoint.

Proof. The idea is to insert the remaining points one by one. As shown below, the total structural
change for these insertions turns out to be linear. To determine the locations where the new points need to
be inserted in the current hull, we use the information provided by the subgraphs convS|Si

. Details follow.
Let Q be a queue which we initialize with the points from S′. While Q is not empty, let p be the next

point in Q. The point p may be contained in several sets Si. We insert the neighbors for p in each subgraph
convS|Si

that contains p into the vEB structure for p, thus sorting all the neighbors according to clockwise
order. Let q1, q2, . . . , qβ denote the neighbors in order. We insert the qj ’s one by one into the current hull.
For q1, we inspect all facets incident to p in the current hull until we find one that conflicts with q1, and then
insert q1 in the standard way. By assumption, pq1 is an edge of the current hull, and we inspect the facets
incident to p in the current hull in clockwise order, starting from those incident to pq1, until we find one that
is in conflict with q2. Then we insert q2 and proceed in the same way. This ensures that any facet incident
to p is inspected at most constantly often. Finally, we append all the qj that have not been encountered yet
to the queue Q.

The total time taken is proportional to m log log u for the sorting and the traversal of the queue, plus the
number of facets of the convex hull that were created (and possibly destroyed) during the construction.

Let f be a facet with conflict set Bf (with respect to
⋃k
i=1 Si). The facet f is created only if S′ ∩Bf = ∅.

The probability of this event is at most

k∏
i=1

(
1− |Si ∩Bf ||Si|

)
≤ exp

(
−

k∑
i=1

|Si ∩Bf |
c

)
≤ exp(−|Bf |/c).

Now, since it is well known that there are at most O(ms2) facets with conflict size s [Clarkson and Shor
1989], the expected number of created facets is O

(
m ·∑∞s=0 s

2/es/c
)

= O(m), and the result follows.

Theorem 4.6. Let k ≥ 2 be an integer and U ⊆ R3 a u-point set in gcp, and let convU be given. Set
lk = (log u)1/k. There is a constant β with the following property: if Dk(U) is a data structure for convex
hull queries with preprocessing time Pk(u) and query time Qk(n, u) such that

Pk(u) ≤ βuklk and Qk(n, u) ≤ βnklk log log u,

then there is a data structure Dk+1(U) with preprocessing time Pk+1(u) and query time Qk+1(n, u) such that

Pk+1(u) ≤ βu(k + 1)lk+1 and Qk+1(n, u) ≤ βn(k + 1)lk+1 log log u.

Proof. Since the function x 7→ x log1/x u reaches its minimum for x = ln 2 log log u, we may assume that
k ≤ 0.7 log log u− 1, because otherwise the theorem holds by assumption. The preprocessing is very similar

to Algorithm 3 with a few changes: (i) we iterate the loop in Step 2 while |Ui| > u/2l
k
k+1 ; (ii) we apply

15

Lemma 4.2 with α = 2(log u)
k/(k+1)

; and (iii) for each sample Si we compute vEB trees for the neighbors of
each vertex in convSi, and also a data structure Dk(Si) for convex hull queries, which exists by assumption;
for details see Algorithm 5.

Algorithm 5 Bootstrapping the scaffold tree.

BuildTreek+1(U)

(1) If |U | = O(1), store U and return, otherwise, let U1 = U and i = 1

(2) While |Ui| > u/2l
k
k+1 .

(a) Apply Lemma 4.2 to Ui, with α = 2(log u)
k/(k+1)

. This yields subsets Si, Ri ⊆ Ui, a partition

R
(1)
i , . . . , R

(β)
i of Ri, and the convex hulls convSi, convR

(j)
i , and conv(Ui \ (Si ∪ Ri)) with the

properties of Lemma 4.2.

(b) Execute BuildTreek+1

(
R

(j)
i

)
for j = 1, . . . , β, compute a data structure Dk(Si) for Si as well as

van Emde Boas structures for the neighbors of each vertex in convSi.
(c) Let Ui+1 = Ui \ (Si ∪Ri) and increment i.

(3) Let ` = i and call BuildTreek+1(U`).

