
Maintaining the Union of Unit Discs under
Insertions with Near-Optimal Overhead
Pankaj K. Agarwal
Department of Computer Science, Duke University,
Durham, NC 27708, USA
pankaj@cs.duke.edu

Ravid Cohen
School of Computer Science, Tel-Aviv University,
Tel-Aviv 69978, Israel
ravidcohn@gmail.com

Dan Halperin
School of Computer Science, Tel-Aviv University,
Tel-Aviv 69978, Israel
danha@post.tau.ac.il

Wolfgang Mulzer
Institut für Informatik, Freie Universität Berlin,
D-14195 Berlin, Germany
mulzer@inf.fu-berlin.de

Abstract
We present efficient data structures for problems on unit discs and arcs of their boundary in the
plane. (i) We give an output-sensitive algorithm for the dynamic maintenance of the union of n
unit discs under insertions in O(k log2 n) update time and O(n) space, where k is the combinatorial
complexity of the structural change in the union due to the insertion of the new disc. (ii) As part of
the solution of (i) we devise a fully dynamic data structure for the maintenance of lower envelopes
of pseudo-lines, which we believe is of independent interest. The structure has O(log2 n) update
time and O(logn) vertical ray shooting query time. To achieve this performance, we devise a new
algorithm for finding the intersection between two lower envelopes of pseudo-lines in O(logn) time,
using tentative binary search; the lower envelopes are special in that at x = −∞ any pseudo-line
contributing to the first envelope lies below every pseudo-line contributing to the second envelope.
(iii) We also present a dynamic range searching structure for a set of circular arcs of unit radius
(not necessarily on the boundary of the union of the corresponding discs), where the ranges are unit
discs, with O(n logn) preprocessing time, O(n1/2+ε + `) query time and O(log2 n) amortized update
time, where ` is the size of the output and for any ε > 0. The structure requires O(n) storage space.

2012 ACM Subject Classification Theory of computation → Computational geometry

Keywords and phrases lower envelopes, pseudo-lines, unit discs, range search, dynamic algorithms,
tentative binary search

Digital Object Identifier 10.4230/LIPIcs.SoCG.2019.26

Related Version A full version of the paper is available at [3], http://arxiv.org/abs/arXiv:
1903.10943.

Funding Pankaj K. Agarwal: Work on this paper is supported by NSF under grants CCF-15-13816,
CCF-15-46392, and IIS-14-08846, by ARO grant W911NF-15-1-0408, and by grant 2012/229 from
the U.S.-Israel Binational Science Foundation.
Ravid Cohen: Work by D.H. and R.C. has been supported in part by the Israel Science Foundation
(grant no. 825/15), by the Blavatnik Computer Science Research Fund, by the Blavatnik Inter-
disciplinary Cyber Research Center at Tel Aviv University, and by grants from Yandex and from
Facebook.

© Pankaj K. Agarwal, Ravid Cohen, Dan Halperin and Wolfgang Mulzer;
licensed under Creative Commons License CC-BY

35th International Symposium on Computational Geometry (SoCG 2019).
Editors: Gill Barequet and Yusu Wang; Article No. 26; pp. 26:1–26:15

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:pankaj@cs.duke.edu
mailto:ravidcohn@gmail.com
mailto:danha@post.tau.ac.il
mailto:mulzer@inf.fu-berlin.de
https://doi.org/10.4230/LIPIcs.SoCG.2019.26
http://arxiv.org/abs/arXiv:1903.10943
http://arxiv.org/abs/arXiv:1903.10943
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


26:2 Maintaining the Union of Unit Discs

Wolfgang Mulzer : Partially supported by ERC STG 757609 and GIF grant 1367/2016.

1 Introduction

Let S be set of n points in R2, and let U be the union of the unit discs centered at the
points of S. We would like to maintain the boundary ∂U of U , as new points are added to S.
Even for discs of varying radii, the complexity of ∂U is O(n) [17], and it can be computed in
O(n logn) time using power diagrams [6]. An incremental algorithm [20] can maintain ∂U in
total of O(n2) time. This is worst-case optimal, as the overall complexity of the structural
changes to ∂U under n insertions may be Ω(n2); see an example in [3]. Here, we describe in
Section 3 an output-sensitive algorithm that uses O(n) space and updates ∂U in O(k log2 n)
time per insertion of a disc, where k is the combinatorial complexity of the structural changes
to ∂U due to the insertion. Some of our ideas resemble those of de Berg at al. [12], who
present a semi-dynamic (insertion only) point-location data structure for U .

The efficient manipulation of collections of unit discs is a widely and frequently studied
topic, for example in the context of sensor networks, where every disc represents the area
covered by a sensor. Here, we are motivated by multi-agent coverage of a region in search of
a target [11], where we investigate the pace of coverage and wish to estimate at each stage
the portion of the overall area covered up to a certain point in time. Since the simulation is
discretized (i.e., each agents is modeled by a unit disc whose motion is simulated by changing
its location at fixed time steps), we can apply the structure above to update the area of the
union within the same time bound. We give more details in Section 3.

