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Abstract. Given a set P of n labeled points in the plane, the radial
system of P describes, for each p ∈ P , the radial ordering of the other
points around p. This notion is related to the order type of P , which de-
scribes the orientation (clockwise or counterclockwise) of every ordered
triple of P . Given only the order type of P , it is easy to reconstruct the
radial system of P , but the converse is not true. Aichholzer et al. (Recon-
structing Point Set Order Types from Radial Orderings, in Proc. ISAAC
2014) defined T (R) to be the set of order types with radial system R
and showed that sometimes |T (R)| = n− 1. They give polynomial-time
algorithms to compute T (R) when only given R.
We describe an optimal O(n2) time algorithm for computing T (R). The
algorithm constructs the convex hulls of all possible point sets with the
given radial system, after which sidedness queries on point triples can
be answered in constant time. This set of convex hulls can be found in
O(n) time. Our results generalize to abstract order types.

1 Introduction

Let P be a set of n labeled points in the plane. The chirotope of P is a function
that indicates the orientation of each triple of P (clockwise, counterclockwise,
or collinear). Throughout this paper, we consider only point sets in general po-
sition, that is, without collinear triples. Two labeled point sets have the same
order type if they have the same chirotope or if one chirotope is the negation
of the other. Many problems on planar point sets do not depend on the exact
coordinates of the points but only on their order type. Examples include com-
puting the convex hull and determining whether two segments with endpoints
in the point set intersect. A generalized configuration of points is a labeled point
setand an arrangement of pseudo-lines such that each pair of points is on a
pseudo-line and each pseudo-line contains exactly two points [5]. By the con-
tainment in semispaces defined by these supporting pseudo-lines, orientations of



point triples are defined analogously to point sets: if a point c is to the left of
the pseudo-line through a and b when going from a to b, then the triple (a, b, c)
is oriented counterclockwise. Abstract order types are the generalization of point
set order types to generalized configurations of points. For most combinatorial
purposes, generalized configurations of points behave like point sets; their con-
vex hull is the intersection of those halfspaces bounded by the pseudolines that
contain all the points and determines a cycle of directed arcs. Their chirotope
determines whether two arcs defined by pairs of points cross. We refer to the
work of Goodman and Pollack (see, e.g., [6]) and to a book by Knuth [7] (who
calls abstract order types “CC systems”) for more details. In this paper, we will
be solely concerned with abstract order types. As opposed to many other pub-
lications on the subject, we stress that we consider labeled abstract order types
here (and not abstract order type isomorphism classes). That is, we say that two
abstract order types are equivalent when the bijection between them is fixed and
they have the same chirotope, or one chirotope is the negation of the other.

Radial systems. The counterclockwise radial system Rχ of an abstract order
type χ on a set P defines, for each p ∈ P , the counterclockwise order Rχ(p) of
the elements in P \ {p} around p. We call each Rχ(p) a counterclockwise radial
ordering. When χ is realizable as a point set, then Rχ(p) can be found by sweep-
ing a ray around p in counterclockwise direction. Given a function U , we write
U ∼ Rχ when, for all p ∈ P , it holds that U(p) is equal to Rχ(p) or the reverse of
Rχ(p). Thus, in a sense, the relation ∼ “forgets” the clockwise/counterclockwise
direction of each individual Rχ(p). We call U an undirected radial system and
each U(p) an undirected radial ordering. When we say radial system, we always
mean counterclockwise radial system. It is possible to recover Rχ from U (all
omitted proofs can be found in the full version of the paper):

Theorem 1.1. Let χ be an abstract order type on V with |V | = n and let
U ∼ Rχ. Then U uniquely determines Rχ (up to complete reversal) and we can
recover Rχ from U by reporting the direction of every U(v) in O(n) time.

Aichholzer et al. [1] investigated under which circumstances the undirected radial
system U of a generalized configuration of points P uniquely determines the
abstract order type χ. They show that if P has a convex hull with at least four
points, then U uniquely determines χ. More precisely: let T (U) be the set of
abstract order types with undirected radial system U (i.e., the sequences in U
are known to originate from an abstract order type). We have

Theorem 1.2 ([1, Theorem 1 and Theorem 2]). Consider an abstract order
type χ on a set V with n = |V | ≥ 5 and let U ∼ Rχ. Let H ⊆ V be the points
of the convex hull of χ. Then we can compute |H| from U in polynomial time.
Further, (i) if |H| 6= 3, then T (U) = {χ} and we can compute χ from U in
polynomial time; and (ii) if |H| = 3, then |T (U)| ≤ n− 1; all elements of T (U)
have convex hull size 3; and we can compute T (U) from U in polynomial time.

