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Abstract. Let P be a d-dimensional n-point set. A partition T of P is
called a Tverberg partition if the convex hulls of all sets in T intersect in
at least one point. We say T is t-tolerated if it remains a Tverberg parti-
tion after deleting any t points from P . Soberón and Strausz proved that
there is always a t-tolerated Tverberg partition with dn/(d + 1)(t + 1)e
sets. However, so far no nontrivial algorithms for computing or approxi-
mating such partitions have been presented.
For d ≤ 2, we show that the Soberón-Strausz bound can be improved,
and we show how the corresponding partitions can be found in polyno-
mial time. For d ≥ 3, we give the �rst polynomial-time approximation
algorithm by presenting a reduction to the (untolerated) Tverberg prob-
lem. Finally, we show that it is coNP-complete to determine whether a
given Tverberg partition is t-tolerated.

1 Introduction

Let P ⊂ IRd be a point set of size n. A point c ∈ IRd has (Tukey) depth m
with respect to P if every closed half-space containing c also contains at least m
points from P . A point of depth dn/(d + 1)e is called a centerpoint for P . The
well-known Centerpoint Theorem [10] states that any point set has a centerpoint.
Centerpoints are of great interest as they constitute a natural generalization of
the median to higher-dimensions and since they are invariant under scaling or
translations and robust against outliers.

Chan [1] described a randomized algorithm that �nds a d-dimensional cen-
terpoint in expected time O(nd−1). Actually, Chan solves the seemingly harder
problem of �nding a point with maximum depth, and he conjectures that his
result is optimal. Since this is infeasible in higher dimensions, approximation
algorithms are of interest. Already in 1993, Clarkson et al. [2] developed a
Monte-Carlo algorithm that �nds a point with depth Ω(n/(d + 1)2) in time
O(d2(d log n+log(1/δ))log(d+2)), where δ is the error-probability. Teng [13] proved
that testing whether a given point is a centerpoint is coNP-complete, so we do
not know how to verify e�ciently the output of the algorithm by Clarkson et al.
For a subset of centerpoints, Tverberg partitions [14] provide polynomial-time
checkable proofs for the depth: a Tverberg m-partition for a point set P ⊂ IRd is
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a partition P = T1∪̇T2∪̇ . . . ∪̇Tm of P into m sets such that
⋂m

i=1 conv(Ti) 6= ∅.
Each half-space that intersects

⋂m
i=1 conv(Ti) must contain at least one point

from each Ti, so each point in
⋂m

i=1 conv(Ti) has depth at least m. Tverberg's
theorem states that m = dn/(d+ 1)e is always possible. Thus, there is always a
centerpoint with a corresponding Tverberg partition. Miller and Sheehy [7] de-
veloped a deterministic algorithm that computes a point of depth dn/2(d+1)2e
in time nO(log d) together with a corresponding Tverberg partition. This was
recently improved by Mulzer and Werner [9]. Through recursion on the dimen-
sion, they can �nd a point of depth dn/4(d+1)3e and a corresponding Tverberg
partition in time dO(log d)n.

Let T be a Tverberg m-partition for P . If any nonempty subset R ⊂ P is
removed from P , we do not longer know if

⋂m
i=1 conv(Ti \R) 6= ∅. In the worst-

case, the maximum number of sets in T whose convex hulls still have a nonempty
intersection is m − |R|. This is not always desired. It is therefore of interest to
study Tverberg partitions that guarantee

⋂m
i=1 conv(Ti\R) to be nonempty if the

size of R is not �too big�. We call a Tverberg partition t-tolerated if it remains a
Tverberg partition of P even after removing t arbitrary points from P . In 1972,
Larman [5] proved that every set of size 2d + 3 admits a 1-tolerated Tverberg
2-partition. This was motivated by a problem that was proposed to him by Mc-
Mullen: �nd the largest number of points that can be brought in convex position
by a permissible projective transformation. Colín [4] generalized Larman's result,
showing that sets of size (t + 1)(d + 1) + 1 always have a t-tolerated Tverberg
2-partition. Later, Montejano and Oliveros conjectured that every set of size
(t+ 1)(m− 1)(d+ 1) + 1 admits a t-tolerated Tverberg m-partition [8, Conjec-
ture 4.2]. This was proven by Soberón and Strausz [12] who adapted Sarkaria's
proof of Tverberg's theorem [11] to the tolerated setting. Soberón and Strausz
also conjectured this bound to be tight [12, Conjecture 1]. Up to now, no ex-
act or approximation algorithms for tolerated Tverberg partitions appear in the
literature.