Since by Property (1) of Lemma 4.2 the sizes of the Ui’s decrease geometrically, we have ` = O
(
lkk+1

)
and the total expected time for Step 2a is O(u), by the running time guarantee from Lemma 4.2. Since
2 ≤ k ≤ 0.7 log log u− 1, we have

20.7 ≤ lk, lk+1 ≤
√

log u,

and therefore the total time to construct the data structures Dk(Si) in Step 2b is at most (for some large
enough constant c)

c
(
lkk+1

)
Pk
(
2l

k
k+1
)
≤ c

(
lkk+1

)
βklk+12l

k
k+1 ≤ cβ(log u log log u) · 2(log u)/lk+1

≤ cβ(log u log log u) · u1/20.7 ≤ u,
for u large enough. Similarly, the total time for the construction of the vEB trees in Step 2b can be bounded

by O
(
lkk+12l

k
k+1 log log u) ≤ u, again for u large enough. Since by Property (1) of Lemma 4.2 the sets R

(j)
i

all have size at most O
(
ulkk+1/2

lkk+1
)
, the number of levels Lk+1(u) has

Lk+1(u) ≤ 1 + Lk+1

(
uσ(log u)/2l

k
k+1
)
,

for some constant σ (note that the term lkk+1 depends on u, since lk+1 = (log u)1/(k+1)). To prove that
Lk+1(u) ≤ c(k + 1)lk+1, for some constant c > 0, we use induction to write

Lk+1(u) ≤ 1 + c(k + 1)
(
log u+ log σ + log log u− lkk+1

)1/(k+1)
.

As k ≥ 2, we have lkk+1 = (log u)k/(k+1) ≥ √log u, so log σ + log log u− lkk+1 < −0.9lkk+1, for u large enough,
and

Lk+1(u) ≤ 1 + c(k + 1)lk+1

(
1− 0.9

lk+1

)1/(k+1)

.

Now, since (
1− 0.9

lk+1

)1/(k+1)

≤ 1− 0.9

(k + 1)lk+1
, (6)

by the standard inequality (1 + x)r ≤ 1 + rx for x > −1 and 0 < r < 1, we get

Lk+1(u) ≤ 1 + c(k + 1)lk+1 − 0.9c ≤ c(k + 1)lk+1,

for c large enough. The total expected work at each level is O(u), so the total preprocessing time is
Pk+1(u) ≤ βu(k + 1)lk+1, for β large enough.

16

Algorithm 6 Querying the bootstrapped scaffold tree.

Queryk+1(P)

(1) For i = 1, . . . , `− 1

(a) Let Pi = P ∩Ri and determine the intersections P
(j)
i of Pi with the sets R

(j)
i .

(b) For each nonempty P
(j)
i , if |P (j)

i | ≤ βklk+1, compute the hull convP
(j)
i directly, otherwise call

Queryk+1(P
(j)
i).

(c) For each nonempty P
(j)
i , determine the set S

(j)
i of all points adjacent to a conflict facet of P

(j)
i in

F [Si].

(d) Let S′i be a set that contains one random point from each S
(j)
i . Use Dk(Si) to find convS′i.

(e) Let S̃i =
⋃
j S

(j)
i . Use Theorem 4.5 to compute conv S̃i and then Claim 4.4 to find conv(Pi ∪ S̃i).

(f) Use SplitHull to extract convPi from conv (Pi ∪ S̃i).
(2) Recursively compute convP`, where P` = U` ∩ P .

(3) Compute convP as the union of convP1, . . . , convP`.