In the full version of [1] it is shown that (i) can be implemented in O(n3) time.
There exist counterclockwise radial systems R with |T (R)| = n − 1. Hence,
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it is not possible to improve the bound on |T (U)| in (ii), even if we consider
counterclockwise radial systems instead of undirected radial systems [1].

Although U does not always uniquely determine χ, the pair (U,H), where
H is the set of points on the convex hull, always suffices [1]. Thus, the abstract
order types in T (U) all have different convex hulls. Given an undirected radial
system U on a set V , we say that a subset H ⊆ V is important if H is the convex
hull of some abstract order type in T (U). An important triangle is an important
set of size 3. Important sets are interrelated as follows.

Theorem 1.3 ([1, Propositions 1–4]). Consider a radial system R on a set
V with n = |V | ≥ 5. If V has more than two important triangles, then all
important triangles must have an element v∗ ∈ V in common. Thus, in general,
exactly one of the following cases applies:

(1) there is exactly one important set, and it has size at least four; or
(2) all important sets are triangles, there are at most n − 1 of them, and they

all share an element v∗ ∈ V ; or
(3) there are exactly two important sets, and they are disjoint triangles.

For cases (2) and (3), there exists actually a complete characterization of the
important triangles. For an abstract order type χ ∈ T (U), an inner important
triangle of χ is an important triangle of U that is not equal to the convex hull
of χ. The following lemma reformulates the fact that an inner important triangle
is not contained in a convex quadrilateral [1, 9].

Lemma 1.4 ([1, 9]). Let χ be an abstract order type on a set P . A trian-
gle 〈a, b, c〉 of χ is an inner important triangle iff the following conditions hold.

(1) It is empty of points of P .
(2) It partitions P \ {a, b, c} into three subsets Pa, Pb, and Pc, such that Pa is

to the left of the directed line ba and to the right of ca, and Pb and Pc are
defined analogously.

(3) For any two points v, w ∈ Pa, the pseudo-line vw intersects the edge bc; and
similarly for points in Pb and Pc.

In this context, we mention that, if R is the radial system of some point set
order type, then every abstract order type with radial system R can be realized
as a point set [9, Theorem 27]. We do not consider realizability of abstract order
types as point sets in this work. In the following, with a realization of a radial
system R, we mean an abstract order type whose radial system is R.

Interestingly, realizability of radial systems cannot be decided by checking
realizability of all induced radial systems up to any fixed constant size. Fig. 1
shows a construction which is not realizable as an abstract order type, while
every radial system induced by any strict subset of the vertices can be realized,
even as a point set order type.

Theorem 1.5. For any k ≥ 3, there exists a radial system Rk over n = 2k + 1
vertices that is not realizable as an abstract order type, but that becomes realizable
as a point set order type when removing any point.
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Fig. 1. The construction of R5 on the left, and point set order type realizations of two
induced radial systems after removing either w5 or v1 on the right.

Good drawings. A good drawing (sometimes also called simple topological graph)
of a graph is a drawing in the plane or on the sphere where each vertex is
represented by a distinct point, and each edge is represented by a Jordan arc
between its two vertices; any two such arcs intersect in at most one point, which
is either a common endpoint or a proper crossing. The rotation of a vertex v
in a good drawing is the cyclic order of the edges incident to v. The rotation
system of a good drawing is the set of the rotations of its vertices. The radial
system of a point set P is equivalent to the rotation system of the complete
geometric graph on P . A generalized configuration of points Q defines a good
drawing of Kn where the vertices are embedded on the points of Q and every
edge is a segment of a pseudo-line in Q. The radial system of Q is equivalent to
the rotation system of this good drawing. In a good drawing of Kn, the rotation
system determines which edges cross. Therefore, it fixes the drawing up to the
ordering of the crossings; in particular, we can find out whether two edges cross
by locally inspecting the rotations for the four vertices involved [8]. We will use
good drawings as a tool to maintain important sets in our algorithm.