In this paper, we give new bounds for one- and two-dimensional tolerated
Tverberg partitions, disproving the Soberón-Strausz-conjecture. We also give ef-
�cient algorithms for �nding the corresponding partitions. Our bound is tight
for d = 1. For higher dimensions, we describe an approximation preserving re-
duction to the untolerated Tverberg problem. Thus, we can apply existing and
possible future algorithms for the untolerated Tverberg problem in the tolerated
setting. Finally, we show that testing whether a given Tverberg partition has
tolerance t is coNP-complete if the dimension is not �xed.

2 Low Dimensions

We start with an algorithm for the one-dimensional case that yields a tight
bound. This can be bootstrapped to higher dimensions with a lifting approach
similar to [9]. In two dimensions, we also get an improved bound if the size of
the desired partition and the tolerance is large enough.
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2.1 One Dimension

Let P ⊂ IR with |P | = n, and let T = {T1, T2, . . . , Tm} be a t-tolerated Tverberg
m-partition of P . By de�nition, there is no subset R ⊂ P, |R| = t whose removal
separates the convex hulls of the sets in T . Bounding the size of the sets in T
gives us more insight into the structure.

Lemma 2.1. Let P ⊂ IR with |P | = n and T = {T1, T2, . . . , Tm} a t-tolerated
Tverberg m-partition of P . Then

(i) for i = 1, . . . ,m, we have |Ti| ≥ t+ 1; and
(ii) for i, j = 1, . . . ,m, i 6= j, we have |Ti ∪ Tj | ≥ 2t+ 3.

Proof. (i) Suppose |Ti| ≤ t. After removing Ti from P , the intersection of the
convex hulls of the sets in T becomes empty, and T would not be t-tolerated.

(ii) Suppose there are Ti, Tj ∈ T with |Ti ∪ Tj | ≤ 2t + 2. By (i), we have
|Ti| = |Tj | = t+1. Let pmin = min(Ti∪Tj) and assume w.l.o.g. that pmin ∈ Ti
(see Figure 1). Then |Ti \ {pmin}| = t, and removing the set Ti \ {pmin}
separates the convex hulls of Ti and Tj . This again contradicts T being
t-tolerated.

ut

Ti

pmin

Tj

Fig. 1. The convex hulls of two sets of size t+1 can be separated by removing t points.

Lemma 2.1 immediately implies a lower bound on the size of any point set
that admits a t-tolerated Tverberg m-partition.

Corollary 2.2. Let P ⊂ IR with |P | < m(t+ 2)− 1. Then P has no t-tolerated
Tverberg m-partition.

Now what happens for |P | = m(t+2)−1? Note that for t > 0 and m > 2, we
have m(t+2)−1 < 2(t+1)(m−1)+1, the bound by Soberón and Strausz. Thus,
proving that a t-tolerated Tverberg m-partition exists for any one-dimensional
point set of size m(t+ 2)− 1 would disprove the Soberón-Strausz conjecture.

Let P ⊂ IR be of size m(t+2)−1. By Lemma 2.1, in any t-tolerated Tverberg
partition of P , one set has to be of size t + 1 and all other sets have to be of
size t + 2. Let T = {T1, . . . , Tm} be a Tverberg m-partition of P such that T1
contains every mth point of P and each other set Ti (i ≥ 2) has one point in
each interval de�ned by the points of T1; see Fig. 2 for m = 3 and t = 2. Note
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that |T1| = t + 1 and |Ti| = t + 2 (i ≥ 2). We will show that T is t-tolerated.
Intuitively, T maximizes the interleaving of the sets, making the convex hulls
more robust to changes.

