Improved Time-Space Trade-offs for Computing Voronoi Diagrams

Bahareh Banyassady1, Matias Korman2, Wolfgang Mulzer1, André van Renssen3,4, Marcel Roeloffzen3,4, Paul Seiferth1, and Yannik Stein1

1 Institut für Informatik, Freie Universität Berlin, Germany
[\texttt{bahareh, mulzer, pseiferth, yannikstein}@inf.fu-berlin.de]
2 Tohoku University, Sendai, Japan
\texttt{mati@dais.is.tohoku.ac.jp}
3 National Institute of Informatics (NII), Tokyo, Japan
[\texttt{andre, marcel}@nii.ac.jp]
4 JST, ERATO, Kawarabayashi Large Graph Project

Abstract

Let P be a planar n-point set in general position. For $k \in \{1, \ldots, n-1\}$, the Voronoi diagram of order k is obtained by subdividing the plane into regions such that points in the same cell have the same set of nearest k neighbors in P. The (nearest point) Voronoi diagram (NVD) and the farthest point Voronoi diagram (FVD) are the particular cases of $k = 1$ and $k = n-1$, respectively. It is known that the family of all higher-order Voronoi diagrams of order 1 to K for P can be computed in total time $O(nK^2 + n \log n)$ using $O(K^2(n-K))$ space. Also NVD and FVD can be computed in $O(n \log n)$ time using $O(n)$ space.

For $s \in \{1, \ldots, n\}$, an s-workspace algorithm has random access to a read-only array with the sites of P in arbitrary order. Additionally, the algorithm may use $O(s)$ words of $\Theta(\log n)$ bits each for reading and writing intermediate data. The output can be written only once and cannot be accessed afterwards.

We describe a deterministic s-workspace algorithm for computing an NVD and also an FVD for P that runs in $O(n^2/s \log s)$ time. Moreover, we generalize our s-workspace algorithm for computing the family of all higher-order Voronoi diagrams of P up to order K in $O(\sqrt{s})$ in total time $O(n^2K^6 \log^{1+\varepsilon} K \cdot \log s / \log K)^O(1)$, for any fixed $\varepsilon > 0$. Previously, for Voronoi diagrams, the only known s-workspace algorithm was to find an NVD for P in expected time $O(n^2/s \log s + n \log s \log^s s)$. Unlike the previous algorithm, our new method is very simple and does not rely on advanced data structures or random sampling techniques.

1998 ACM Subject Classification F.2.2 Nonnumerical Algorithms and Problems–Geometrical problems and computations

Keywords and phrases memory-constrained model, Voronoi diagram, time-space trade-off

MK was supported in part by the ELC project (MEXT KAKENHI No. 12H00855 and 15H02665). BB, WM and PS were supported in part by DFG Grants MU 3501/1 and MU 3501/2. YS was supported by the DFG within the research training group “Methods for Discrete Structures” (GRK 1408) and by GIF Grant 1161.

© Bahareh Banyassady, Matias Korman, Wolfgang Mulzer, André van Renssen, Marcel Roeloffzen, Paul Seiferth, and Yannik Stein; licensed under Creative Commons License CC-BY
42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Acces; Article No.: pp.:1–:14
Leibniz International Proceedings in Informatics
Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany
1 Introduction

In recent years, we have seen an explosive growth of small distributed devices such as tracking devices and wireless sensors. These devices are small, have only limited energy supply, are easily moved, and should not be too expensive. To accommodate these needs, the amount of memory on them is tightly budgeted. This poses a significant challenge to software developers and algorithm designers: how to create useful and efficient programs in the presence of strong memory constraints?

Memory constraints have been studied since the introduction of computers (see for example Pohl [27]). The first computers often had limited memory compared to the available processing power. As hardware progressed this gap became smaller, other concerns became more important, and the focus of algorithms research shifted away from memory-constrained models. Memory constraints are again an important problem to tackle with these new devices as well as huge datasets available through cloud computing.

An easy way to model algorithms with memory constraints is to assume that the input is stored in a read-only memory. This is appealing for several reasons. From a practical viewpoint, writing to external memory is often a costly operation, e.g., if the data resides on a read-only medium such as a DVD or on hardware where writing is slow and wears out the hardware, such as flash memory. Similarly, in concurrent environments, writing operations may lead to race conditions. Thus, from a practical viewpoint, it is useful to limit or simply disallow writing operations. From a theoretical viewpoint, this model is also advantageous: keeping the working memory separate from the (read-only) input memory allows for a more detailed accounting of the space requirements of an algorithm and for a better understanding of the required resources. In fact, this is exactly the approach taken by computational complexity theory to define complexity classes that model sublinear space requirements, such as the complexity class of problems that use logarithmic amount of memory space [3].

Some of the earliest results in this setting concern the sorting problem [24, 25]. Suppose we want to sort data items whose total description complexity is \(n \) bits, all of them residing in a read-only memory. For our computations we can use a workspace of \(O(b) \) bits freely (both read and write operations are allowed). Then it is known that the time-space product must be \(\Omega(n^2) \) [13], and a matching upper bound for the case \(b \in \Omega(\log n) \cap O(n/\log n) \) was given by Pagter and Rauhe [26] (\(b \) is the available workspace in bits). A result along these lines is known as a time-space trade-off [28].

The model used in this work was introduced by Asano et al. [6], following similar earlier models [14, 17]. Asano et al. provided constant workspace algorithms for many classic problems from computational geometry, such as computing convex hulls, Delaunay triangulations, Euclidean minimum spanning trees, or shortest paths in polygons [6]. Since then, the model has enjoyed increasing popularity, with work on shortest paths in trees [7] and time-space trade-offs for computing shortest paths [4, 20], visibility regions in simple polygons [9, 11], planar convex hulls [10, 18], general plane-sweep algorithms [19], or triangulating simple polygons [2, 4, 5]. We refer the reader to [21] for a deeper survey of the latest results.

Let us specify our model more precisely: we are given a planar point set \(P \) of \(n \) points stored in a read-only array that allows random access. Furthermore, we may use \(O(s) \) variables (for a parameter \(s \in \{1, \ldots, n\} \)) for reading and writing. We assume that all the data items and pointers are represented by \(\Theta(\log n) \) bits. Other than this, the model allows the usual word RAM operations.