A set of pseudo-lines in the plane is a set of infinite x-monotone curves each pair of which
intersects at exactly one point. Arrangements of pseudo-lines have been intensively studied in
discrete and computational geometry; see the recent survey on arrangements [14] for a review
of combinatorial bounds and algorithms for arrangements of pseudo-lines. At the heart of our
solution to the dynamic maintenance of U lies an efficient data structure for the following
problem: Given n pseudo-lines in the plane, dynamically maintain their lower envelope
such that one can efficiently answer vertical ray shooting queries from y = −∞. Here, the
dynamization allows insertions and deletions. For the case of lines (rather than pseudo-lines),
there are several efficient data structures to choose from [7–9,16, 18]; these are, however, not
directly applicable for pseudo-lines. Also, there are powerful general structures based on
shallow cuttings [5, 10,15]. These structures can handle general families of algebraic curves
of bounded description complexity and typically also work in R3. However, the additional
flexibility comes at a cost: the algorithms are quite involved, the performance guarantees
are in the expected and amortized sense, and the operations have (comparatively) large
polylogarithmic running times. For pseudo-lines, Chan’s method [10], with improvements by
Kaplan et al. [15], yields O(log3 n) amortized expected insertion time, O(log5 n) amortized
expected deletion time, and O(log2 n) worst-case query time. The solution that we propose
here is, however, considerably simpler and more efficient: We devise a fully dynamic data
structure with O(log2 n) worst-case update-time, O(logn) worst-case ray-shooting query-time,
and O(n) space. Additionally, we describe how to find all pseudo-lines below a given query
point in O(logn+k log2 n) time, where k is the output size. The structure is an adaptation of
the Overmars-van Leeuwen structure [18], matching the performance of the original structure
for the case of lines. The key innovation is a new algorithm for finding the intersection
between two lower envelopes of planar pseudo-lines in O(logn) time, using tentative binary
search (where each pseudo-line in one envelope is “smaller” than every pseudo-line in the
other envelope, in a sense to be made precise below). To the best of our knowledge this is



Pankaj K. Agarwal, Ravid Cohen, Dan Halperin and Wolfgang Mulzer 26:3

the most efficient data structure for the case of pseudo-lines to date.
For our solution to the union-maintenance problem, we need to answer intersection-

searching queries of the form: Given the collection C of unit-radius circular arcs that comprise
∂U and a query unit disc D, report the arcs in C intersecting D. This problem is a special
case of the intersection searching problem in which we wish to preprocess a set of geometric
objects into a data structure so that the set of objects intersected by a query object can be
reported efficiently. Intersection-searching queries are typically answered using multi-level
partition trees; see the recent survey [1] for a comprehensive review. Our final result is a
data structure for the intersection-searching problem in which the input objects are arbitrary
unit-radius circular arcs rather than arcs forming the boundary of the union of the unit
discs, and the query is a unit disc. We present a linear-size data structure with O(n logn)
preprocessing time, O(n1/2+δ + `) query time and O(log2 n) amortized update time, where `
is the size of the output and δ > 0 is a small constant. Note that because of lack of space,
many proofs are omitted from this version and can be found in [3].

2 Dynamic lower envelope for pseudo-lines

We describe a data structure to dynamically maintain the lower envelope of an arrangement
of planar pseudo-lines under insertions and deletions. Even though we present our data
structure for pseudo-lines, it holds for more general classes of planar curves; see below.

2.1 Preliminaries

Let E be a planar family of pseudo-lines, and let ` be a vertical line strictly to the left of
the first intersection point in E. The line ` defines a total order ≤ on the pseudo-lines in
E, namely for e1, e2 ∈ E, we have e1 ≤ e2 if and only if e1 intersects ` below e2. Since each
pair of pseudo-lines in E crosses exactly once, it follows that if we consider a vertical line `′
strictly to the right of the last intersection point in E, the order of the intersection points
between `′ and E, from bottom to top, is exactly reversed.

The lower envelope L(E) of E is the x-monotone curve obtained by taking the pointwise
minimum of the pseudo-lines in E. Combinatorially, the lower envelope L(E) is a sequence of
connected segments of the pseudo-lines in E, where the first and last segment are unbounded.
Two properties are crucial for our data structure: (A) every pseudo-line contributes at most
one segment to L(E); and (B) the order of these segments corresponds exactly to the order
≤ on E defined above. In fact, our data structure works for every set of planar curves with
properties (A) and (B) (with an appropriate order ≤), even if they are not pseudo-lines in
the strict sense; this fact will prove useful in Section 3 below.

We assume a computational model in which primitive operations on pseudo-lines, such as
computing the intersection point of two pseudo-lines or determining the intersection point of
a pseudo-line with a vertical line can be performed in constant time.

2.2 Data structure and operations

The tree structure. Our primary data structure is a balanced binary search tree Ξ. Such a
tree data structure supports insert and delete, each in O(logn) time. The leaves of Ξ contain
the pseudo-lines, from left to right in the sorted order defined above. An internal node v ∈ Ξ
represents the lower envelope of the pseudo-lines in its subtree. More precisely, every leaf v
of Ξ stores a single pseudo-line ev ∈ E. For an inner node v of Ξ, we write E(v) for the set

SoCG 2019



26:4 Maintaining the Union of Unit Discs

of pseudo-lines in the subtree rooted at v. We denote the lower envelope of E(v) by L
(
v
)
.

The inner node v has the following variables:
f , `, r: a pointer to the parent, left child and right child of v, respectively;
max: the last pseudo-line in E(V) (last in the ordering defined in Section 2.1)
Λ: a balanced binary search tree that stores the prefix or suffix of L(v) that is not on
the lower envelope L(f) of the parent (in the root, we store the lower envelope of E).
The leaves of Λ store the pseudo-lines that support the segments on the lower envelope,
with the endpoints of the segments, sorted from left to right. An inner node of Λ stores
the common point of the last segment in the left subtree and the first segment in the
right subtree. We will need split and join operations on the binary trees, which can be
implemented in O(logn) time.

Queries. We now describe the query operations available on our data structure. In a vertical
ray-shooting query, we are given a value x0 ∈ R, and we would like to find the pseudo-line
e ∈ E where the vertical line ` : x = x0 intersects L(E). Since the root of Ξ explicitly stores
L(E) in a balanced binary search tree, this query can be answered easily in O(logn) time.

I Lemma 1. Let ` : x = x0 be a vertical ray shooting query. We can find the pseudo-line(s)
where ` intersects L(E) in O(logn) time.