T1

p3 p6 p9

T3

T2

Fig. 2. A 2-tolerated Tverberg 3-partition for 11 (= 3(2 + 2)− 1) points.

Lemma 2.3. Let P ⊂ IR with |P | = m(t+ 2)− 1, and let T = {T1, . . . , Tm} be
an m-partition of P . Suppose that |T1| = t+1, and write T1 = (p1, p2, . . . , pt+1),
sorted from left to right. Suppose that each interval I ∈ {(−∞, p1), (p1, p2),
. . .,(pt+1,∞)} contains one point from each Ti, for i = 2, . . . ,m. Then T is a
t-tolerated Tverberg m-partition for P .

Proof. Suppose there exist Ti, Tj ∈ T , (i 6= j) and a subset R ⊂ P of size t such
that removing R from P separates the convex hulls of Ti and Tj . Let h be a
point that separates conv(Ti \R) and conv(Tj \R). Let T−i = Ti ∩ (−∞, h] and
T+
i = Ti ∩ (h,∞), and de�ne T−j , T

+
j similarly. Figure 3 shows the situation.

Set l = |T−1 | = |T1 ∩ (−∞, h]|. By construction of T , both T−i and T−j contain
exactly l or l + 1 points.

Since removing R separates the convex hulls of Ti and Tj at h, Rmust contain
either T−i ∪ T

+
j or T−j ∪ T

+
i . However, we have

|T−i ∪T
+
j | = |T

−
i |+ |Tj |−|T

−
j | ≥

{
l + |Tj | − (l + 1) = |Tj | − 1 = t+ 1 if j 6= 1
l + |T1| − l = |T1| = t+ 1 if j = 1

and similarly |T−j ∪ T
+
i | ≥ t+ 1, a contradiction.

Thus, even after removing t points, the convex hulls of the sets in T intersect
pairwise. Helly's theorem [6, Theorem 1.3.2] now guarantees that the convex
hulls of all sets in T have a common intersection point. Hence, T is t-tolerated.

ut

Lemma 2.3 immediately gives a way to compute a t-tolerated Tverberg m-
partition in O(mt logmt) time for |P | = m(t + 2) − 1 by sorting P . However,
it is not necessary to know the order of all of P . Algorithm 1 exploits this fact
to improve the running time. It repeatedly partitions the point set until it has
selected all points whose ranks are multiples of m. These points form the set T1.
Initially, the set Q contains only the input P (line 4). In lines 6�11, we select
from each set in Q an element whose rank is a multiple of m (line 8) and we
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j T+

j

h

Fig. 3. The convex hulls of two elements in T are separated after the removal of R.
Crosses mark the removed points (i.e., points in R).

split the set at this element. Here, select(P, k) is a procedure that returns the
element with rank k of P . After termination of both loops in lines 5�11, all
remaining sets in Q correspond to points in P between two consecutive points
in T1. In lines 12�14, the points in the sets in Q are distributed equally among
the elements Ti (i ≥ 2) of the returned partition.

Algorithm 1: 1d-Tolerated-Tverberg

input : P ⊂ IR, size of partition m
1 r ← m;
2 while r ≤ |P |/2 do
3 r ← 2 · r;
4 Q← {P}; T1, T2, . . . , Tm ← ∅, ∅, . . . , ∅;
5 while r ≥ m do

6 foreach P ′ ∈ Q with |P ′| ≥ r do
7 remove P ′ from Q;
8 pr ← select(P ′, r);
9 Q← Q ∪ {{p′ ∈ P ′ | p′ < pr}, {p′ ∈ P ′ | p′ > pr}};

10 T1 ← T1 ∪ {pr};
11 r ← r/2;

12 foreach P ′ ∈ Q do

13 foreach j ∈ {2, 3, . . . ,m} do
14 remove any point from P ′ and add it to Tj ;

15 return {T1, T2, . . . , Tm};

Theorem 2.4. Let P ⊂ IR be a set of size m(t + 2) − 1. On input (P,m),
Algorithm 1 returns a t-tolerated Tverberg partition for P in time O(mt log t).