We consider the problem of computing various Voronoi diagrams for \(P \), namely the nearest point Voronoi diagram \(\text{NVD}(P) \), the furthest point Voronoi diagram \(\text{FVD}(P) \), and the
family of higher-order Voronoi diagrams up to a given order $K \in O(\sqrt{s})$. In most workspaces, the output cannot be stored explicitly. Thus, we require that the algorithm reports the edges of the Voronoi diagrams one-by-one in a write-only data structure (once written, they cannot be read or further modified). Note that we may report edges of the Voronoi diagrams in any order, but we are not allowed to report an edge more than once.

Previous Work. If we forego memory constraints, it is well known that both $\text{NVD}(P)$ and $\text{FVD}(P)$ can be computed in $O(n \log n)$ time using $O(n)$ space [8,12]. For computing a single order-k Voronoi diagram, the best randomized algorithm takes $O(n \log n + nk \log k)$ expected time [16] using $O(nk)$ space, and the best deterministic algorithm takes $O(nk \log^{1+\varepsilon} k \cdot (\log n / \log k)^{O(1)})$ time [15] and $O(nk)$ space, for $\varepsilon > 0$ (as usual, the big O notation hides multiplicative factors that depend on ε). The family of all higher-order Voronoi diagrams up to order K can be computed in $O(nK^2 + n \log n)$ time using $O(K^2(n - K))$ space [1,23].

Very few memory-constrained algorithms that compute Voronoi diagrams exist in the literature. Asano et al. [6] showed that $\text{NVD}(P)$ can be found in $O(n^2)$ time in a $O(1)$ workspace. Korman et al. [22] gave a time-space trade-off for computing Voronoi diagrams. Their algorithm is based on random sampling and achieves an expected running time of $O((n^2/s) \log s + n \log s \log^s s)$ using $O(s)$ words of workspace.

Results. In this paper we introduce a time-space trade-off algorithm that improves these results, and gives a simpler and more flexible approach to obtain the diagrams. In Section 3 we show that the approach of Asano et al. [6] can be used to compute $\text{FVD}(P)$. In Section 4 we introduce a new time-space trade-off for computing $\text{NVD}(P)$ and $\text{FVD}(P)$. Unlike the approach of Korman et al. [22], this new algorithm is deterministic, and slightly faster (it runs in $O((n^2/s) \log s)$ time using $O(s)$ words of workspace).

Finally, in Section 5, we use the s-workspace algorithm as a base in a novel pipelined fashion to compute the family of all Voronoi diagrams of order 1 to $K \in O(\sqrt{s})$ in total time $O\left(\frac{n^2K^2}{s} \log^{1+\varepsilon} K \cdot (\log s / \log K)^{O(1)}\right)$, for $\varepsilon > 0$, using $O(s)$ words of workspace. The main idea is to compute edges of the different Voronoi diagrams simultaneously. To compute the edges of a diagram we use edges of the previous order Voronoi diagram. However, this needs to be coordinated carefully, in order to prevent edges from being reported multiple times.

2 Preliminaries and Notation

Throughout the paper we denote by $P = \{p_1, \ldots, p_n\}$ a set of $n \geq 3$ sites in the plane. We assume general position, which here means that no three sites of P lie on a common line and no four sites of P lie on a common circle. The *nearest point Voronoi diagram* of P, $\text{NVD}(P)$, is obtained by classifying the points in the plane according to their nearest neighbors in P. To define our terminology, we recall some classic and well-known properties of $\text{NVD}(P)$ [8,12]. For each site $p \in P$, the open set of points in \mathbb{R}^2 that have p as their unique nearest neighbor in P is called the *Voronoi cell* of p. Each *Voronoi edge* between two points $p, q \in P$ consists of all points in the plane with p, q as their only two nearest neighbors. Whenever it exists, the Voronoi edge is a subset of the bisector $B(p, q)$ of p, q defined as the line containing all points that are equidistant to p and q. Note that our general position assumption together with $n \geq 3$ guarantees that each Voronoi edge is an open segment or halfline. Finally, *Voronoi vertices* are the points in the plane that have exactly three nearest neighbors in P. By general position, every point in \mathbb{R}^2 is either a Voronoi vertex, or it lies on a Voronoi edge or in a Voronoi cell. The Voronoi vertices and the Voronoi edges form the set of vertices and edges of a plane graph whose faces are the Voronoi cells. The complexity of this graph is $O(n)$.
The farthest point Voronoi diagram of \(P \), \(\text{FVD}(P) \), is defined analogously. Farthest Voronoi cells, edges, and vertices are obtained by replacing the term “nearest neighbor” by the term “farthest neighbor” in the respective definitions. Again, the farthest Voronoi vertices and edges constitute the vertices and edges of a plane graph of complexity \(O(n) \). However, unlike in \(\text{NVD}(P) \), in \(\text{FVD}(P) \) it is not necessarily the case that all sites in \(P \) have a corresponding cell in \(\text{FVD}(P) \). In fact, the sites with non-empty farthest Voronoi cells correspond exactly to the sites on the convex hull of \(P \), \(\text{conv}(P) \). Furthermore, all the cells in \(\text{FVD}(P) \) are unbounded, and hence \(\text{FVD}(P) \), considered as a plane graph, is a tree.

Now for \(k \in \{1, \ldots, n-1\} \), the Voronoi diagram of order \(k \) is obtained by classifying the points in the plane according to the set of their nearest \(k \) neighbors in \(P \). We denote the \(k \)-order Voronoi diagram of \(P \) by \(\text{VD}^k(P) \). Observe that \(\text{NVD}(P) = \text{VD}^1(P) \) and \(\text{FVD}(P) = \text{VD}^{n-1}(P) \). For each subset \(Q \subset P \) of \(k \) sites from \(P \), we denote the Voronoi cell of order \(k \) of \(Q \) by \(C^k(Q) \). We know that \(\text{VD}^k(P) \) is a plane graph of complexity \(O(k(n-k)) \) \cite{8,23}. For simplicity, the Voronoi cell of \(p \in P \) in \(\text{NVD}(P) \) and \(\text{FVD}(P) \) are denoted respectively by \(C^1(p) \) and \(C^{n-1}(p) \).

3 A Constant Workspace Algorithm for FVDs and NVDs

We are given a planar \(n \)-point set \(P = \{p_1, \ldots, p_n\} \) in a read-only array, and our task is to report the edges of \(\text{NVD}(P) \) and of \(\text{FVD}(P) \) using only a constant amount of additional workspace. First, we show how to find a single edge of a cell of \(\text{NVD}(P) \) or of \(\text{FVD}(P) \). Then, we extend this approach to find all the edges of \(\text{NVD}(P) \) and \(\text{FVD}(P) \). We summarize the properties of \(\text{FVD}(P) \), that are required by our algorithms, in the following two facts. See, e.g., the book by Aurenhammer, Klein, and Lee \cite{8} for more details.