Related work. Variations on the notion of radial systems have been studied in
many contexts. A prime example are local sequences, which are obtained by
sweeping a line (instead of a ray) around each point. Goodman and Pollack [6]
show that they determine the order type of P . Pilz and Welzl [9] describe a
hierarchy on order types based on crossing edges in which two order types are
considered equivalent iff they have the same radial system. We refer to Aichholzer
et al. [1] for a more complete list of related work.

Our results. For a given undirected radial system U on n vertices (which has
size Θ(n2)), we provide an algorithm to direct the n radial orderings in O(n)
time (Theorem 1.1). Our main algorithm identifies the set of convex hulls of
all abstract order types consistent with the given radial system in O(n) time
(provided that the input is the radial system of an abstract order type). This set
allows for constant-time queries to the chirotope for any of these abstract order
types. Hence, this is a means of reporting an explicit representation of T (U)
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in O(n) time, significantly improving Theorem 1.2. We remark that this can be
shown to be optimal, as an adversary can use any unconsidered point in a suitable
example to alter |T (n)| (e.g., by using it to “destroy” a top triangle as defined in
Section 2.1). If we do not know that the set of permutations provided as input is
indeed the radial system of an abstract order type, we show how to verify this in
O(n2) time. A straight-forward adversary argument shows that Ω(n2) time (i.e.,
reading practically the whole input) is necessary to verify whether |T (n)| = 0.
In this sense, our algorithm is optimal.

For radial systems as a data structure, we require that we can obtain the
relative order of three elements in a radial ordering in constant time. This can
be done by storing not only the radial ordering, but also the rank of each element
within some linear order defined by the radial ordering around each vertex, when
considering the n elements to be identified by their index in {1, . . . , n}.

2 Obtaining Chirotopes from Radial Systems

Let R be the radial system for which we want to obtain the set T (R) of ab-
stract order types that realize it. (This set may be empty.) Our algorithm for
computing T (R) (conceptually) constructs a good drawing of a plane graph on
the sphere by adding the vertices one-by-one and maintaining the faces that are
candidates for the convex hull. We will see later that this actually boils down to
maintaining at most two sequences of vertices plus one special vertex. Through-
out the description, we assume that the radial orderings indeed correspond to
the radial system of an abstract order type. If any of the assumptions is not
fulfilled, we know that there is no abstract order type for the given set of radial
orderings. If R can be realized as an abstract order type, then the plane graph is
the subdrawing of a drawing weakly isomorphic (cf. [8]) to the complete graph
on any generalized configuration of points that realizes that abstract order type.

For a plane cycle C = 〈c0, . . . , cm−1〉 of m vertices (which we think of as
counterclockwise with its interior to its left) in a good drawing of the complete
graph, we say that an edge civ emanates to the outside of the cycle at ci if we
encounter v in a counterclockwise sweep in R(ci) from ci−1 to ci+1.4 Otherwise,
civ emanates to the inside. If cv emanates to the outside for all c ∈ C, then v
covers the cycle. If cv emanates to the inside for all c ∈ C, then we say that v
is inside the cycle, and outside otherwise. If v neither is inside C nor covers C,
then the good drawing restricted to C plus all edges from vertices of C to v is not
plane. We call a cycle 〈c0, . . . , cm−1〉 ,m ≥ 4, compact if it is plane and, for each
ci, the edges cici+2, cici+3, . . . , cici−2 all emanate to the inside (i.e., its rotation
system corresponds to the radial system of m points in convex position).

Observation 2.1. In any realization of a radial system, a compact cycle corre-
sponds to a set of points in convex position.

Lemma 2.2. Consider a radial system R. If Γ is a good drawing of the complete
graph whose rotation system corresponds to R, then no element of an important

4 We consider all indices modulo the length of the corresponding sequence.
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set is inside of a compact cycle in Γ . In particular, no edge crosses an edge of
the cell in Γ that defines the convex hull of a realization.

Lemma 2.2 is closely related to Lemma 1.4 (see also [2, Theorem 3.2]). Consider
a radial system R and a directed edge ab. Assume that ab is an edge of the
convex hull of an abstract order type χ with Rχ ∼ R (i.e., a realization) so that
all other points of χ are to the left of ab. It is easy to see that the edge ab and R
together uniquely determine the convex hull of our abstract order type. Hence,
there is only one abstract order type realizing R with such an edge. We re-state
the following well-known fact.