Proof. After each iteration of the outer while-loop (lines 5�11), each element
P ′ ∈ Q has size strictly less than r: initially, Q contains only P and r is strictly
greater than |P |/2. Hence, both new sets added to Q in line 9 are of size strictly
less than r. Since r is halved in each iteration, the invariant is maintained.

We will now check that Lemma 2.3 applies. We only split the sets in Q at
elements whose rank is a multiple ofm, so the ranks do not change modulom. By
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the invariant, after the termination of the outer while-loop in lines 5�11, each set
in Q has size strictly less than m. Since the ranks modulo m have not changed,
these sets do not contain any element of P whose rank is a multiple of m. Thus,
T1 contains all these elements and the remaining sets in Q after the termination
of the outer while-loop in lines 5�11 contain exactly the points of P between two
consecutive points of T1. Lines 12�14, distribute the remaining points among
T2, . . . , Tm. Lemma 2.3 now shows the correctness of the algorithm.

Let us consider the running time. Finding the initial r requiresO(log(|P |/m)) =
O(t) time. The split-element in line 8 can be found in time O(|P ′|) [3]. Thus,
since the sets are disjoint, one iteration of the outer while-loop requires O(|P |)
time, for a total of O(log(|P |/m)|P |) = O(log(t)mt). By the same argument,
both for-loops in lines 12�14 require linear time in the size of P . This results in
a total time complexity of O(mt log t) as claimed. ut

2.2 Higher Dimensions

We use a lifting argument [9] to extend Algorithm 1 to higher-dimensional input.
Given a point set P ⊆ IRd of size n, let h be a hyperplane that splits P evenly
(if n is odd, h contains exactly one point of P ). We then partition P into bn/2c
pairs (p−i , p

+
i ), where p

−
i ∈ h− and p+i ∈ h+. We obtain a (d − 1)-dimensional

point set with bn/2c elements by mapping each pair to the intersection of the
connecting line segment and h.

Let qi = p+i p
−
i ∩h be the mapped point for (p−i , p

+
i ) and T ′ = {T ′1, . . . , T ′m} a

t-tolerated Tverberg m-partition of Q = {q1, . . . , qbn/2c}. We obtain a Tverberg
m-partition T with tolerance t for P by replacing each qi in T ′ by its correspond-
ing pair (p−i , p

+
i ). Thus, we can repeatedly project the set P until Algorithm 1 is

applicable. Then, we lift the one-dimensional solution back to higher dimensions.
Algorithm 2 follows this approach. For d = 1, Algorithm 1 is applied (lines 1�

2). Otherwise, we take an appropriate hyperplane orthogonal to the xd-axis and
compute the lower-dimensional point set (lines 3�7). Finally, the result for d− 1
dimensions is lifted back to d dimensions (lines 10�11).

Proposition 2.5. Given a set P ⊂ IRd of size 2d−1(m(t+ 2)− 1), Algorithm 2
computes a t-tolerated Tverberg m-partition for P in time O(2d−1dmt+mt log t).

Proof. Since the size of P halves in each recursion step, 2d−1 points su�ce to
ensure that Algorithm 1 can be applied in the base case. Each projection and
lifting step can be performed in linear time, using a median computation. Since
the size of the point set decreases geometrically, the total time for projection
and lifting is thus O(2d−1dmt). Since Algorithm 1 has running time O(mt log t),
the result follows. ut

For d ≥ 3, the bound from Proposition 2.5 is worse than the Soberón-Strausz
bound. However, in two dimensions, we have