Fact 3.1. Let \(P \) be a planar \(n \)-point set in general position and \(p \in P \). The cell \(C^{n-1}(p) \) is empty if and only if \(p \) is in the interior of the convex hull of \(P \). If \(p \) is on the convex hull of \(P \) and \(r, l \in P \) are the two adjacent sites of \(p \) on \(\text{conv}(P) \), then both a subset of \(B(p, l) \) and a subset of \(B(p, r) \) are unbounded edges of \(C^{n-1}(p) \).

Fact 3.2. Let \(P \) be a planar \(n \)-point set in general position. Let \(p \in P \) be on \(\text{conv}(P) \) and let \(l, r \in P \) be its adjacent sites on \(\text{conv}(P) \). Let \(b \) be the intersection point of \(B(p, l) \) and \(B(p, r) \). Then, the ray \(\gamma \) from \(p \) towards \(b \) intersects the boundary of \(C^{n-1}(p) \) (not necessarily at \(b \)); see Figure 1.

Lemma 3.3. Let \(P \) be a planar \(n \)-point set in general position in a read-only array. For any \(p \in P \), we can determine whether \(C^{n-1}(p) \) is empty, in \(O(n) \) time and constant workspace. Furthermore, if \(C^{n-1}(p) \) is not empty, we can find a ray that intersects the boundary of \(C^{n-1}(p) \) in the same time and space.

Proof. By Fact 3.1, it suffices to check whether \(p \) lies inside \(\text{conv}(P) \). This can be done using simple gift-wrapping: Pick an arbitrary site \(q \in P \setminus \{p\} \). Scan through \(P \) and find the sites \(p_{cw} \) and \(p_{ccw} \) in \(P \) which make, respectively, the largest clockwise angle and the largest counterclockwise angle with the ray \(pq \), such that both angles are at most \(\pi \). Thus, \(p_{cw} \) and \(p_{ccw} \) are easily obtained in \(O(n) \) time using constant workspace. If the angle \(p_{cw} \) contains
Lemma 3.4. Let P be a planar n-point set in general position in a read-only array. Suppose we are given a site $p \in P$ and a ray γ that emanates from p and intersects the boundary of $C^1(p)$ (or $C^{n-1}(p)$). Then, we can report the edge e of $C^1(p)$ (or $C^{n-1}(p)$) that intersects γ, in $O(n)$ time using $O(1)$ words of workspace.

Proof. For all sites $p' \in P$, we consider the bisector $B(p, p')$. Among all these bisectors, we find the bisector ℓ_e that intersects γ closest to (farthest from) p. The edge e is a subset of ℓ_e. We can find ℓ_e by scanning the sites of P and storing the closest (farthest) bisector so far in each step. To find the portion of ℓ_e that forms a Voronoi edge in $\text{NVD}(P)$ (or $\text{FVD}(P)$), we do a second scan of P. For any $p' \in P$ we check where $B(p, p')$ intersects ℓ_e. Each such intersection removes a section from ℓ_e which cannot appear in $\text{NVD}(P)$ (or $\text{FVD}(P)$). From each infinite side of ℓ_e, there is at most one intersection that removes the biggest portion of ℓ_e and thus defines the endpoint of e from that side. Thus, in each step we store only the most restricted intersection from each side (if it exists). Overall, we can find the edge e of $C^1(p)$ (or $C^{n-1}(p)$) in $O(n)$ time using $O(1)$ words of workspace.

Theorem 3.5. Suppose we are given a planar n-point set $P = \{p_1, \ldots, p_n\}$ in general position in a read-only array. We can find all the edges of $\text{NVD}(P)$ (or $\text{FVD}(P)$) in $O(n^2)$ time using $O(1)$ words of workspace.

Proof. We restate the strategy that was previously used by Asano et al. [6] for $\text{NVD}(P)$. We give the details and show that a similar strategy works for $\text{FVD}(P)$.

We go through the sites in P one by one. In step i, we process $p_i \in P$ to detect all edges of $C^1(p_i)$ (or $C^{n-1}(p_i)$). To do this, we first need a ray γ to apply Lemma 3.4. For $\text{NVD}(P)$ we choose a ray γ from p_i to an arbitrary site of $P \setminus \{p_i\}$. In this way, we know that γ intersects the boundary of $C^1(p_i)$. For $\text{FVD}(P)$ first check if the Voronoi cell of p_i is non-empty. If so, we use Lemma 3.3 to find a ray γ that intersects the boundary of $C^{n-1}(p_i)$. From here on, the algorithms for enumerating the edges of $\text{NVD}(P)$ and $\text{FVD}(P)$ are similar. Having the ray γ at hand, we use Lemma 3.4 to find an edge e of $C^1(p_i)$ (or $C^{n-1}(p_i)$). We consider the ray γ' from p_i to the left endpoint of e (if it exists), and we apply Lemma 3.4 to find the adjacent edge e' of e in $C^1(p_i)$ (or in $C^{n-1}(p_i)$). Note that the ray will now hit both e and e'. This can be fixed by making a symbolic perturbation to γ' so that only e' is hit. We proceed in a similar manner to find further edges of $C^1(p_i)$ (or $C^{n-1}(p_i)$) in counterclockwise direction. The process continues until we reach e again or until we find an unbounded edge of $C^1(p_i)$ (or of $C^{n-1}(p_i)$). In the latter case, we start again from the right endpoint of e (if it exists), and we find the remaining edges of $C^1(p_i)$ (or of $C^{n-1}(p_i)$) in clockwise direction, stopping the process when the current edge is unbounded.

Using this process we detect each edge twice (i.e., edges that are a subset of $B(p_i, p_j)$ will be detected when processing p_i and p_j). To avoid reporting the same edge twice, when we find an edge e of $C^1(p_i)$ (or of $C^{n-1}(p_i)$) with $e \subseteq B(p_i, p_j)$ we report e if and only if $i < j$. Since $\text{NVD}(P)$ (or $\text{FVD}(P)$) has $O(n)$ edges, and reporting one edge takes $O(n)$ time and $O(1)$ words of workspace, the result follows.