I Lemma 2. Let q ∈ R2. We can report all pseudo-lines in E that lie below q ∈ R2 in total
time O(logn+ k log2 n), where k is the output size

Update. To insert or delete a pseudo-line e in Ξ, we follow the method of Overmars and
van Leeuwen [18]. We delete or insert a leaf for e in Ξ using standard binary search tree
techniques (the v.max pointers guide the search in Ξ). As we go down, we construct the
lower envelopes for the nodes hanging off the search path, using split and join operations on
the v.Λ trees. Going back up, we recompute the information v.Λ and v.max. To update the
v.Λ trees, we need the following operation: given two lower envelopes L` and Lr, such that
all pseudo-lines in L` are smaller than all pseudo-lines in Lr, compute the intersection point
q of L` and Lr. In the next section, we see how to do this in O(logn) time, where n is the
size of E. Since there are O(logn) nodes in Ξ affected by an update, this procedure takes
O(log2 n) time. More details can be found in [18,19].

I Lemma 3. It takes O(log2 n) to insert or delete a pseudo-line in Ξ.

2.3 Finding the intersection point of two lower envelopes
Given two lower envelopes L` and Lr such that all pseudo-lines in L` are smaller than all
pseudo-lines in Lr, we would like to find the intersection point q between L` and Lr in
O(logn) time. We assume that L` and Lr are represented as balanced binary search trees.
The leaves of L` and Lr store the pseudo-line segments on the lower envelopes, sorted from
left to right. We assume that the pseudo-line segments in the leaves are half-open, containing
their right, but not their left endpoint in L`; and their left, but not their right endpoint
in Lr.1 Thus, it is uniquely determined which leaves of L` and Lr contain the intersection
point q. A leaf v stores the pseudo-line L(v) that supports the segment for v, as well as

1 We actually store both endpoints in the trees, but the intersection algorithm uses only one of them,
depending on the role the tree plays in the algorithm.



Pankaj K. Agarwal, Ravid Cohen, Dan Halperin and Wolfgang Mulzer 26:5

an endpoint v.p of the segment, namely the left endpoint if v is a leaf of L`, and the right
endpoint if v is a leaf of Lr.2 An inner node v stores the intersection point v.p between the
last pseudo-line in the left subtree v.` of v and the first pseudo-line in the right subtree v.r
of v, together with the lower envelope L(v) of these two pseudo-lines. These trees can be
obtained by appropriate split and join operations from the Λ trees stored in Ξ.

Figure 1 (On the top). An example of case 1. Case 2 is symmetric. (On the bottom). An
example of Case 3. L` is blue; Lr is red. The solid pseudo-lines are fixed. The dashed pseudo-lines
are optional, namely, either none of the dashed pseudo-lines exists or exactly one of them exists. u.p
and v.p are the current points; and Case 3 applies. Irrespective of the local situation at u and v, the
intersection point can be to the left of u.p, between u.p and v.p, or to the right of v.p, depending on
which one of the dashed pseudo-lines exists.

Let u∗ ∈ L` and v∗ ∈ Lr be the leaves whose segments contain q. Let π` be the path
in L` from the root to u∗ and πr the path in Lr from the root to v∗. Our strategy is as
follows: we simultaneously descend into L` and into Lr. Let u be the current node in L`
and v the current node in Lr. In each step, we perform a local test on u and v to decide how
to proceed. There are three possible outcomes:

2 If the segment is unbounded, the endpoint might not exist. In this case, we use a symbolic endpoint at
infinity that lies below every other pseudo-line.

SoCG 2019



26:6 Maintaining the Union of Unit Discs

1. u.p is on or above L(v): the intersection point q is equal to or to the left of u.p. If u is
an inner node, then u∗ cannot lie in u.r; if u is a leaf, then u∗ lies strictly to the left of u;

2. v.p lies on or above L(u): the intersection point q is equal to or to the right of v.p. If v is
an inner node, then v∗ cannot lie in v.`; if v is a leaf, then v∗ lies strictly to the right of v;

3. u.p lies below L(v) and v.p lies below L(u): then, u.p lies strictly to the left of v.p (since
we are dealing with pseudo-lines). It must be the case that u.p is strictly to the left of q
or v.p is strictly to the right of q (or both). In the former case, if u is an inner node, u∗
lies in or to the right of u.r and if u is a leaf, then u∗ is u or a leaf to the right of u. In
the latter case, if v is an inner node, v∗ lies in or to the left of v.` and if v is a leaf, then
v∗ is v or a leaf to the left of v; see Figure 1.

u

v

L` Lr

Figure 2 The invariant: the current search nodes are u and v. uStack contains all nodes on the
path from the root to u where the path goes to a right child (orange squares), vStack contains all
nodes from the root to v where the path goes to a left child (orange squares). The final leaves u∗
and v∗ are in one of the gray subtrees; and at least one of them is under u or under v.

Although it is clear how to proceed in the first two cases, it is not immediately obvious
how to proceed in the third case, because the correct step might be either to go to u.r or to
v.`. In the case of lines, Overmars and van Leeuwen can solve this ambiguity by comparing
the slopes of the relevant lines. For pseudo-lines, however, this does not seem to be possible.
For an example, refer to Figure 1, where the local situation at u and v does not determine
the position of the intersection point q. Therefore, we present an alternative strategy.

u

v
Case 3

u

v

L` Lr L` Lr

Figure 3 Comparing u to v: in Case 3, we know that u∗ is in u.r or v∗ is in v.`; we go to u.r
and to v.`.