22−1(m(t+ 2)− 1) < (2 + 1)(m− 1)(t+ 1) + 1⇔ m/(m− 3) < t

This holds for instance if t ≥ 5 or m ≥ 7 and t ≥ 2. Thus, Algorithm 2 gives
a strict improvement over the Soberón-Strausz bound for large enough m and t.
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Algorithm 2: DimReduct-Tolerated-Tverberg

input : point set P ⊂ IRd, tolerance parameter t, size of partition m
output: t-tolerated Tverberg partition for P of size m

1 if d = 1 then
2 return 1d-Tolerated-Tverberg(P,m)

3 h← hyperplane that halves P according to the xd-coordinate;
4 foreach i ∈ {1, 2, . . . , |P ∩ h−|} do
5 p−i ← remove any point from P that belongs to P ∩ h−;

6 p+i ← remove any point from P that belongs to P ∩ h+;

7 qi ← �rst d− 1 coordinates of p−i p
+
i ∩ h;

8 Q← {q1, q2, . . . , q|P∩h−|};
9 {T ′1, T ′2, . . . , T ′m} ← DimReduct-Tolerated-Tverberg(Q,t,m);

10 foreach j ∈ {1, 2, . . . ,m} do
11 Tj ← {p−i , p

+
i | qi ∈ T ′j};

12 return {T1, T2, . . . , Tm};

3 Reduction to the Untolerated Tverberg Problem

We now show how to use any algorithm that computes (untolerated) approximate
Tverberg partitions in order to �nd tolerated Tverberg partitions. For this, we
must increase the tolerance of a Tverberg partition. In the following, we show
that one can merge elements of several Tverberg partitions for disjoint subsets
of P to obtain a Tverberg partition with higher tolerance for the whole set P .
The following lemma is also implicit in the Ph.D. thesis of Colín [4].

Lemma 3.1. Let T1, . . . , Tk be Tverberg m-partitions for disjoint point sets P1,
. . .,Pk ⊂ IRd. Let Ti,j be the jth element of Ti and ti ≥ 0 the tolerance of Ti.
Then T = {Tj =

⋃k
i=1 Ti,j | j ∈ {1, 2, . . . ,m}} is a Tverberg m-partition of

P =
⋃k

j=1 Pi with tolerance t =
∑k

i=1 ti + k − 1.

Proof. Take R ⊆ P with |R| = t. As t =
∑k

i=1 ti+k− 1 <
∑k

i=1(ti+1), there is
an i with |Pi ∩R| ≤ ti. Since Ti is ti-tolerated, we have

⋂m
i=j conv(Ti,j \R) 6= ∅.

Because each Ti,j is contained in the corresponding Tj of T , the convex hulls of
the elements in T still intersect after the removal of R. ut

This directly implies a simple algorithm: we compute untolerated Tverberg
partitions for disjoint subsets of P and then merge them using Lemma 3.1.

Corollary 3.2. Let P ⊆ IRd and let A be an algorithm that computes an un-
tolerated Tverberg m-partition for any point set of size nA(m) in time TA(m).
Then, a (b|P |/nA(m)c − 1)-tolerated Tverberg m-partition for P can be com-
puted in time O (TA(nA(m)) · |P |/nA(m)).

Proof. We split P into b|P |/nAc disjoint sets and use A to obtain for each subset
an untolerated Tverberg partition. Applying Lemma 3.1, we obtain a (b|P |/nAc−
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1)-tolerated Tverberg m-partition. Since the merging step in Lemma 3.1 takes
linear time in |P |, the total running time is O (TA(nA(m)) · |P |/nA(m)) as
claimed. ut

Table 3 shows speci�c values for Corollary 3.2 combined with Miller &
Sheehy's and Mulzer & Werner's algorithm.

Algorithm Tolerance Running time

Corollary 3.2 with Miller-Sheehy b|P |/2m(d+ 1)2c − 1 mO(log d)dO(log d)|P |

Corollary 3.2 with Mulzer-Werner b|P |/4m(d+ 1)3c − 1 dO(log d)|P |

Table 1. Corollary 3.2 combined with existing approximation algorithms for the un-
tolerated Tverberg problem.