Queries are answered by Queryk+1, as shown in Algorithm 6. In the following, let c denote a large enough
constant. As before, Step 1a takes time

T1a ≤ cn, (7)

using an appropriate pointer structure. In Step 1b, let n1 denote the total number of points for which we
compute the convex hull directly, and let n2 = n− n1. Then this step takes time

T1b ≤ cn1 log log u+ cn1 log β +Qk+1

(
n2, cul

k
k+1/2

lkk+1

)
, (8)

assuming that Qk+1 is linear in the first and monotonic in the second component (which holds by induction

on the second component). By Properties (2) and (3) of Lemma 4.2, the sets S
(j)
i are subsets of constant-sized

sets that can be precomputed, so Step 1c takes time

T1c ≤ cn. (9)

Furthermore, since we select one point per conflict set, the total size of the sets S′i in Step 1d is at most
n1 + n2/(βklk+1), so computing the convex hulls convS′1, . . . , convS′` takes time

T1d ≤ Qk
(
n1 +

n2
βklk+1

, 2l
k
k+1

)
≤ βk

(
n1 +

n2
βklk+1

)
lk+1 log log u = (βn1klk+1 + n2) log log u, (10)

because
(

log(2l
k
k+1)

)1/k
= (log u)k/(k(k+1)) = lk+1. In Step 1e, we use Theorem 4.5 to find conv S̃i in

expected time O(|S̃i| log log u), from which we can compute conv(Pi ∪ S̃i) in time O(|Pi|), as in the proof of

Claim 4.4. By Theorem 4.1, extracting convPi needs O(|Pi| + |S̃i|) expected time, so Steps 1e and 1f take
total time

T1e,1f = O

(
n+

∑
i

|S̃i| log log u

)
≤ cn log log u, (11)

as |S̃i| = O(|Pi|) for all i. Step 2 is already accounted for by T1b. Finally, Step 3 requires

T3 ≤ cn log log u (12)

time. By summing (7,8,9,10,11,12) we get the following recurrence for Qk+1(n, u):

Qk+1(n, u) ≤ 5cn log log u+ cn1 log β + βn1klk+1 log log u+Qk+1

(
n2, cu

lkk+1

2l
k
k+1

)
. (13)

17

By induction, we get

Qk+1

(
n2, cu

lkk+1

2l
k
k+1

)
≤ βn2(k + 1)

(
log u+ log c+

k

k + 1
log log u− lkk+1

)1/(k+1)

log log u.

As lkk+1 ≥
√

log u, we have log c + k
k+1 log log u − lkk+1 ≤ −0.9lkk+1, for u large enough. Using (6), it follows

that

Qk+1

(
n2, cu

lkk+1

2l
k
k+1

)
≤ βn2(k + 1)lk+1

(
1− 0.9

lk+1

)1/(k+1)

log log u

≤ βn2(k + 1)

(
lk+1 −

0.9

k + 1

)
log log u

= βn2(k + 1)lk+1 log log u− 0.9βn2 log log u.

Plugging this bound into (13), we get

Qk+1(n, u) ≤ 5cn log log u+ cn1 log β + βn1klk+1 log log u+ βn2(k + 1)lk+1 log log u− 0.9βn2 log log u.

Now for β large enough, we get

5cn log log u+ cn1 log β ≤ (β/2)n2 log log u+ (β/2)n1 log log u+ (β/2)n1

≤ (β/2)n2 log log u+ βn1 log log u,

so

Qk+1(n, u) ≤ (β/2)n2 log log u+ βn1 log log u+ βn1klk+1 log log u+

βn2(k + 1)lk+1 log log u− 0.9βn2 log log u ≤ βn(k + 1)lk+1 log log u,

as claimed.

Corollary 4.7. Let U ⊆ R3 be a u-point set in gcp. In O(u log u) time, we can construct a data structure
for convex hull queries with expected query time O(n(log log u)2). The space needed is O(u log log u), and if
convU is available, the preprocessing time reduces to O(u log log u).

Proof. For k = 1
2 log log u, we have (log u)1/k = O(1), and the result follows from Theorem 4.3 and a

repeated application of Theorem 4.6.

Corollary 4.8. Let P ⊆ R3 be an n-point set in gcp and c : P → {1, . . . , χ} a coloring of P . Given
convP , we can find conv c−1(1), . . . , conv c−1(χ) in expected time O(n(log log n)2).

Proof. Given convP , build the structure from Corollary 4.7 in O(n log log n) time. Then perform a
query for each color class. Since the color classes are disjoint, the total time is O(n(log log n)2).