Lemma 2.3. Given the radial system and a directed convex hull edge of an
abstract order type, the orientation of a triple can be reported in constant time.

2.1 Obtaining Hull Edges

Let P be a set of n points (or a generalized configuration of points), and let R
be the radial system of the abstract order type χ of P . We assume that there
is at least one abstract order type realizing R. The goal is to find a set of O(n)
candidate edges that may appear on the convex hull of a realization (i.e., the
edges of the convex hull of P if there is no other realization of R or the union of
the edges of all important triangles). Our algorithm incrementally builds a “hull
structure” (defined below) for P . Before step k, we have a current set Pk−1 ⊆ P
of k−1 points and a hull structure Zk−1 that represents the candidate edges for
Pk−1. The algorithm selects a point pk ∈ P \Pk−1, adds it to Pk−1, and updates
Zk−1. A careful choice of pk allows for updates in constant amortized time.

We begin with the description of the hull structure. Let Pk ⊆ P be a set
of k points (k ≥ 4). The kth hull structure Zk is an abstract representation
of a graph with vertex set Vk ⊆ Pk that is embedded on the sphere. That is,
Zk stores the incidences between the vertices, edges, and faces, but it does not
assign coordinates to the points. Hull structures come in three types (see Fig. 2),
which correspond in one-to-one-fashion to the three possible configurations of
important sets in Theorem 1.3:
Type 1: Zk is a compact cycle (recall that therefore,R restricted to Vk represents
a convex |Vk|-gon with |Vk| ≥ 4).
Type 2: Zk consists of a compact cycle C and a top vertex t that covers C. The
3-cycles incident to t are called top triangles. A top triangle τ is marked either
unexamined, dirty, or empty. Initially, τ is unexamined. Later, τ is marked either
dirty or empty. “Dirty” indicates that τ cannot contain a convex hull vertex in
its interior. “Empty” means that τ is a candidate for an important triangle. We
orient each top triangle so that all other vertices of Zk are to the exterior.
Type 3: Zk is the union of two vertex-disjoint 3-cycles T1 and T2, called inde-
pendent triangles. T1 and T2 are directed so that each has all of Pk to the interior.
Moreover, the edges between the vertices of T1 and T2 appear as in Fig. 2.

Let Rk be the restriction of R to Pk. We maintain the following invariant:
(a) if Rk has exactly one important set of size at least four, Zk is of Type 1
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Fig. 2. The three different types of hull structures.

and represents the counterclockwise convex hull boundary; (b) if Rk has two
disjoint important triangles, Zk is of Type 3, and the important triangles are
exactly the independent triangles; (c) if Rk has several important triangles with
a common vertex, Zk is of Type 2 and all important triangles appear as top
triangles; (d) if Rk has exactly one important triangle, Zk is of Type 2 or 3, with
the important triangle as a top triangle (Type 2) or as an independent triangle
(Type 3). Furthermore, if Zk is of Type 2, no convex hull vertex for P lies inside
a dirty triangle, and each point of Pk lies either in C or in a dirty triangle.

Initially, we pick 5 arbitrary points from P . Among those, there must be a
compact 4-cycle Z4 (e.g., [1, Figure 4]), which can be found in constant time.
Our initial hull structure Z4 is of Type 1, with vertex set V4 = P4. We next
describe the insertion step for each possible type. For the running time analysis,
we subdivide the algorithm into phases. Each phase is of Type 1, 2, or 3, and a
new phase begins each time the type of the hull structure changes.

Type 1. We take an arbitrary vertex c of Zk−1 and check in constant time
whether c has an incident edge in R emanating to the outside of Zk−1. If not,
the edges incident to c in Zk−1 are on the convex hull of P , and we are done;
see below. Otherwise, let pk ∈ P \Pk−1 be the endpoint of such an edge. We set
Pk = Pk−1 ∪ {pk}, and we walk along Zk−1 (starting at c) to find the interval I
of vertices for which the edge to pk emanates to the outside. There are two cases:
(i) if I = Zk−1 (i.e., pk covers Zk−1), then Zk is the hull structure of Type 2 with
compact cycle Zk−1, top vertex pk, and all top triangles marked unexamined;
(ii) if I = 〈ci, . . . , cj〉 is a proper subinterval of Zk−1, the next hull structure Zk
is of Type 1 with vertex sequence 〈pk, cj , . . . , ci〉 (R is realizable, so cj 6= ci).