Remark 3.3. Lemma 3.1 gives a quick proof of a slightly weaker version of the
Soberón-Strausz bound: partition P into t+1 disjoint sets of size at least b|P |/(t+
1)c. By Tverberg's theorem, for each subset there exists an untolerated Tverberg
partition of size db|P |/(t+1)c/(d+1)e. Using Lemma 3.1, we obtain a t-tolerated
Tverberg partition of size db|P |/(t+1)c/(d+1)e ≥ d|P |/(t+1)(d+1)e− 1 of P ,
which is at most one less than the Soberón-Strausz bound. This weaker bound
was also stated by Colín [4, Lemma 3.3.13].

4 Hardness of Tolerance Testing

Teng [13, Theorem 8.4] proved that testing whether a given point is a centerpoint
of a given set (TestingCenter) is coNP-complete if the dimension is part of the
input. We show the same for the problem of deciding whether a given Tverberg
m-partition has tolerance t (TestingToleratedTverberg) by a reduction to
TestingCenter. Here, m can be constant.

Lemma 4.1. Let P ⊂ IRd and let c ∈ IRd. Then c has depth t + 1 w.r.t. P if
and only if for all subsets R ⊂ P, |R| ≤ t : c ∈ conv(P \R).

Proof. �⇒� Suppose there is some R ⊂ P, |R| ≤ t with c /∈ conv(P \ R). Then,
there is a half-space h+ that contains c but no points from conv(P \ R). Thus,
c ∈ h+ and |P ∩ h+| ≤ |R| ≤ t, and hence c has depth ≤ t w.r.t. P .

�⇐� Assume c has depth t′ ≤ t w.r.t. P . Let h+ be a half-space that contains
c and t′ points from P . Set R = h+ ∩P . Then, |R| ≤ t and c /∈ conv(P \R). ut

Theorem 4.2. TestingToleratedTverberg is coNP-complete if the dimen-
sion d and the claimed tolerance t are part of the input.
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Proof. Since testing whether a given partition is Tverberg is a simple application
of linear programming, the problem lies in coNP.

Let (P ⊂ IRd, c ∈ IRd) be an input to TestingCenter. We embed the
vector space IRd in IRd+1 by identifying it with the hyperplane h : xd+1 = 0. Let
` be the line that is orthogonal to h and passes through c. Furthermore, let T−

and T+ be sets of t+ 1 arbitrary points in ` ∩ h− and ` ∩ h+, respectively. Set
T = T− ∪ T+. We claim that {P, T} is a Tverberg 2-partition for P ∪ T with
tolerance t = d|P |/(d+1)e−1 if and only if c is a centerpoint of P . See Figure 4.

�⇒� Assume {P, T} is a t-tolerated Tverberg 2-partition. By construction of
T , we have conv(P ) ∩ conv(T ) = {c}. Thus, c lies in the intersection of both
convex hulls even if any subset of size at most t is removed. Lemma 4.1 implies
that c has depth t+ 1 = d|P |/(d+ 1)e w.r.t. P , so c is a centerpoint for P .

�⇐� Assume c is a centerpoint for P . By de�nition, c has depth at least
d|P |/(d+1)e = t+1 w.r.t. P . Lemma 4.1 then implies that c is contained in the
convex hull of P even if any t points from P are removed. Since T contains t+1
points on both sides of a line through c, c is also contained in conv(T ) if any t
points from T are removed. Thus, {P, T} is a t-tolerated Tverberg 2-partition
for P ∪ T . ut

h : xd+1 = 0

`
T+T−

c

Fig. 4. Reduction of TestingCenter to TestingToleratedTverberg

5 Conclusion

We have shown that each set P ⊂ IR of size m(t + 2) − 1 can be partitioned
into a t-tolerated Tverberg partition of size m in time O(mt log t). This is tight,
and it improves the Soberón-Strausz bound in one dimension. Combining this
with a lifting method, we could also get improved bounds in two dimensions and
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an e�cient algorithm for tolerated Tverberg partitions in any �xed dimension.
However, the running time is exponential in the dimension.