4 Obtaining a Time-Space Trade-off

Now we adapt the previous algorithm to a time-space trade-off in which we have a workspace of $O(s)$ variables. As before, we are given a planar n-point set $P = \{p_1, \ldots, p_n\}$ in general
position in a read-only array, and we would like to report the edges of NVD(P) or FVD(P) as quickly as possible. For this, we first show how to find one edge of s different cells of NVD(P) or FVD(P) simultaneously. After that, we describe how to coordinate these simultaneous searches to find all the edges of NVD(P) or FVD(P).

Lemma 4.1. Suppose we are given a set \(V = \{v_1, \ldots, v_n\} \) of s sites in \(P \), and for each \(i = 1, \ldots, s \), a ray \(\gamma_i \) emanating from \(v_i \) such that \(\gamma_i \) intersects the boundary of \(C^1(v_i) \) (or FVD(P)). Then we can report for each \(i = 1, \ldots, s \), the edge \(e_i \) of \(C^1(v_i) \) (or FVD(P)) that intersects \(\gamma_i \), in \(O(n \log s) \) total time using \(O(s) \) words of workspace.

Proof. For ease of reading we provide the proof only for NVD(P) (the proof for FVD(P) is obtained by simply replacing NVD(P) by FVD(P)). The algorithm has two phases. In the first phase, for \(i = 1, \ldots, s \), we find the line \(\ell_i \) that contains \(e_i \), and in the second phase, for \(i = 1, \ldots, s \), we find the portion of \(\ell_i \) which is in NVD(P), i.e., we find the endpoints of \(e_i \).

The first phase proceeds as follows: we select the first batch \(Q_1 = \{p_1, \ldots, p_s\} \), of s sites of \(P \), and we compute NVD(\(V \cup Q_1 \)). Since \(V \cup Q_1 \) has \(O(s) \) sites, we can compute it in \(O(s \log s) \) time using \(O(s) \) workspace. Now, for \(i = 1, \ldots, s \), we find the edge \(e'_i \) in NVD(\(V \cup Q_1 \)) of the cell of \(v_i \) that intersects \(\gamma_i \), we store the line spanned by \(e'_i \) in \(\ell_i \), and proceed to the next batch of s sites. In general, in step \(j \), for \(j = 1, \ldots, n/s \), we select \(Q_j \) which is the \(j^{th} \) batch of s sites of \(P \), and we compute NVD(\(V \cup Q_j \)). Then, for \(i = 1, \ldots, s \), we find the edge of the cell of \(v_i \) in NVD(\(V \cup Q_j \)) that intersects \(\gamma_i \). We update \(\ell_i \) to the line spanned by this new edge only if it intersects \(\gamma_j \) closest to \(v_i \).

We claim that after all \(n/s \) batches of \(P \) have been scanned, \(\ell_i \) is the line that contains the edge of \(C^1(v_i) \) that intersects \(\gamma_i \). To see this, recall that the edge \(e_i \) in NVD(P) lies on a bisector between \(v_i \) and another site \(p \in P \setminus \{v_i\} \). Thus, this line is among the lines considered in NVD(\(V \cup Q_j \)), for \(j = 1, \ldots, n/s \).

In the second phase, we again process \(P \) in batches of size \(s \). In the first step, we take the first batch of \(s \) sites of \(P \), \(Q_1 = \{p_1, \ldots, p_s\} \), and we again compute NVD(\(V \cup Q_1 \)). For \(i = 1, \ldots, s \), we find the portion of \(\ell_i \) inside the cell of \(v_i \) in NVD(\(V \cup Q_1 \)), and we store it in \(e_i \). In step \(j \), for \(j = 1, \ldots, n/s \), we select \(Q_j \), the \(j^{th} \) batch of \(s \) sites of \(P \), and we compute NVD(\(V \cup Q_j \)). For \(i = 1, \ldots, s \), we update the endpoints of \(e_i \) (the new \(e_i \) is simply the intersection of the previous \(e_i \) and the cell of \(v_i \) in NVD(\(V \cup Q_j \)). At the end of step \(j \), the variable \(e_i \) represents the best candidate that we have found so far. In other words, \(e_i \) contains the portion of \(\ell_i \) whose nearest site is \(v_i \) (among the sites \(V \cup \bigcup_{k=1}^{j} Q_k \)). Further note that, due to the Voronoi properties, \(e_i \) is a connected subset of \(\ell_i \) (that is, a ray or a segment). In particular, it can be described with its at most two endpoints. Thus, after \(n/s \) steps, \(e_i \) is the edge of \(C^1(v_i) \) that intersects \(\gamma_i \).

In each step of each phase, we construct a Voronoi diagram in \(O(s \log s) \) time using \(O(s) \) workspace. Since the total number of steps is \(n/s \), the running time of the algorithm is \(O(n \log s) \). At each step we store only \(O(s) \) sites (and a constant amount of information on each site), so the space bounds are not exceeded.

Now we can describe our algorithm. We repeatedly use Lemma 4.1 to find an edge of \(s \) different sites at once. Once all edges of a site have been found, it is discarded and we proceed to the next one. Since the Voronoi diagram has \(O(n) \) edges and at each iteration we find \(s \) edges, after \(O(n/s) \) steps, fewer than \(s \) sites will remain to be processed. At this step we stop using Lemma 4.1. We do so because if the number of edges remaining to be found for each site is unbalanced, we cannot afford to continue using Lemma 4.1 (each iteration will still cost \(O(n \log s) \) to execute but \(o(s) \) edges would be found). Instead, we will treat these remaining sites differently. We say that a site is small if all of its edges are found while using
Lemma 4.1, and big otherwise. By the way in which our algorithm works, small sites have $O(n/s)$ edges in their Voronoi cell, but big ones may have many edges (if they are among the last sites to be processed they do not have necessarily many edges).

Our algorithm has three phases. In the first phase we process the whole input to detect which sites are the big ones (no edge will be reported in this phase). The second phase scans the input again and reports all edges that belong to a bisector between a small site and some other site. The third and final phase reports edges between two big sites.

First phase. Recall that the aim of this phase is to identify the big sites. We describe how we use Lemma 4.1 in more details. We want to scan all sites whose associated Voronoi cell is nonempty. For $\text{NVD}(P)$, this is trivial since all sites have a nonempty cell in $\text{NVD}(P)$. Hence, it suffices to scan them sequentially. The starting ray can be constructed in the same way as in Theorem 3.5. If we are interested in computing $\text{FVD}(P)$ instead, we use the algorithm of Darwish and Elmasry [18]. This algorithm reports all sites that belong to the convex hull of P in $O(n^2 \log n)$ time using $O(s)$ words of workspace. Sites are reported one by one in clockwise order along the convex hull. Thus, we will use the output of the algorithm of Darwish and Elmasry as our input instead: we run their algorithm storing any sites that would be reported. Whenever we gathered s sites, we pause the execution of the convex hull computation and process those sites. Whenever more sites are needed, we simply resume the execution of the convex hull algorithm. Since sites are reported in clockwise order, whenever a site is reported we know both of its neighbors. This allows us to use Fact 3.2 to find a starting ray for each site.