We will maintain the invariant that the subtree at u contains u∗ or the subtree at v
contains v∗ (or both). In Case 3, u∗ must be in u.r, or v∗ must be in v.`; see Figure 3. We
move u to u.r and v to v.`. One of these moves must be correct, but the other move might
be mistaken: we might have gone to u.r even though u∗ is in u.` or to v.` even though v∗ is
in v.r. To correct this, we remember the current u in a stack uStack and the current v in
a stack vStack, so that we can revisit u.` or v.r if it becomes necessary. This leads to the



Pankaj K. Agarwal, Ravid Cohen, Dan Halperin and Wolfgang Mulzer 26:7

general situation shown in Figure 2: u∗ is below u or in a left subtree of a node on uStack,
and v∗ is below v or in a right subtree of a node on vStack, and at least one of u∗ or v∗
must be below u or v, respectively. Now, if Case 1 occurs when comparing u to v, we can
exclude the possibility that u∗ is in u.r. Thus, u∗ might be in u.`, or in the left subtree of
a node in uStack; see Figure 4. To make progress, we now compare u′, the top of uStack,
with v. Again, one of the three cases occurs. In Case 1, we can deduce that going to u′.r
was mistaken, and we move u to u′.`, while v does not move. In the other cases, we cannot
rule out that u∗ is to the right of u′, and we move u to u.`, keeping the invariant that u∗
is either below u or in the left subtree of a node on uStack. However, to ensure that the
search progresses, we now must also move v. In Case 2, we can rule out v.`, and we move
v to v.r. In Case 3, we move v to v.`. In this way, we keep the invariant and always make
progress: in each step, we either discover a new node on the correct search paths, or we
pop one erroneous move from one of the two stacks. Since the total length of the correct
search paths is O(logn), and since we push an element onto the stack only when discovering
a new correct node, the total search time is O(logn); see an example run in [3]. For the full
pseudocode and the formal proof see [3].

u

v

u

vu′

Case 1

Case 1 Case 2 Case 3

L` Lr

L` Lr

u
vu′

L` Lr

u

u′
v

L` Lr

u

u′
v

L` Lr

Figure 4 Comparing u to v: in Case 1, we know that u∗ cannot be in u.r. We compare u′ and v
to decide how to proceed: in Case 1, we know that u∗ cannot be in u′.r; we go to u′.`; in Case 2, we
know that u∗ cannot be in u.r and that v∗ cannot be in v.`; we go to u.` and to v.r; in Case 3, we
know that u∗ is in u′.r (and hence in u.`) or in v.`; we go to u.` and to v.`.

SoCG 2019



26:8 Maintaining the Union of Unit Discs

3 Maintaining the union of unit discs under insertions

To maintain the union of unit discs under insertions, we maintain dynamic data structures
for representing the boundary of the union, for reporting the arcs of the boundary that
intersect with the next disc to be inserted, and for updating the boundary representation
due to the insertion of the new disc. This section is dedicated to these data structures.

Overview of the algorithm. We denote by D(x) the unit disc centered at x. Let U be the
union of n unit discs and let D(x) be the new unit disc, which we wish to insert. In order
to report the arcs of ∂U that intersect D(x), we overlay the plane with an implicit grid,
where only cells that intersect with U are stored, and where the size of the diagonal of a grid
cell is 1. The arcs of ∂U are divided into the cells of the grid—each arc of ∂U is associated
with the cell that contains it. Note that if an arc belongs to more than one cell then we
split it into (sub)arcs at the boundaries of the cells that it crosses (see an illustration of the
structure in [3].We divide the arcs of a given cell into four sets: top, right, bottom and left,
which we denote by Et, Er, Eb and El respectively (see Section 3.1). The algorithm consists
of the following main steps: (1) Find the cells that D(x) intersects. (2) For each such cell
find the arcs of each one of the sets Et, Er, Eb and El that D(x) intersects. Cells of the
union that contain no boundary arcs are treated in a special way. (3) Update ∂U using the
arcs we found in the previous step and with ∂D(x).

Step 1 of the algorithm is implemented using a balanced binary tree Ω on the active cells,
namely cells that have non-empty intersection with the current union U . The key of each
active cell is the pair of coordinates of its bottom left corner. The active cells are stored at
the leaves of the tree in ascending lexicographic order. Finding the cells intersected by a
new disc, inserting or deleting a cell, take O(logn) time each. For details, see, e.g., [13]. As
we will see below, the structure Ω will also be used to decide whether a new disc is fully
contained in the current union or lies completely outside the current union (Section 3.3).

Most of this section is dedicated to a description of Steps 2 and 3 of the algorithm for
the set Et. The sets Er, Eb, and El can be handled in a similar manner. The basic property
that we use is that D(x) intersects an arc e if and only if x belongs to e⊕D1, namely the
Minkowski sum of e with a unit disc.

We split the boundaries of the Minkowski sums of Et into upper and lower curves at the
x-extremal points; in what follows, we refer to them as upper and lower curves, and denote
their respective sets by Γ+ and Γ−. (For clarity, we will refer to portions of the boundary of
the union as arcs and to portions of the boundary of the Minkowski sums as curves.) The
disc D(x) intersects the arc e ∈ Et if and only if x lies above the lower curve induced by e
and below the upper curve induce by e. We will store the curves of Γ+ in a dynamic structure
∆+ and the curves of Γ− in a dynamic structure ∆− (both described in Section 3.2).

Another property that we use is the following (see Lemma 12 below): Let ` be a vertical
line that passes through x, the center of the new disc. Then the intersection points of curves
in Γ+ with ` are all above the intersection points of curves of Γ− with `.

Assume for the sake of exposition that we are given the point ξ of intersection between `
and the upper envelope of the curves in Γ−. If the center x of our new disc is above ξ then,
since x is above all the lower curves that cross ` we only need to search the structure ∆+ for
the upper curves that lie above x—these will determine the arcs of Et that are intersected by
D(x). If the point x coincides with or lies below ξ then we only need to search the structure
∆− for the lower curves that lie below x—now these will determine the arcs of Et that are
intersected by D(x).



Pankaj K. Agarwal, Ravid Cohen, Dan Halperin and Wolfgang Mulzer 26:9

However, we cannot easily obtain the point ξ, and hence querying the data structures
is a little more involved: We use ∆+ to iterate over the upper curves that lie above x. For
every upper curve we check in O(1) time whether its corresponding arc (of Et) intersects
with D(x). If it intersects then we add this arc to the output list and continue to the next
upper curve. If all the upper curves above x turn out to be induced by arcs intersecting D(x)
we output this list of arcs and stop.