ACKNOWLEDGMENTS

We would like to thank Bernard Chazelle, David Eppstein, Jeff Erickson, and Mikkel Thorup for stimulating
and insightful discussions. We would also like to thank an anonymous referee for numerous insightful
comments that helped improve the presentation of the paper, and for suggesting a simplification for the
proof of Claim 3.9.

REFERENCES

Aggarwal, A. 1988. Lecture notes in computational geometry. Tech. Rep. 3, MIT Research Seminar Series MIT/LCS/RSS.

Albers, S. and Hagerup, T. 1997. Improved parallel integer sorting without concurrent writing. Inform. and Comput. 136, 1,
25–51.

Amenta, N., Attali, D., and Devillers, O. 2007. Complexity of Delaunay triangulation for points on lower-dimensional

polyhedra. In Proc. 18th Annu. ACM-SIAM Sympos. Discrete Algorithms (SODA). ACM-SIAM, New Orleans, LA, USA,
1106–1113.

Amenta, N., Choi, S., and Rote, G. 2003. Incremental constructions con BRIO. In Proc. 19th Annu. ACM Sympos. Comput.

Geom. (SoCG). ACM, San Diego, CA, USA, 211–219.

18

Amir, A., Efrat, A., Indyk, P., and Samet, H. 2001. Efficient regular data structures and algorithms for dilation, location,
and proximity problems. Algorithmica 30, 2, 164–187.

Andersson, A., Hagerup, T., Nilsson, S., and Raman, R. 1998. Sorting in linear time? J. Comput. System Sci. 57, 1, 74–93.

Arora, S. and Barak, B. 2009. Computational Complexity: A Modern Approach. Cambridge University Press, Cambridge,
UK.

Attali, D. and Boissonnat, J.-D. 2004. A linear bound on the complexity of the Delaunay triangulation of points on
polyhedral surfaces. Discrete Comput. Geom. 31, 3, 369–384.

Batcher, K. E. 1968. Sorting networks and their applications. In Proc. AFIPS Spring Joint Computer Conferences. ACM,
Atlantic City, NJ, USA, 307–314.

Ben-Or, M. 1983. Lower bounds for algebraic computation trees. In Proc. 16th Annu. ACM Sympos. Theory Comput. (STOC).
ACM, Boston, MA, USA, 80–86.

Bentley, J. L., Weide, B. W., and Yao, A. C. 1980. Optimal expected-time algorithms for closest-point problems. ACM

Trans. Math. Softw. 6, 563–580.

de Berg, M., Cheong, O., van Kreveld, M., and Overmars, M. 2008. Computational Geometry: Algorithms and Applica-

tions, Third ed. Springer-Verlag, Berlin.

de Berg, M., van Kreveld, M., and Snoeyink, J. 1995. Two- and three-dimensional point location in rectangular subdivisions.

J. Algorithms 18, 2, 256–277.

Bern, M., Eppstein, D., and Gilbert, J. 1994. Provably good mesh generation. J. Comput. System Sci. 48, 3, 384–409.

Bern, M., Eppstein, D., and Teng, S.-H. 1999. Parallel construction of quadtrees and quality triangulations. Internat. J.

Comput. Geom. Appl. 9, 6, 517–532.

Boissonnat, J.-D. and Yvinec, M. 1998. Algorithmic Geometry. Cambridge University Press, Cambridge, UK.

Buchin, K. 2007. Organizing point sets: Space-filling curves, Delaunay tessellations of random point sets, and flow complexes.
Ph.D. thesis, Free University Berlin. http://www.diss.fu-berlin.de/diss/receive/FUDISS thesis 000000003494.

Buchin, K. 2008. Delaunay triangulations in linear time? (part I). arXiv:0812.0387.

Buchin, K. 2009. Constructing Delaunay triangulations along space-filling curves. In Proc. 17th Annu. European Sympos.
Algorithms (ESA). Springer-Verlag, Copenhagen, Denmark, 119–130.

Callahan, P. B. and Kosaraju, S. R. 1995. A decomposition of multidimensional point sets with applications to k-nearest-
neighbors and n-body potential fields. J. ACM 42, 1, 67–90.