This motivated us to look for a way of reusing the existing technology for the
untolerated Tverberg problem. We have presented a reduction to the untolerated
Tverberg problem that enables us to reuse the approximation algorithms by
Miller & Sheehy and Mulzer & Werner.

Finally, we proved that testing whether a given Tverberg partition is of some
tolerance t is coNP-complete. Unfortunately, this does not imply anything about
the complexity of �nding tolerated Tverberg partitions. It is not even clear
whether computing tolerated Tverberg partitions is harder than computing un-
tolerated Tverberg partitions. However, we have shown that given a set P ⊂ IRd

whose size meets the Soberón-Strausz bound, we can obtain in polynomial time a
tolerated Tverberg partition from the untolerated Tverberg partition guaranteed
by Tverberg's Theorem of size just one less than stated by the Soberón-Strausz
bound.

It remains open whether the bound by Soberón and Strausz is tight for d > 2.
We believe that our results in one and two dimensions indicate that the bound
can be improved also in general dimension. Another open problem is �nding
a pruning strategy for tolerated Tverberg partitions. By this, we mean an al-
gorithm that e�ciently reduces the sizes of the sets in a t-tolerated Tverberg
partition without deteriorating the tolerance. Such an algorithm could be used
to improve the quality of our algorithms. In Miller & Sheehy's and Mulzer &
Werner's algorithms, Carathéodory's theorem was used for this task. Unfortu-
nately, this result does not preserve the tolerance of the pruned partitions. Also
the generalized tolerated Carathéodory theorem [8] does not seem to help. It
remains an interesting problem to develop criteria for super�uous points in tol-
erated Tverberg partitions.

Acknowledgments. We would like to thank the anonymous reviewers for their
helpful and detailed comments and for pointing out that the algorithm in Corol-
lary 3.2 could be greatly simpli�ed.

References

[1] T. M. Chan. An optimal randomized algorithm for maximum Tukey depth. In
Proceedings of the 15th annual ACM-SIAM symposium on Discrete Algorithms,
pages 430�436, 2004.

[2] K. L. Clarkson, D. Eppstein, G. L. Miller, C. Sturtivant, and S. hua Teng. Ap-
proximating center points with iterative Radon points. International Journal of

Computational Geometry & Applications, 6:357�377, 1996.
[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algo-

rithms. The MIT Press, 3rd edition, 2009.
[4] N. García Colín. Applying Tverberg Type Theorems to Geometric Problems. PhD

thesis, University College London, 2007.
[5] D. Larman. On sets projectively equivalent to the vertices of a convex polytope.

Bulletin of the London Mathematical Society, 4(1):6�12, 1972.

10



[6] J. Matou²ek. Lectures on Discrete Geometry. Springer, 1st edition, 2002.
[7] G. L. Miller and D. R. Sheehy. Approximate centerpoints with proofs. Computa-

tional Geometry, 43:647�654, 2010.
[8] L. Montejano and D. Oliveros. Tolerance in Helly-type theorems. Discrete &

Computational Geometry, 45:348�357, 2011.
[9] W. Mulzer and D. Werner. Approximating Tverberg points in linear time for any

�xed dimension. In Proceedings of the 28th annual symposium on Computational

Geometry, pages 303�310, 2012.
[10] R. Rado. A theorem on general measure. Journal of the London Mathematical

Society, 1:291�300, 1946.
[11] K. Sarkaria. Tverberg's theorem via number �elds. Israel Journal of Mathematics,

79:317�320, 1992.
[12] P. Soberón and R. Strausz. A generalisation of Tverberg's theorem. Discrete &

Computational Geometry, 47:455�460, 2012.
[13] S.-H. Teng. Points, spheres, and separators: a uni�ed geometric approach to graph

partitioning. PhD thesis, Carnegie Mellon University Pittsburgh, 1992.
[14] H. Tverberg. A generalization of Radon's theorem. Journal of the London Math-

ematical Society, 41:123�128, 1966.

11