Lemma 2.4. We either obtain an edge from which the convex hull can be de-
termined uniquely, or Zk is a valid hull structure for Pk.

Lemma 2.5. A Type 1 phase that begins with a hull structure of size m and
lasts for ` insertions takes O(m+ `) time. Furthermore, the next phase (if any)
is of Type 2, beginning with a hull structure of size at most m+ `.

Type 2. We begin with a simple observation.
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Fig. 3. Zk−1 is of Type 2 and pk is not covering: if pk forms a non-crossed 4-cycle, Zk

is of Type 1 (a, b); if not, Zk is of Type 2 with pk on the compact cycle (c, d). The
algorithm will later discover that the triangle 〈t, cj+1, cj〉 in (c) is not important since
it is inside a convex quadrilateral.

Observation 2.6. Let Zk−1 be a Type 2 hull structure with compact cycle C
and top vertex t. The vertices of C appear in their circular order in the clockwise
radial ordering around t.

We need to identify a suitable vertex pk to insert. For this, we select an
unexamined top triangle τ = 〈t, ci+1, ci〉 and test whether ci has an incident edge
that emanates to the inside of τ . If yes, let v ∈ P \Pk−1 be an endpoint of such an
edge and check whether civ crosses the edge tci+1. If so, then by Lemma 2.2 the
vertices of τ lie inside a convex quadrilateral and there is no convex hull vertex
inside τ . We mark τ dirty and proceed to the next unexamined triangle. If not,
we set pk = v and Pk = Pk−1 ∪ {pk}. If ci has no incident edge emanating to
the inside of τ , we perform the analogous steps on ci+1. If ci+1 also has no such
incident edge, we mark τ empty and proceed to the next unexamined triangle.
(The empty triangle τ might still be crossed by an edge incident to t.)

Lemma 2.7. We either find a new vertex pk, or all candidate edges for P lie
in Zk. Furthermore, no dirty triangle contains a possible convex hull vertex of P .

C

t

pk

cj
cj+1

ci
ci+1

Fig. 4. Zk−1 is of Type 2 and pk is covering.

With pk at hand, we inspect the
boundary of C to find the interval I of
vertices for which the edge to pk em-
anates to the outside of C. First, if pk
does not cover C, i.e., I = 〈ci, . . . , cj〉
is a proper subinterval of C, then pk
must lie between ci−1 and cj+1 in the
clockwise order around t, as in any
realization one of the cases in Fig. 3
applies. If pk is between ci−1 and ci
or between cj and cj+1, then either
〈pk, t, ci−1, ci〉 or 〈t, pk, cj , cj+1〉 is a
compact 4-cycle containing Pk, and
we make it the next hull structure Zk
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Fig. 5. Zk−1 is of Type 2 and pk (box) is covering: if t and pk are between the same
vertices in each other’s rotation, Zk is of Type 1 (a); if these vertices are disjoint, Zk

is of Type 3 (b); if t and pk have a common neighbor cj in the other’s rotation (c), the
new top vertex cj of Zk structure requires the construction of a new compact cycle (d).

of Type 1; see Fig. 3 (a). The green ar-
eas in the figures are the only regions
where we might still find candidate edges. Otherwise, if i + 1 = j and the edge
tpk crosses cici+1, the compact 4-cycle 〈t, cj , pk, ci〉 contains Pk and becomes the
next Type 1 hull structure Zk; see Fig. 3 (b). In any other case (i.e., pk lies
between ci and cj in clockwise order around t and if i + 1 = j then tpk does
not cross cici+1), Zk is of Type 2 and obtained from Zk−1 by removing the top
triangles between ci and cj and adding the top triangles 〈t, pk, ci〉 and 〈t, cj , pk〉;
see Fig. 3 (c) and (d). If cipk intersects an edge of Zk−1, then 〈t, pk, ci〉 lies in a
compact 4-cycle and is marked dirty. Otherwise, it is marked unexamined. We
handle 〈t, cj , pk〉 similarly.