Chan, T. M. 2002. Closest-point problems simplified on the RAM. In Proc. 13th Annu. ACM-SIAM Sympos. Discrete
Algorithms (SODA). ACM-SIAM, San Francisco, CA, USA, 472–473.

Chan, T. M. 2008. Well-separated pair decomposition in linear time? Inform. Process. Lett. 107, 5, 138–141.

Chan, T. M. and Pǎtraşcu, M. 2009. Transdichotomous results in computational geometry, I: Point location in sublogarithmic
time. SIAM J. Comput. 39, 2, 703–729.

Chan, T. M. and Pǎtraşcu, M. 2007. Voronoi diagrams in n2O(
√

lg lgn) time. In Proc. 39th Annu. ACM Sympos. Theory
Comput. (STOC). ACM, San Diego, CA, USA, 31–39.

Chazelle, B. 1992. An optimal algorithm for intersecting three-dimensional convex polyhedra. SIAM J. Comput. 21, 4,
671–696.

Chazelle, B., Devillers, O., Hurtado, F., Mora, M., Sacristán, V., and Teillaud, M. 2002. Splitting a Delaunay

triangulation in linear time. Algorithmica 34, 1, 39–46.

Chazelle, B. and Mulzer, W. 2009a. Computing hereditary convex structures. In Proc. 25th Annu. ACM Sympos. Comput.

Geom. (SoCG). ACM, Aarhus, Denmark, 61–70.

Chazelle, B. and Mulzer, W. 2009b. Markov incremental constructions. Discrete Comput. Geom. 42, 3, 399–420.

Chew, L. P. and Fortune, S. 1997. Sorting helps for Voronoi diagrams. Algorithmica 18, 2, 217–228.

Clarkson, K. L. 1983. Fast algorithms for the all nearest neighbors problem. In Proc. 24th Annu. IEEE Sympos. Found.
Comput. Sci. (FOCS). IEEE, Tucson, AZ, USA, 226–232.

Clarkson, K. L. and Seshadhri, C. 2008. Self-improving algorithms for Delaunay triangulations. In Proc. 24th Annu. ACM
Sympos. Comput. Geom. (SoCG). ACM, College Park, MD, USA, 148–155.

Clarkson, K. L. and Shor, P. W. 1989. Applications of random sampling in computational geometry. II. Discrete Comput.
Geom. 4, 5, 387–421.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., and Stein, C. 2009. Introduction to Algorithms, Third ed. MIT Press,
Cambridge, MA, USA.

Djidjev, H. N. and Lingas, A. 1995. On computing Voronoi diagrams for sorted point sets. Internat. J. Comput. Geom.

Appl. 5, 3, 327–337.

van Emde Boas, P. 1977. Preserving order in a forest in less than logarithmic time and linear space. Inform. Process. Lett. 6, 3,

80–82.

van Emde Boas, P., Kaas, R., and Zijlstra, E. 1976. Design and implementation of an efficient priority queue. Math.

Systems Theory 10, 2, 99–127.

Fredman, M. L. 1976. How good is the information theory bound in sorting? Theoret. Comput. Sci. 1, 4, 355–361.

Fredman, M. L. and Willard, D. E. 1993. Surpassing the information theoretic bound with fusion trees. J. Comput. System

Sci. 47, 3, 424–436.

19

Gabow, H. N., Bentley, J. L., and Tarjan, R. E. 1984. Scaling and related techniques for geometry problems. In Proc. 16th
Annu. ACM Sympos. Theory Comput. (STOC). ACM, Washington, DC, USA, 135–143.

Han, Y. 2004. Deterministic sorting in O(n log logn) time and linear space. J. Algorithms 50, 1, 96–105.

Han, Y. and Thorup, M. 2002. Integer sorting in O(n
√

log logn) expected time and linear space. In Proc. 43rd Annu. IEEE

Sympos. Found. Comput. Sci. (FOCS). IEEE, Vancouver, BC, Canada, 135–144.