If all the reported arcs from the query of ∆+ indeed intersect D(x), then we are guaranteed
that x is above ξ and this is the complete answer. Due to Lemma 12, if we detect that the
arc induced by a curve reported by ∆+ to lie above x is not intersecting D(x), then we are
guaranteed that x is on or below ξ and we will obtain the full reply by querying ∆−.

We review the geometric foundations needed by our algorithms and data structures in
Section 3.1, then describe the data structures in Section 3.2. Finally, in Section 3.3 we
explain how we solve our motivating problem—dynamically reporting the area of the union.

3.1 Preliminaries
Let B be an axis-parallel square, which represents one grid cell with unit-length diagonal,
and let `1 and `2 be lines that support the diagonals of B. These lines divide the plane into
top, right, bottom and left quadrants, which we denote by Qt, Qr, Qb and Ql, respectively.

Let U be the union of n unit discs. We divide the arcs of ∂U that are contained in B
into four sets according to the quadrant which contains their centers. In case that a center
lies on one of the lines then it is added either to the top or to the bottom quadrant. Denote
these four sets of arcs by Et, Er, Eb and El. The power of this subdivision into quadrants is
that now the projections of the arcs in any one set onto a major axis (the x-axis for Et or
Eb, and the y-axis for El or Er), are pairwise interior disjoint. For example, Et contains the
arcs whose centers are located in Qt, and the projections of the arcs in Et onto the x-axis
are pairwise interior disjoint, as we show below in Lemma 6.

I Definition 4. For two bounded x-monotone arcs ei and ej we write ei ≤x ej if and only if
the right endpoint of ei is to the left of or coincides with the left endpoint of ej.

I Lemma 5. Each arc in Et is portion of a lower semicircle.

I Lemma 6. The x-projections of the (relative interiors of) arcs in Et are pairwise disjoint.

Relying on Lemma 6, henceforth we assume that the arcs in Et are ordered from left to
right: e1, . . . , em. We wish to find which arcs of the set Et intersect with the new unit disc
D(x) to be inserted. For this purpose, we compute the Minkowski sum of each arc ei of Et
with a unit disc centred at the origin. Then, we divide the boundary of each Minkowski sum
into upper and lower curves at the x-extremal points: denote the top curve by γ+

i and the
bottom curve by γ−i . We denote the set of the upper curves, {γ+

i |ei ∈ Et}, by Γ+ and the
set of the lower curves, {γ−i |ei ∈ Et}, by Γ−. In the rest of this section we prove some useful
properties regrading the curves in Γ+ and Γ−:
P1 Every lower curve in Γ− can appear at most once on the lower envelope of the curves in

Γ−. Furthermore, if γ−i and γ−j appear on the lower envelope then γ−i appears to the left
of γ−j if and only if ei <x ej .

P2 Let ei, ei+1 and ei+2 be an ordered sequence of arcs in Et and q be a point. If q lies
below γ+

i and γ+
i+2 then q lies also below γ+

i+1.
P3 For every vertical line `. The intersection points of the lower curves with ` are below the

intersection points of the upper curves with `.

SoCG 2019



26:10 Maintaining the Union of Unit Discs

In order to prove Property P1, we first need to show that every pair of lower curves
intersect at most once.

I Lemma 7. Let ei and ej be arcs of Et. Then γ−i and γ−j intersect in exactly one point.

For two x-monotone curves `1, `2 that intersect exactly once, we say that `1 < `2 when `1
appears on their joint lower envelope immediately to the left of their intersection point and
`2 < `1 otherwise. The proof of Lemma 7 also implies,

I Corollary 8. For any pair of curves γ−i , γ
−
j ∈ Γ−, γ−i < γ−j if and only if ei <x ej.

We now turn to discuss the upper curves. To prove Property P2 (Lemma 10), we first
consider the structure of the upper envelope of the upper curves.

I Observation 9. Let p and q be the endpoints of the arc ei in Et. The upper curve γ+
i is

the upper envelope of the upper boundaries (namely, semicircles) of the discs D(p) and D(q)

I Lemma 10. Let ei, ei+1 and ei+2 be an ordered sequence of arcs in Et and q be a point.
If q is below γ+

i and γ+
i+2 then q is also below γ+

i+1.

Proof. Let p1, p2, p3 be points on arcs that belong to Et with p1 <x p2 <x p3. Let σ+
1 , σ+

2
and σ+

3 be the upper semicircles of ∂D(p1), ∂D(p2) and ∂D(p3), respectively. Let p+
12 and

p+
23 be the intersection points of σ+

1 ∩σ
+
2 and σ+

2 ∩σ
+
3 , respectively. These intersection points

exist, since the distance between every pair of points in B is at most one. By the assumption,
p1 <x p2, which means that σ+

1 appears to the left of σ+
2 on the upper envelope of σ+

1 and σ+
2 .

Let c be the center of the arc e of Et on which p2 lies. The point c is on σ+
2 , since p2 belongs

to a lower semicircle of radius 1. In addition, c is not below σ+
1 since otherwise p1 ∈ D(c)

which would contradict that p1 is a point on an arc in Et. This means that p+
12 ≤x c. The

same argument implies that p+
23 ≥x c and therefore p+

12 ≤x p
+
23. This in turn implies that the

intersection point, p+
13, between σ

+
1 and σ+

3 is below or on σ+
2 and therefore every point that

lies below σ+
1 and σ+

3 lies below σ+
2 . The only condition on p1, p2 and p3 is that they will be

x-ordered. ei ≤x ei+1 ≤x ei+2, so the claim holds (see Figure 5). J

B

Figure 5 (On the left). An example of ∂U ∩B. e1, e2 and e3 are the arcs of Et whose centers are
c1, c2 and c3, respectively. The red, green and blue outer shapes are the boundary of the Minkowski
sums of each of e1, e2 and e3 with a disc of radius 1, respectively. γ+

1 and γ−1 are denoted by the
upper and lower red curves whose endpoints are q1 and q2, respectively. (On the right) Illustration
of the proof of Lemma 10.