Regardless of the order in which we process the sites, we keep s sites from P in memory. Now we apply Lemma 4.1 to compute, for every site in memory, one edge of its cell. Once the edge is computed, as in Theorem 3.5, we update the rays to look for the next edge of each cell. Whenever all edges of a cell have been found we remove the corresponding site from memory, and we insert the next site from P into the working memory. Since the Voronoi diagram has $O(n)$ edges, and at each iteration we find s edges, after $O(n/s)$ steps, fewer than s sites remain in memory, and all the other sites of P have been processed.

When the first phase of the algorithm ends, we identified the big sites (those remaining to be processed). Since they cannot be more than s, we store them explicitly sorted (say, in increasing index) in a table B so that membership queries can be answered in $O(\log s)$ time.

Second phase. The second phase is very similar to the first one: pick s sites to process, use Lemma 4.1 to find an edge for each site, once all edges of a site have been found, replace it with another site, and continue until only big sites remain. The main difference is that we now report every edge of the diagram that we compute provided that (i) it does not lie on a bisector between two big sites, and (ii) it has not been reported before. The second condition is detected as follows: suppose while scanning the cell of v_i we find an edge e that lies on the bisector of v_i and v_j. We report e only if either (iia) both v_i and v_j are small sites and $i < j$, or (iib) v_i is a small site and v_j is a big site.

Third phase. The aim of the third phase is to report every edge of the diagram that is on the bisector between two big sites. For this, we compute the Voronoi diagram of the big sites in $O(s \log s)$ time. Let E_B denote the set of its edges. The edges of E_B that are also present in the Voronoi diagram of P are the ones that need to be reported (note that possibly only a portion of these edges need to be reported).

1 Indeed, the first and second phases are so similar that they can be merged. However, as we will see afterwards, this is not possible for higher order Voronoi diagrams. Thus, for coherence we split the phases even for the $k = 1$ case.
In order to confirm which edges of E_B remain in the diagram we proceed in a similar way as the second scan of Lemma 4.1: in each step we compute the Voronoi diagram of B and a batch of s sites of P. For any edge of E_B, we check whether it is cut off in the new diagram. If so, we update its endpoints in E_B and we continue with the next batch of s sites of P. After processing all the sites of P, the remaining $O(s)$ edges in E_B that have not become empty constitute all the edges of the Voronoi diagram of P which are on a bisector of two big sites. Notice that in this procedure, in contrast to Lemma 4.1, we report $O(s)$ edges that are not necessarily incident to s different cells.

\begin{theorem}
Let $P = \{p_1, \ldots, p_n\}$ be a planar n-point set in general position stored in a read-only array. We can report edges of $NVD(P)$ (or $FVD(P)$) in $O((n^2/s) \log s)$ time using $O(s)$ words of workspace.
\end{theorem}

Proof. Lemma 4.1 certifies that edges reported in the second phase are part of $NVD(P)$ (or $FVD(P)$). Also, conditions (iiia) and (iiib) make sure that no edge is reported more than once. The reasoning for edges reported in the third phase is similar. Clearly, if an edge $e \in NVD(P)$ (or $e \in FVD(P)$) is between two big sites, the same edge (possibly a superset) must also be present in $NVD(B)$ (or $FVD(B)$). The reverse inclusion follows from exhaustiveness: for each edge of $NVD(B)$ (or $FVD(B)$) we consider all sites of P and for each one, we remove only the portion of the edge that is on the wrong side of the bisector.

Now we argue about running time. Computationally speaking, the most expensive part of the algorithm is in the $O(n/s)$ executions of Lemma 4.1 that are done in the first and second phases. Other than that, creating table B needs $O(s \log s)$ time, and we make $O(n)$ lookups in B, two per edge of $NVD(P)$ (or $FVD(P)$). Each lookup needs $O(\log s)$ time, so $O(n \log s)$ in total. The third phase makes a single scan of the input, thus it takes $O(n \log s)$ time. For the Farthest Voronoi algorithm we also compute the vertices of the convex hull using the approach of Darwish and Elmasry [18] for which the running time is $o((n^2/s) \log s)$, so non-critical.

During the execution of the algorithm we store only s sites that are currently being processed (along with $O(1)$ information attached to each of them), the structure B of less than s big sites, the batch of s sites being processed (and its associated Voronoi diagram). All of this can be stored using $O(s)$ words of workspace, as claimed. \hfill ▶

Higher-Order Voronoi Diagrams

We now consider the case of higher-order Voronoi diagrams. More precisely, we are given an integer $K \in O(\sqrt{s})$, and we would like to report the edges of all Voronoi diagrams of order up to K. For this, we generalize our approach from the previous section, and we combine it with a recursive procedure: for $k = 1, \ldots, K - 1$, we compute the edges of $VD^{k+1}(P)$ by using previously computed edges of $VD^k(P)$. To make efficient use of available memory, we perform the computations of $VD^k(P)$ in a pipelined fashion, so that in each stage, the necessary edges of the previous Voronoi diagram are available.