Harel, D. and Tarjan, R. E. 1984. Fast algorithms for finding nearest common ancestors. SIAM J. Comput. 13, 2, 338–355.

Iacono, J. and Langerman, S. 2000. Dynamic point location in fat hyperrectangles with integer coordinates. In Proc. 12th

Canad. Conf. Comput. Geom. (CCCG). CCCG, Fredericton, NB, Canada, 181–186.

Isenburg, M., Liu, Y., Shewchuk, J. R., and Snoeyink, J. 2006. Streaming computation of Delaunay triangulations. ACM

Trans. Graph. (Proc. ACM SIGGRAPH) 25, 3, 1049–1056.

Karlsson, R. G. 1985. Algorithms in a Restricted Universe. Ph.D. thesis, University of Waterloo.

Karlsson, R. G. and Overmars, M. H. 1988. Scanline algorithms on a grid. BIT 28, 2, 227–241.

Kirkpatrick, D. and Reisch, S. 1984. Upper bounds for sorting integers on random access machines. Theoret. Comput.

Sci. 28, 3, 263–276.

van Kreveld, M. J., Löffler, M., and Mitchell, J. S. B. 2008. Preprocessing imprecise points and splitting triangulations.

In Proc. 19th Annu. Internat. Sympos. Algorithms Comput. (ISAAC). Springer-Verlag, Gold Coast, Australia, 544–555.

van Leeuwen, J. and Tsakalides, A. 1988. An optimal pointer machine algorithm for finding nearest common ancestors.

Tech. Rep. RUU-CS-88-17, Department of Information and Computing Sciences, Utrecht University.

Liu, Y. and Snoeyink, J. 2005. A comparison of five implementations of 3d Delaunay tesselation. In Combinatorial and

Computational Geometry, J. E. Goodman, J. Pach, and E. Welzl, Eds. MSRI Publications, vol. 52. Cambridge University

Press, Cambridge, UK, 439–458.

Löffler, M. and Mulzer, W. 2011. Triangulating the square: quadtrees and Delaunay triangulations are equivalent. Proc.

22nd Annu. ACM-SIAM Sympos. Discrete Algorithms (SODA). To appear.

Mehlhorn, K. 1984. Data Structures and Algorithms 1: Sorting and Searching. Monographs in Theoretical Computer Science.

An EATCS Series, vol. 1. Springer-Verlag, Berlin, Germany.

Miller, G. L., Teng, S.-H., Thurston, W., and Vavasis, S. A. 1997. Separators for sphere-packings and nearest neighbor

graphs. J. ACM 44, 1, 1–29.

Morton, G. 1966. A computer oriented geodetic data base and a new technique in file sequencing. Tech. rep., IBM Ltd.,

Ottawa, Canada.

Motwani, R. and Raghavan, P. 1995. Randomized algorithms. Cambridge University Press, Cambridge, UK.

Mulmuley, K. 1994. Computational Geometry: An Introduction through Randomized Algorithms. Prentice Hall, Upper Saddle
River, NJ, USA.

Ohya, T., Iri, M., and Murota, K. 1984a. A fast Voronoi-diagram algorithm with quaternary tree bucketing. Inform. Process.
Lett. 18, 4, 227–231.

Ohya, T., Iri, M., and Murota, K. 1984b. Improvements of the incremental method for the Voronoi diagram with a comparison
of various algorithms. J. Operations Res. Soc. Japan 27, 306–337.

Overmars, M. H. 1987. Computational geometry on a grid: An overview. Tech. Rep. RUU-CS-87-04, Rijksuniversiteit Utrecht.

Preparata, F. P. and Shamos, M. I. 1985. Computational Geometry: An Introduction. Texts and Monographs in Computer

Science. Springer-Verlag, Berlin, Germany.

Raman, R. 1996. Priority queues: Small, monotone and trans-dichotomous. In Proc. 4th Annu. European Sympos. Algorithms

(ESA). Springer-Verlag, Barcelona, Spain, 121–137.

Schönhage, A. 1979. On the power of random access machines. In Proc. 6th Internat. Colloq. Automata Lang. Program.

(ICALP). Springer-Verlag, Graz, Austria, 520–529.