For p an endpoint of ei ∈ Et, we call the upper semi-circle of the disc D(p) the upper
curve of p. We denote the upper envelope of the curves in Γ+ by U(Γ+). Note that some of



Pankaj K. Agarwal, Ravid Cohen, Dan Halperin and Wolfgang Mulzer 26:11

the upper curves may appear on U(Γ+) as a single point, namely, they coincide with one of
the breakpoints of U(Γ+). The following corollary stems from the proof of Lemma 10.

I Corollary 11. (i) The upper curve of each endpoint of every arc of Et appears on U(Γ+).
(ii) The x-order of the curves on U(Γ+) corresponds to the x-order of the endpoints of the
arcs of Et.

Next, we prove that for any pair of arcs ei, ej ∈ Et, γ+
i and γ−j are disjoint. Furthermore,

we show that γ+
i is above γ−j , and by that prove Property P3.

I Lemma 12. Let ei and ej be two distinct arcs in Et and let ` be a vertical line. If `
intersects with γ+

i and γ−j at p and q, respectively, then p >y q.

3.2 Data structures

In this section we describe two data structures. The data structure ∆+ (resp. ∆−), dynam-
ically maintains the set Γ+ of the upper curves (resp. Γ− of lower curves). The purpose
of these structures is to efficiently answer the following queries: given a point x, report on
the upper (resp. lower) curves which are above (resp. below) x. For the structure ∆+ it is
required that we get the answer gradually, one curve after the other, since we need to test
each curve for being relevant (in addition to being above x), and stop as soon as we detect
the first irrelevant curve.

3.2.1 Dynamically maintaining the lower curves

For maintaining the lower curves Γ− induced by the arcs in Et, we implement ∆− using the
data structure described in Section 2. Recall that the data structure dynamically maintains a
set of curves fulfilling property P1 and supports the following query: given a point x report
the curves in Γ− that are below x.

Update. After we insert a new unit disc we may have to delete and insert many lower
curves. If a lower curve γ−i is split into subcurves, then we delete γ−i and create two new
subcurves instead. In order for Property P1 to hold at all times, we first delete the old lower
curves from ∆− and then insert the new ones.

3.2.2 Dynamically maintaining the upper curves

Description. Let p1, p2, . . . , pr be the endpoints of the arcs of Et sorted in ascending x-order.
Recall that U(Γ+) denotes the upper envelope of Γ+. Let s1, s2, . . . , sr be the arcs of U(Γ+)
ordered from left to right. Note that each endpoint of Et corresponds to an arc in U(Γ+),
i.e., pi corresponds to the curve si. The data structure ∆+ is a balanced binary search tree.
We store the points pi in the leaves of the tree in their left-to-right order. We also store
in each leaf pointers rn and ln to its right and left neighboring leaves respectively, if exist.
Each internal node stores a pointer lml to the leftmost leaf of its right subtree. To keep the
a structure simple, if two arcs of Et meet at a single point, we keep only one of the endpoints
incident to this point in the list {pi}. However, we mark in the leaf of pi which are the two
arcs incident to it. Below, when we traverse the leaves of the tree and test the respective
arcs of Et for intersection with the new disc, in some nodes we may need to test two arcs.

SoCG 2019



26:12 Maintaining the Union of Unit Discs

Query. Let q be a query point. By following a path from the root, we first find the leaf
v such that the vertical line through p intersects the edge sv. The search down the tree is
carried out as follows. Suppose we reached an internal node u. We use the pointer lml(u) to
obtain the leaf w, and use ln(w) to find the point immediately to its left in the sequence
{pi}. These two points will determine the breakpoint of U(Γ+) that separates between the
left and right portions of the envelope, which are represented by the subtrees rooted at the
left and right children of u.

Recall that the structure ∆+ plays the extra role of deciding whether the center x of
the new disc lies above the point ξ or not (see the overview the algorithm in the beginning
of Section 3). Therefore the query process is somewhat more involved than if we used the
structure only to determine which curves of Γ+ pass above x.

Once we find the point pi whose arc si of the envelope intersects the vertical line through
the query point q, we will be traversing leaves of ∆+ starting at v going both rightward and
leftward. At each leaf u we test whether q lies below the curve sj stored at u and if so, we
check whether D(x) intersects the relevant arc of Et. If the answer to both predicates is true
then we continue the search in the same direction. If while we search rightwards the first
predicate is false then we go leftwards starting from v. If the first predicate is false and we
search leftwards then we stop the search and report on the arcs that we found. If the first
predicate is true and second predicate is false then we continue with ∆−.

Update. After we insert a new disc, many arcs may be deleted from Et and many new arcs
may be inserted into Et. We simply remove the endpoints of the deleted arcs and insert the
endpoints of the new arcs into ∆+.

The correctness of the query procedure follows from Lemma 10. The performance of the
structure is summarized in the following lemma whose proof is straightforward.

I Lemma 13. The query time of the data structure is O(logn+ k), where k is the number
of reported arcs. The update requires O(logn) time per operation.

When querying the data structures ∆+ and ∆− we obtain the set I of arcs of the existing
union-boundary that need to be deleted or partially cut since they are covered by the new
disc D(x) to be inserted. However, we also need to update the structures with the arcs that
the boundary of the new disc contributes to the union boundary.