We begin with some preliminary remarks. We call a cell C of $VD^k(P)$ a k-cell, and we represent it as the set of k sites that are closest to all points in C. Similarly, we call a vertex v of $VD^k(P)$ a k-vertex, and we represent it as a set of $k + 2$ sites of P, namely $k - 1$ sites that are closest to v, and the three sites that come next in the distance order and are equidistant to v. Finally, the edges of $VD^k(P)$ are called k-edges. We represent them in a somewhat unusual manner: each edge of $VD^k(P)$ is split into two directed half-edges, such that the half-edges are oriented in opposing directions and such that each half-edge is associated with
the \(k \)-cell to its left. A half-edge \(e \) is represented by \(k + 3 \) sites of \(P \): the \(k - 1 \) sites closest to \(e \), the two sites that come next in the distance order and are equidistant to \(e \), and two more sites needed to define the vertices at the endpoints of \(e \). The order of the vertices encodes the direction of the half-edge. The half-edge is directed from the tail vertex to the head vertex. We will need several well-known properties of higher-order Voronoi diagrams: (I) let \(Q_1, Q_2 \subset P \) be two \(k \)-subsets such that the \(k \)-cells \(C^k(Q_1) \) and \(C^k(Q_2) \) are non-empty and adjacent (i.e., share an edge \(e \)). Then, the set \(Q = Q_1 \cup Q_2 \) has size \(k + 1 \), and \(C^{k+1}(Q) \) is a non-empty \((k+1)\)-cell [23]. (II) Let \(Q \subset P \) be a \((k+1)\)-subset such that \(C^{k+1}(Q) \) is non-empty. Then, the portion of \(\text{VD}^k(P) \) restricted to \(C^{k+1}(Q) \) is identical to (i.e., has the same vertices and edges as) the portion of \(\text{FVD}(Q) \) restricted to \(C^{k+1}(Q) \). Furthermore, the edges of \(\text{FVD}(Q) \) in \(C^{k+1}(Q) \) do not intersect the boundary, but their endpoints either lie in the interior of \(C^{k+1}(Q) \) or coincide with vertices of \(C^{k+1}(Q) \). Hence, every \((k+1)\)-cell contains at most \(O(k+1) \) \(k \)-edges and at least one \(k \)-edge, and these edges form a tree [23]. (III) Every \(k \)-vertex is either also a \((k-1)\)-vertex or also a \((k+1)\)-vertex. In particular, every vertex appears in exactly two Voronoi diagrams of consecutive order. We call a \(k \)-vertex old, if it is also a \((k-1)\)-vertex, and new otherwise. (All \((k+1)\)-vertices are new).

Next, we describe a procedure to generate all (directed) \((k+1)\)-half-edges, assuming that we have the \(k \)-half-edges at hand. Later, we will combine these procedures in a space-efficient manner. At a high level, our idea is as follows: let \(e \) be a \(k \)-half-edge. By property (II), the half-edge \(e \) lies inside a \((k+1)\)-cell \(C \). We will see that we can use \(e \) as a starting point to report all half-edges of \(C \), similarly as in Lemma 4.1. However, if we repeat this procedure for every \(k \)-half-edge, we may report a \((k+1)\)-half-edge \(\Omega(k) \) times. This will lead to problems when we combine the algorithms for computing the different orders. To avoid this, we do the following. We call a \(k \)-half-edge relevant if its tail vertex lies on the boundary of the \((k+1)\)-cell that contains it. For each \((k+1)\)-cell \(C \), we partition the boundary of \(C \) into intervals of \((k+1)\)-half-edges that lie between two consecutive tail vertices of relevant \(k \)-half-edges. We assign each interval to the relevant \(k \)-half-edge of its clockwise endpoint. Now, our algorithm goes through all \(k \)-half-edges. If the current \(k \)-half-edge \(e \) is not relevant, the algorithm does nothing. Otherwise, it reports the \((k+1)\)-half-edges of the interval assigned to \(e \). This ensures that every half-edge is reported exactly once. As in the previous section, we distinguish between big and small cells in \(\text{VD}^{k+1}(P) \), lest we spend too much time on cells with many incident edges. A more detailed description follows below.

The following lemma describes an algorithm that takes \(s \) \(k \)-half-edges and for each of them either determines that it is not relevant or finds the first edge of the interval of \((k+1)\)-half-edges assigned to it.

Lemma 5.1. Suppose we are given \(s \) different \(k \)-half-edges \(e_1^k, \ldots, e_s^k \) represented by the subsets \(E_1, \ldots, E_s \) of \(P \). There is an algorithm that, for \(i = 1, \ldots, s \), either determines that \(e_i^k \) is not relevant, or finds \(e_i^{k+1} \), the first \((k+1)\)-edge of the interval assigned to \(e_i^k \). The algorithm takes total time \(O(nk \log^{1+\varepsilon} k \cdot (\log s / \log k)^{O(1)}) \) and uses \(O(k s) \) words of workspace.

Proof. Our algorithm proceeds analogously to Lemma 4.1. First, we inspect all \(k \)-half-edges \(e_i^k \). If the additional site defining the tail vertex of \(e_i^k \) is one of the \(k + 1 \) sites defining \(e_i^k \) (i.e., the sites which are closest in the distance order to \(e_i^k \)), then the tail vertex of \(e_i^k \) lies in the interior of a \((k+1)\)-cell, and the edge is not relevant. Otherwise, the tail vertex will be an old \((k+1)\)-vertex, and we need to determine the first \((k+1)\)-half-edge for the interval assigned to \(e_i^k \). Let \(I \) be the set of all indices \(i \) such that \(e_i^k \) is relevant.

To determine the first half-edge of each interval, we process the sites in \(P \) in batches of size \(s \). In each iteration, we pick a new batch \(Q \) of \(s \) sites. Then, we construct \(\text{VD}^{k+1}(\bigcup_{i \in I} E_i \cup Q) \).
Improved Time-Space Trade-offs for Voronoi Diagrams

in \(O(sk \log^{1+\varepsilon} k \cdot (\log s/\log k)^{O(1)})\) time [15]. By construction, the tail vertex of each \(e_i^k\) with \(i \in I\) belongs to the resulting diagram. Thus, we iterate over all batches, and for each \(e_i^k\), we determine the edge \(f_i^{k+1}\) that appears in one of the resulting diagrams such that (i) \(f_i^{k+1}\) is incident to the tail vertex of \(e_i^k\); (ii) \(f_i^{k+1}\) is to the right of the directed line spanned by \(e_i^k\); and (iii) among all such edges, \(f_i^{k+1}\) makes the smallest angle with \(e_i^k\). We need \(O(n/s)\) iterations to find \(f_i^{k+1}\). Now, for each \(i \in I\), the desired \((k+1)\)-half-edge \(e_i^{k+1}\) is a subset of \(f_i^{k+1}\). Thus, as in Lemma 4.1, we perform a second scan over \(P\) to find the other endpoint of \(e_i^{k+1}\). We orient \(e_i^{k+1}\) such that the cell containing \(e_i^{k+1}\) lies to the left of it.

It follows that we can process \(s\) edges of \(VD^k(P)\) in \(O(nk \log^{1+\varepsilon} k \cdot (\log s/\log k)^{O(1)})\) time using a workspace with \(O(k)\) words to store the \(s\) different subsets for the edges. ▶

The algorithm from Lemma 5.1 is actually more general. If, instead of a \(k\)-half-edge \(e_i^k\) that lies inside a \((k+1)\)-cell \(C\), we have a \((k+1)\)-half-edge \(e_i^{k+1}\) that lies on the boundary of \(C\), the same method of processing \(P\) in batches of size \(s\) allows us to find the next \((k+1)\)-half-edge incident to \(C\) in counterclockwise order from \(e_i^{k+1}\). These two kinds of edges can be handled simultaneously.