Seidel, R. 1984. A method for proving lower bounds for certain geometric problems. Tech. Rep. TR84-592, Cornell University,

Ithaca, NY, USA.

Su, P. and Drysdale, R. 1997. A comparison of sequential Delaunay triangulation algorithms. Comput. Geom. Theory
Appl. 7, 361–386.

Thorup, M. 1998. Faster deterministic sorting and priority queues in linear space. In Proc. 9th Annu. ACM-SIAM Sympos.

Discrete Algorithms (SODA). ACM-SIAM, San Francisco, CA, 550–555.

Willard, D. E. 2000. Examining computational geometry, van Emde Boas trees, and hashing from the perspective of the

fusion tree. SIAM J. Comput. 29, 3, 1030–1049.

Zhou, S. and Jones, C. B. 2005. HCPO: an efficient insertion order for incremental Delaunay triangulation. Inform. Process.

Lett. 93, 1, 37–42.

A. SHUFFLE SORTING ON A WORD RAM

We show how to sort a point set P = {p1, . . . , pn} ⊆ Rd according to the shuffle order in expected time
O(n log log n) on a standard word RAM, without using the shuffle operation. For this, we adapt a classic
sorting algorithm by Andersson et al. [1998]. This algorithm consists of two parts: (i) range reduction, which
reduces the number of bits needed to represent the coordinates; and (ii) packed sorting, which packs many

20

points into one word to speed up sorting. We describe how to adapt these steps and how to obtain the
sorting algorithm from them. Let w ≥ log n be the word size and v the number of bits required to represent
the coordinates of the pi’s (i.e., the coordinates of the pi’s are in the range {0, . . . , 2v − 1}). We assume that
w and v are known.

A.1 Packed sorting for large words

The following theorem is a simple extension of a result by Albers and Hagerup [1997] and shows that we can
sort in linear time if many points fit into one word.

Theorem A.1. Suppose that v ≤ bw/(d log n log log n)c−1. Then P can be sorted according to the shuffle
order in O(n) time.

Proof. By assumption, we can store 2k = bw/(dv+1)c ≥ blog n log log nc fields in one word,5 where each
field consists of a point preceded by a test bit. Given a word a, we let a[1], . . . , a[2k] denote the 2k fields in
a, and a[i].test, a[i].data represent the test bit and data stored in field i, respectively. The main ingredient
is a procedure for merging two sorted words in logarithmic time [Albers and Hagerup 1997, Section 3].

Claim A.2. Given two words, each containing a sorted sequence of k points, we can compute a word
storing the sequence obtained by merging the two input sequences in time O(log k).

Proof. The proof relies on a parallel implementation of a bitonic sorting network by Batcher [1968]. For
this, we need to solve the following problem: given two words a and b, each containing a sequence of k points,
compute in constant time a word z such that6 z[i].test = [a[i].data <σ b[i].data] for i = 1, . . . , k, i.e., the
test bit of z[i] indicates whether the point in a[i] precedes the point in b[i] in the shuffle order.7

Algorithm 7 Comparing many points simultaneously.
BatchCompare

(1) Create d copies a1, . . . , ad of a and d copies b1, . . . , bd of b. Shift and mask the words aj , bj so that
aj [i].data and bj [i].data contain only the j-th coordinates of a[i].data and b[i].data, for i = 1, . . . , k.

(2) Create words curMax and maxIdx such that curMax = a1 ⊕ b1 and maxIdx = (1, . . . , 1), i.e., the word
with a 1 in the data item of all its fields. (Recall that ⊕ denotes bitwise xor.)

(3) For j = 2, . . . , d:
(a) Create a word cj = aj⊕bj . Set the test bits in cj such that cj [i].test = [curMax[i].data ≤ cj [i].data]

and compute a mask M(4)a for the fields i with cj [i].test = 1.
(b) Create a word dj = curMax⊕ aj ⊕ bj . Set the test bits in dj so that dj [i].test = [curMax[i].data <

dj [i].data] and compute a mask M(4)b for the fields i with dj [i].t = 1.
(c) Let M(4) = M(4)a and M(4)b. Set

curMax = (curMax and M(4)) or ((aj ⊕ bj) and M(4)),

where M(4) is the bitwise negation of M(4). Furthermore, set

maxIdx = (maxIdx and M(4)) or ((j, . . . , j) and M(4)).