To find which portions of ∂D(x) appear on the boundary of the union U ∪ D(x), we
construct the arrangement A(I ∪ ∂D(x)) and look for faces of this arrangement that abut
∂D(x) and are not in the union U . One can show that in a face f of this type the arcs
of ∂U appear on it as concave, meaning that any point inside this face is outside the disc
bounded by the arcs. Denote the size of I by k. Assume first that k ≥ 1. We can construct
the arrangement in O(k log k) time (recall that the arcs in I ∪ ∂D(x) are pairwise interior
disjoint). Finding the arcs of ∂D(x) that should be inserted takes another O(k) time.

If k = 0, there are two cases based on whether D(x) ∩ U is (i) D(x) or (ii) the empty set.
To distinguish between the cases we need to either (i) find a point that belongs to D(x) and
U , or (ii) a point that belongs to D(x) but not to U . Recall that in order to find I we overlay
the plane with a grid of cells of unit-length diagonal each. This implies that at least one
of the cells, denoted by ω, is fully contained in D(x). If ω is an active cell, i.e., ω ∩ U 6= ∅,
then ω is fully contained in U (I is an empty set) and therefore D(x) ∩ U = D(x); otherwise
D1(x) ∩ U = ∅. To check whether ω is active, we search for it in the structure Ω. In case (i)
we do nothing further, and in case (ii) we make all the grid cells covered by D(x) active, and
we update the data structures of each grid cell crossed by ∂D(x) by the relevant portions of
∂D(x). To conclude,



Pankaj K. Agarwal, Ravid Cohen, Dan Halperin and Wolfgang Mulzer 26:13

I Theorem 14. The boundary arcs of the union of a set of n unit discs can be maintained
under insertion in a data structure of O(n) size so that a new disc can be inserted in
O(k log2 n) time, where k is the total number of changes on the boundary of the union.

3.3 Maintaining the area of the union
We are now ready to solve our motivating problem, namely dynamically reporting the area
of the union as we insert discs. At a a high level our algorithm proceeds as follows:
1. Find the set I of the arcs on the boundary of the union U that intersect with the new

disc D(x) to be inserted.
2. Compute the arrangement A(I ∪ ∂D(x)).
3. Calculate the extra area (over the area of the union before inserting D(x)) that D(x)

covers, using A(I ∪ ∂D(x)).

In order to find I we make use of the data strctures described above and summarized
in Theorem 14. Let k denote the number of arcs in I and assume that k ≥ 1. We use
a sweep-line algorithm to compute the arrangement A(I ∪ ∂D(x)) in time O(k log k). To
calculate the extra area that D(x) covers, we go over the faces of the arrangement and sum
up the area of the faces that are contained in D(x) \ U . If k = 0 then either the disc is fully
contained in the current union (see above for how to determine this), in which case we do
nothing, or it is disjoint from the union before the insertion of the disc, in which case we
increase the area by π. To conclude,

I Theorem 15. Given a sequence of n unit discs in R2 to be inserted one after the other,
reporting the area of the union of the discs after each insertion can be carried out in O(k log2 n)
time and O(n) space, where k is the total number of structural changes to the boundary of
the union incurred by the insertion of the new disc.

4 Intersection-searching of unit arcs with unit disc

In this section we address the following intersection-searching problem: Preprocess a collection
C of circular arcs of unit radius into a data structure so that for a query unit disc D(x),
centered at the point x, the arcs in C intersecting D(x) can be reported efficiently. We
assume for simplicity that every arc in C belong to the lower semicircle.

Let e ∈ C be a unit-radius circular arc, and let p1 and p2 be its endpoints. A unit disc
D(x) intersects e if and only if e⊕D(0), the Minkowski sum of e with a unit disc, contains
the center x. Let z := D(p1) ∪D(p2), and let D+(c) be the disk of radius 2 centered at c; z
divides D+(c) into three regions (see Fig. 6): (i) z+, the portion of D+(c) \ z above z, (ii) z
itself, and (iii) z−, the portion of D+(c)\ z below z. It can be verified that e⊕D(0) = z∪ z−.
We give an alternate characterization of z ∪ z−, which will help in developing the data
structure.

Let ` be a line that passes through the tangents points, p′1 and p′2, of D(p1) and D(p2)
with D+(c), respectively, and let `− be the halfplane lying below `. Set L(e) = D+(c) ∩ `−
(see Fig 6).

I Lemma 16. If ∂D(p1) and ∂D(p2) intersect at two points (one of which is always c) then
` passes through q := (∂D(p1) ∩ ∂D(p2)) \ {c}. Otherwise c ∈ `.

Proof. Assume that q exists. The quadrilateral (c, p1, q, p2) is a rhombus since all its edges
have length 1. Let α be the angle ∠p1qp2 and β be the angle ∠cp1q. The angle ∠qp1p

′
1

is equal to α since the segment (c, p′1) is a diameter of D(p1). The angle ∠p1qp
′
1 is equal

SoCG 2019



26:14 Maintaining the Union of Unit Discs

to β
2 since 4p1qp

′
1 is an isosceles triangle. The same arguments apply to the angle ∠p2qp

′
2

implying that the angle ∠p′1qp
′
2 is equal to π.

Assume that q does not exists then the segment (p1, p2) is a diameter of D(c). The
segment (c, p′1) is a diameter of D(p1). The segment (p1, p2) coincide with (c, p′1) at the
segment (c, p1). The same argument applies to the segment (c, p′2), implying that the angle
∠p′1qp

′
2 is equal to π (see Fig 6). J

Figure 6 (On the left) Partition of D2(c) into three regions: z+, z and z−. (On the right)
Illustration of Lemma 16.

The following corollary summarizes the criteria for the intersection of a unit circular arc
with a unit disc.

I Corollary 17. Let e be a circular arc in C with endpoints p1 and p2 and center c. Then (i)
z∪ z− = z∪L(e). (ii) e intersects a unit disc D(x) if and only if at least one of the following
conditions is satisfied: (a) x ∈ D(p1) (or p1 ∈ D(x)), (b) x ∈ D(p2) (or p2 ∈ D(x)), and (c)
x ∈ L(e).