▶ Corollary 5.2. Suppose we are given \(s\) half-edges \(e_1, \ldots, e_s\) such that each \(e_i\) is either a \(k\)-half-edge or a \((k+1)\)-half-edge. Then, we can find in total time \(O(nk \log^{1+\varepsilon} k \cdot (\log s/\log k)^{O(1)})\) and using \(O(k)\) words of workspace a sequence \(f_1, \ldots, f_s\) of \((k+1)\)-half-edges such that, for \(i = 1, \ldots, s\), we have

1. if \(e_i\) is a relevant \(k\)-half-edge, then \(f_i\) is the first \((k+1)\)-half-edge of the interval for \(e_i\);
2. if \(e_i\) is a \(k\)-half-edge that is not relevant, then \(f_i = \perp\); or
3. if \(e_i\) is a \((k+1)\)-half-edge, then \(f_i\) is the counterclockwise successor of \(e_i\).

▶ Lemma 5.3. Using two scans over all \(k\)-half-edges, we can report the \((k+1)\)-half-edges in batches of size at most \(s\) such that each \((k+1)\)-half-edge is reported exactly once. This takes \(O\left(\frac{n^2k^2}{s} \log^{1+\varepsilon} k \cdot (\log s/\log k)^{O(1)}\right)\) time using \(O(k)\) words of workspace.

Proof. The algorithm consists of three phases: In the first phase, we keep \(s\) half-edges \(e_1, \ldots, e_s\) such that each \(e_i\) is either a \(k\)-half-edge or a \((k+1)\)-half-edge. In each iteration, we apply Corollary 5.2 to these half-edges, to obtain \(s\) new \((k+1)\)-half-edges \(f_1, \ldots, f_s\). Now, for each \(i = 1, \ldots, s\), three cases apply: (i) \(f_i = \perp\), i.e., \(e_i\) was not relevant. In the next iteration, we replace \(e_i\) with a fresh \(k\)-half-edge; (ii) \(f_i \neq \perp\). Now we need to determine whether \(f_i\) is the last half-edge of its interval. For this, we check whether the head vertex of \(f_i\) is a new \((k+1)\)-vertex. As in Lemma 5.1, this can be done by checking whether the additional site that determines the head vertex of \(f_i\) is among the \(k+2\) sites determining \(f_i\). If \(f_i\) is not the last half-edge of its interval, we set \(e_i\) to \(f_i\) for the next iteration; otherwise, we set \(e_i\) to a fresh \(k\)-half-edge. We repeat this procedure until there are no fresh \(k\)-half-edges left.

The remaining \(k\)-half-edges in the working memory are incident to the big \((k+1)\)-cells. We store them in an array \(B^{k+1}\), sorted according to the lexicographic order of the indices of their sites. We emphasize that in the first phase, we do not report any \((k+1)\)-edge.

In the second phase, we repeat the same procedure as in the first phase. However, this time we report (i) every \((k+1)\)-half-edge incident to a small \((k+1)\)-cell; and (ii) the opposite direction of every \((k+1)\)-half-edge \(e\) incident to a small \((k+1)\)-cell, so that the \((k+1)\)-cell on the right of \(e\) is a big \((k+1)\)-cell. We use \(B^{k+1}\) to identify the big cells.

In the third phase we report every \((k+1)\)-half-edge \(e\) that is incident to a big \((k+1)\)-cell, while the \((k+1)\)-cell on the right of \(e\) is also a big \((k+1)\)-cell. Let \(\{B_{k+1}\}\) denote the sites that define the big \((k+1)\)-cells. We construct \(VD^{k+1}(\{B_{k+1}\})\) in the working memory. Then, we go through the sites in \(P\) in batches of size \(s\), adding the sites of each batch.
Applying this idea for all the orders \(B^{k+1}(\{B^{k+1}\}) \). While doing this, as in the algorithm for Lemma 4.2, we keep track of how the edges of \(VD^{k+1}(\{B^{k+1}\}) \) are cut by the new diagrams. In the end, we report all \((k + 1)\)-edges of \(VD^{k+1}(\{B^{k+1}\}) \) that are not empty. By report, we mean report two \((k + 1)\)-half-edges in opposing directions. As we explained in the algorithm for Lemma 4.2, these \((k + 1)\)-half-edges cover all the \((k + 1)\)-half-edges incident to a big \((k + 1)\)-cell, while their right cell is also a big \((k + 1)\)-cell.

Regarding the running time, the first and the second phase consists of \(O(nk/s) \) applications of Corollary 5.2 which takes \(O\left(\frac{n^2k^2}{s} \log^{1+\varepsilon} k \cdot (\log s / \log k)^O(1)\right) \) time. Sorting the big \((k + 1)\)-cells in \(B^{k+1} \) takes \(O(ks(\log k + \log s)) \) steps: we sort the indices of the sites of each big \((k + 1)\)-cell in \(O(k \log k) \) steps. Then we sort the big cells, where each comparison in the lexicographic order requires \(O(k) \) steps, for a total of \(O(ks \log s) \) steps.

A query in \(B^{k+1} \) takes \(O(k \log k + \log s) \) time. Then we use binary-search to find cells in \(B^{k+1} \) with the same first index as \(C \). Among these, we continue the binary-search with comparing the second indices, and so on. Thus, in each step we compare only one index of two \((k + 1)\)-cells, and either the size of search set is halved, or the search continues with the next index of \(C \). Thus, searching a cell \(C \) with sorted index in \(B^{k+1} \) requires \(O(k + \log s) \) time.

The algorithm performs at most two searches in \(B^{k+1} \) per each \((k + 1)\)-half-edge, for a total of \(O(nk) \) edges. In the third phase, constructing a \((k + 1)\)-order Voronoi diagram of \(O(ks) \) sites takes \(O(ks \log^{1+\varepsilon} k \cdot (\log s / \log k)^O(1)) \) time. We repeat it \(O(n/s) \) times, which takes \(O(nk \log^{1+\varepsilon} k \cdot (\log s / \log k)^O(1)) \) time in total.

Overall, the running time of the algorithm simplifies to \(O\left(\frac{n^2k^2}{s} \log^{1+\varepsilon} k \cdot (\log s / \log k)^O(1)\right) \). The algorithm uses a workspace of \(O(ks) \) words, for running Corollary 5.2, for storing big \((k + 1)\)-cells and for constructing Voronoi diagrams of size \(O(ks) \).