(4) Create a word z with z[i].test = [amaxIdx[i][i] < bmaxIdx[i][i]].

We solve this problem with an algorithm BatchCompare that is based on a technique by Chan [2002].
Recall that we can test whether a[i].data <σ b[i].data by first determining the smallest coordinate j of
a[i].data and b[i].data such that the index of the highest bit in which the j-th coordinates of a[i].data
and b[i].data differ is maximum. Knowing j, we can test whether a[i].data <σ b[i].data by comparing the
j-th coordinates of a[i].data and b[i].data. This idea is implemented by BatchCompare using (4). Refer to

5We assume that the number of fields is even, without loss of generality.
6We use Iverson’s notation: [X] = 1 if X is true and [X] = 0, otherwise.
7We denote the shuffle order by <σ .

21

Algorithm 7. Steps 1 and 2 create appropriate words that store only the individual coordinates and initialize
the current maximum to the first coordinate. The search for the actual maximum takes place in the loop of
Step 3. To find the index of the highest bit in which a[i] and b[i] differ, we need to consider a[i]⊕ b[i], and we
use (4) to determine whether this index exceeds the current maximum. The equation (4) is a conjunction of
two terms. These two terms are implemented in Steps 3a and 3b. This yields a mask M(4) that contains 1’s
for all fields that pass the in test (4) (i.e., those fields for which the current maximum needs to be replaced
by j). The maxima are updated in Step 3c. The final comparison happens in Step 4.
BatchCompare runs in constant time, assuming that the constants (1, . . . , 1), . . ., (d, . . . , d) have been

precomputed, which can be done in O(log k) time. In particular, note that Step 4 takes constant time since
there are only constantly many possible values for maxIdx[i].

Given Claim A.2, the theorem now follows by an application of merge sort, see Albers and Hagerup [1997]
for details.

A.2 Range reduction

In order to pack several points into a word, we need to adapt a range reduction technique due to Kirkpatrick
and Reisch [1984].

Theorem A.3. With expected O(n) time overhead, the problem of shuffle sorting n points with v-bit
coordinates can be reduced to the problem of sorting n points with v/2-bit coordinates. The space needed for
the reduction is O(n).

Proof. The proof is verbatim as in the paper by Kirkpatrick and Reisch [1984, Section 4]: we bucket
the points according to the upper v/2 bits of their coordinates. Using universal hashing, this can be done
in O(n) expected time with O(n) space. From each nonempty bucket b, we select the maximum element it
contains, mb. We truncate the coordinates of each mb to the upper v/2 bits, and store a flag isMaximum

in the satellite data for mb. The coordinates of the remaining points are truncated to the lower v/2 bits,
and the number of their corresponding bucket is stored in the satellite data. After the resulting point set
has been sorted, we use the satellite data to establish (i) the ordering of the buckets, by using the sorted
maxima, and (ii) the ordering within each bucket. The crucial fact needed for correctness is that for any two
points p, q, we have p <σ q precisely if (p′ <σ q

′) ∨ (p′ = q′ ∧ p′′ <σ q′′), where (p′, p′′), (q′, q′′) are derived
from p, q by splitting each of their coordinates into two blocks of v/2 bits.

A.3 Putting it together

Following Andersson et al. [1998], we combine the algorithms in Sections A.1 and A.2 to obtain a simple
randomized O(n log log n) sorting algorithm.

Theorem A.4. Given a set P of n points with v-bit integer coordinates, we can sort P in expected time
O(n log log n) with O(n) space.

Proof. Iterate Theorem A.3 O(log log n) times until O(log n log log n) points fit into one word. Then
apply Theorem A.1. The total space for the range reduction is O(n) because in each step the number of bits
for the satellite data is halved.

Received Month Year; revised Month Year; accepted Month Year

22