We thus construct three separate data structures. The first data structure preprcesses the
left endpoints of arcs in C for unit-disc range searching, the second data structure preprocesses
the right endpoints of arcs in C for unit-disc range searching, and the third data structure
preprocesses L = {L(e) | e ∈ C} for inverse range searching, i.e., reporting all regions in
L that contain a query point. Using standard circle range searching data structures (see
e.g. [2, 4]), we can build these three data structures so that each of them takes O(n) space
and answers a query in O(n1/2+ε + k) time, where k is the output size. Furthermore, these
data structures can handle insertions/deletions in O(log2 n) time. We omit all the details
from here and conclude the following:

I Theorem 18. Let C be a set of n unit-circle arcs in R2. C can be preprocessed into a data
structure of linear size so that for a query unit disk D, all arcs of C intersecting D can be
reported in O(n1/2+ε + k) time, where ε is an arbitrarily small constant and k is the output
size. Furthermore the data structure can be updated under insertion/deletion of a unit-circle
arc in O(log2 n) amortized time.

Acknowledgement. We thank Haim Kaplan and Micha Sharir for helpful disucussions.



Pankaj K. Agarwal, Ravid Cohen, Dan Halperin and Wolfgang Mulzer 26:15

References
1 Pankaj K. Agarwal. Range searching. In Jacob E. Goodman, Joseph O’Rourke, and Csaba

Tóth, editors, Handbook of Discrete and Computational Geometry, chapter 40. Chapman &
Hall/CRC, 3rd edition, 2017.

2 Pankaj K. Agarwal. Simplex Range Searching and Its Variants: A Review, pages 1–30. Springer
International Publishing, Cham, 2017.

3 Pankaj K. Agarwal, Ravid Cohen, Dan Halperin, and Wolfgang Mulzer. Maintaining the union
of unit discs under insertions with near-optimal overhead, 2019. arXiv:arXiv:1903.10943v1.

4 Pankaj. K. Agarwal and Jiří Matoušek. On range searching with semialgebraic sets. Discrete
& Computational Geometry, 11(4):393–418, 1994.

5 Pankaj K. Agarwal and Jiří Matoušek. Dynamic half-space range reporting and its applications.
Algorithmica, 13(4):325–345, 1995.

6 F. Aurenhammer. Improved algorithms for discs and balls using power diagrams. Journal of
Algorithms, 9(2):151–161, 1988. doi:10.1016/0196-6774(88)90035-1.

7 Gerth Stølting Brodal and Riko Jacob. Dynamic planar convex hull with optimal query time.
In Algorithm Theory - SWAT 2000, 7th Scandinavian Workshop on Algorithm Theory, Bergen,
Norway, July 5-7, 2000, Proceedings, pages 57–70, 2000.

8 Gerth Stølting Brodal and Riko Jacob. Dynamic planar convex hull. In Proceedings of the
43rd Symposium on Foundations of Computer Science, pages 617–626, 2002.

9 Timothy M. Chan. Dynamic planar convex hull operations in near-logarithmaic amortized
time. J. ACM, 48(1):1–12, 2001.

10 Timothy M. Chan. A dynamic data structure for 3-d convex hulls and 2-d nearest neighbor
queries. J. ACM, 57(3):16:1–16:15, 2010.

11 Ravid Cohen, Dan Halperin, and Yossi Yovel. Sensory regimes of effective distributed searching
without leaders. Manuscript, 2018.

12 Mark de Berg, Kevin Buchin, Bart MP Jansen, and Gerhard Woeginger. Fine-grained
complexity analysis of two classic tsp variants. arXiv preprint arXiv:1607.02725, 2016.

13 Dan Halperin and Mark H. Overmars. Spheres, molecules, and hidden surface removal. Comput.
Geom., 11(2):83–102, 1998.

14 Dan Halperin and Micha Sharir. Arrangements. In Jacob E. Goodman, Joseph O’Rourke,
and Csaba Tóth, editors, Handbook of Discrete and Computational Geometry, chapter 28.
Chapman & Hall/CRC, 3rd edition, 2017.

15 Haim Kaplan, Wolfgang Mulzer, Liam Roditty, Paul Seiferth, and Micha Sharir. Dynamic
planar Voronoi diagrams for general distance functions and their algorithmic applications.
In Proceedings of the 28th Annual ACM-SIAM Symposium on Discrete Algorithms, pages
2495–2504, 2017.

16 Haim Kaplan, Robert Endre Tarjan, and Kostas Tsioutsiouliklis. Faster kinetic heaps and
their use in broadcast scheduling. In Proceedings of the 12th Annual Symposium on Discrete
Algorithms, pages 836–844, 2001.

17 Klara Kedem, Ron Livne, János Pach, and Micha Sharir. On the union of jordan regions
and collision-free translational motion amidst polygonal obstacles. Discrete & Computational
Geometry, 1:59–70, 1986.

18 Mark H. Overmars and Jan van Leeuwen. Maintenance of configurations in the plane. Journal
of Computer and System Sciences, 23(2):166–204, 1981.

19 Franco P. Preparata and Michael Ian Shamos. Computational Geometry. An Introduction.
Springer-Verlag, New York, 1985.

20 Paul G Spirakis. Very fast algorithms for the area of the union of many circles. Report no.
98—Dept. Computer Science, Courant Institute, New York University, 1983.

SoCG 2019

http://arxiv.org/abs/arXiv:1903.10943v1
http://dx.doi.org/10.1016/0196-6774(88)90035-1

	Introduction
	Dynamic lower envelope for pseudo-lines
	Preliminaries
	Data structure and operations
	Finding the intersection point of two lower envelopes

	Maintaining the union of unit discs under insertions
	Preliminaries
	Data structures
	Dynamically maintaining the lower curves
	Dynamically maintaining the upper curves

	Maintaining the area of the union

	Intersection-searching of unit arcs with unit disc