Now, in order to find \(k \)-half-edges for all \(k = 1, \ldots, K \), we proceed as follows: first, we compute \(s \) 1-edges (notice that we report every 1-edge as two 1-half-edges in opposing directions). Then, we apply Lemma 5.3 in a pipelined fashion to obtain \(k \)-half-edges for all \(k = 2, \ldots, K \). In each iteration, the algorithm from Lemma 5.3 consumes at most \(s \) \(k \)-half-edges from the previous order and produces at most \(2s \) \((k + 1)\)-half-edges to be used at the next order. This means that if we have between \(s \) and \(3s \) new \(k \)-half-edges available in a buffer, then we can use them one by one whenever the algorithm for computing \(k \)-half-edges in Lemma 5.3 requires such a new \(k \)-half-edge. Whenever a buffer falls below \(s \) \(k \)-half-edges, we run the algorithm for the previous order until the buffer size is again between \(s \) and \(3s \). Applying this idea for all the orders \(k = 1, \ldots, K - 1 \), we need to store \(K - 1 \) buffers, each containing up to \(3s \) \(k \)-half-edges for the corresponding diagram. Furthermore, for each diagram, we need to store the current workspace required by the algorithm to produce new edges (as in Lemma 5.3). Since a \(k \)-edge is represented by \(O(k) \) sites from \(P \), the buffer for \(k \)-edges requires \(O(ks) \) words of memory. We denote it by \(E^k_w \). Furthermore, by Lemma 5.3, the new \(k \)-edges can be found using \(O(ks) \) words of workspace, which we denote by \(E^k_w \).

Theorem 5.4. Let \(K \in O(\sqrt{s}) \) and \(P = \{p_1, \ldots, p_n\} \) be a planar \(n \)-point set in general position, given in a read-only array. We can report all the edges of \(VD^1(P), \ldots, VD^K(P) \) in \(O\left(\frac{n^2k^2}{s} \log^{1+\varepsilon} K \cdot (\log s / \log K)^O(1)\right) \) time using a workspace of size \(O(s) \).

Proof. We compute the half-edges of \(VD^1(P), \ldots, VD^K(P) \) simultaneously, in a pipelined fashion. For \(k = 1 \) we use the algorithm of Theorem 4.2 and for \(k = 2, \ldots, K \), we run the algorithm from Lemma 5.3 to compute \(k \)-edges. The algorithm for computing \(VD^k(P) \), has its own working memory, denoted by \(E^k_w \) and an output buffer \(E^k_b \). In addition, it has an array \(B^k \) to store the big \(k \)-cells for being used in the second and third phase of the
Improved Time-Space Trade-offs for Voronoi Diagrams

Figure 2 This diagram shows the algorithm in stage k. For $i = 1, \ldots, K$, Algo i is the algorithm for computing i-edges. The roman numerals I, II and III refer, respectively, to the first, second and third phase of Algo i. The white and the tiled rectangles are, respectively, active and inactive parts in stage k of the main algorithm. E_{b1}, E_{b} and B' indicate memory cells, and they are, respectively, the working memory of Algo i, the buffer for i-edges, and the big i-cells. The algorithm in stage k, does not use the tiled memory cells, and it uses the gray ones only for reading the data that has been produced in previous stages. The arrows show reading from or writing to memory cells, and the dashed arrows are inactive in stage k. In stage k, all the k-half-edges are reported and the big $(k + 1)$-cells are inserted into B^{k+1} for being used in the next stages.

algorithm. Each of these arrays should be able to store $O(s')$ half-edges and cells of $VD^k(P)$, for $s' = s/K^2$. Since we need $O(k)$ sites to represent a k-half-edge or a k-cell, the total space requirement for all algorithms is $O(s)$.

We now describe how the simultaneous algorithms interact. Our algorithm works in stages. In stage 0, we perform only the first phase of Theorem 4.2, to find the $O(s')$ big cells of $VD^1(P)$, and we store them in B^1. Now we know the big 1-cells. Then, in stage 1, we perform the second phase of Theorem 4.2 to find and report the half-edges of $VD^1(P)$ in batches of size at most $2s'$, and we store these 1-half-edges in E_{b1}. Whenever we have at least s' half-edges in E_{b1}, we pause the algorithm of Theorem 4.2, and we perform the first phase of Lemma 5.3 to find half-edges of $VD^1(P)$ with E_{b1} as input. Whenever the algorithm for $VD^2(P)$ requires new 1-half-edges, and the buffer E_{b1} falls below s' half-edges, we continue running the algorithm for $VD^2(P)$. When the algorithm for $VD^2(P)$ has consumed all 1-half-edges and there are less than s' half-edges in E_{b1}, then we stop the algorithm for $VD^2(P)$. The half-edges in E_{b1} represent the big cells of $VD^2(P)$, and we store them in B^2. This concludes stage 1.

In general, in stage k of the algorithm, we identified the big cells B^1, \ldots, B^k of the first k diagrams. We perform the second and the third phase of Theorem 4.2 and Lemma 5.3 in a pipelined fashion to generate the half-edges of $VD^1(P), \ldots, VD^k(P)$ and store them in the buffers E_{b1}, \ldots, E_{bk}. We report the half-edges of $VD^k(P)$ and if $k \neq K$, we also use E_{bk} as an input of the first phase of Lemma 5.3, which gives us B^{k+1} for the next stage; see Figure 2. Using this procedure, we report every half-edge of $VD^1(P), \ldots, VD^K(P)$ exactly once.

Regarding the running time, in each stage $k = 1, \ldots, K$, we have to compute all diagrams $VD^1(P), \ldots, VD^k(P)$, using Lemma 5.3. This takes $O\left(\frac{n^2}{s} \log^{1+\varepsilon} k \cdot (\log s'/\log k)^{O(1)}\right)$ time. The running time for stage 0 is negligible. The complete algorithm takes $O\left(\frac{n^2 K^4}{s} \log^{1+\varepsilon} K \cdot (\log s'/\log K)^{O(1)}\right)$ time, which is $O\left(\frac{n^2 K^4}{s} \log^{1+\varepsilon} K \cdot (\log s'/\log K)^{O(1)}\right)$ in terms of s.

Acknowledgements

The authors would like to thank Luis Barba, Kolja Junginger, Elena Khramtcova, and Evanthia Papadopoulou for fruitful discussions on this topic.
References