Second, suppose pk covers C and let i, j be so that pk is between ci and ci+1 in
clockwise order around t and t lies between cj and cj+1 in clockwise order around
pk. Observation 2.6 ensures that these edges are well-defined; see Fig. 4. Now
there are three cases. First, if i = j, then one of 〈ci, ci+1, t, pk〉 or 〈ci, ci+1, pk, t〉
defines a compact 4-cycle containing Pk, so Zk is of Type 1 and consists of this
cycle; see Fig. 5 (a). Second, if {i, i+ 1} ∩ {j, j + 1} = ∅, then Zk is of Type 3,
with independent triangles 〈pk, ci, ci+1〉 and 〈t, cj , cj+1〉; see Fig. 5 (b). Third,
suppose that j = i + 1 or i = j + 1, say, j = i + 1. Then Zk is of Type 2, with
top vertex cj and compact cycle 〈t, pk, ci, cj+1〉. The top triangle 〈cj , cj+1, ci〉 is
dirty, the other top triangles are unexamined; see Fig. 5 (c–d).

Lemma 2.8. The resulting hull structure is valid for Pk.

Lemma 2.9. A Type 2 phase that begins with a hull structure of size m and
lasts for ` insertions takes O(` + m) time. Furthermore, if the next phase (if
any) is of Type 1, it begins with a hull structure of size at most 4.

Type 3. Let T1 = 〈a, b, c〉 and T2 = 〈a′, c′, b′〉 be the two independent triangles
of Zk−1, and let pk be an arbitrary vertex of P \Pk−1. We set Pk = Pk−1∪{pk},
and we distinguish three cases. First, if pk is inside both T1 and T2, then Zk =
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Fig. 6. If a vertex of an independent triangle is in a compact 4-cycle (e.g., 〈pk, a′, c′, c〉),
then Zk if of Type 3 (a). Otherwise, Zk is of Type 2 with top vertex c (b).

Zk−1. Second, suppose that pk is outside, say, T1, and that {pk, a, b, c} forms a
compact 4-cycle C. (Hence, pk is inside T2; recall that “inside” and “outside” is
defined by the cycle’s orientation.) Then Zk = C is of Type 1. Third, suppose
that pk is outside T1 but {pk, a, b, c} does not form a compact 4-cycle. W.l.o.g.,
suppose further that a is inside the triangle 〈pk, b, c〉. There are two subcases (see
Fig. 6): (a) if a lies inside a compact 4-cycle, we replace a by pk in T1 to obtain
an independent 3-cycle that, together with T2, defines Zk, again of Type 3; (b)
otherwise, a is an element of a compact 4-cycle C that involves pk, one vertex of
T2 and one other vertex of T1. Then, Zk is a Type 2 hull structure with compact
cycle C whose top vertex is the vertex of T1 that is not an element of C. The
top triangles incident to the vertex of T2 are marked dirty, the remaining top
triangles are marked unexamined.

Lemma 2.10. The resulting structure Zk is a valid hull structure for Pk.

Observation 2.11. A Type 3 phase with ` insertions takes O(`) time. If the
next phase (if any) is of Type 2, it begins with a hull structure with at most 5
vertices, if it is of Type 1, it begins with a hull structure of size 4.

To wrap up, we get the following lemma:

Lemma 2.12. The final hull structure Zn contains all candidate edges for R,
and it can be obtained in O(n) time.

2.2 Obtaining the Actual Hulls from a Hull Structure

After having obtained Zn, it remains to identify the faces that are important
sets. If Zn is of Type 1, then it is the only important set of R. If this is not the
case, we want to obtain all the important triangles of R, i.e., all convex hulls of
abstract order types realizing the radial system.

Lemma 2.13. Given a Type 2 hull structure, we can decide in linear time which
top triangles are important triangles of R.
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Lemma 2.14. For a Type 3 hull structure, we can decide in linear time which
of the two independent triangles are important triangles of R.

For each important set we obtained for the radial system R, its chirotope is
now given by Lemma 2.3.

Theorem 2.15. Given a radial system R of an abstract order type, we can an-
swer queries to the chirotopes of T (R) in constant time, after O(n) preprocessing
time.

Recall that we assumed that there is at least one realization of R. We can
now check this assumption in the following way. We build the dual pseudo-line
arrangement using an arbitrary chirotope we obtained for R using Lemma 2.3.
This whole process takes O(n2) time [3, 4]. If it fails then R has no realization.
Otherwise, the dual pseudo-line arrangement explicitly gives the rotation system
of the corresponding abstract order type, which we now compare to R.

Corollary 2.16. Testing whether a set of radial orderings is the radial system
of an abstract order type can be done in O(n2) time.

We can apply our insights to obtain all important sets of a given chirotope.

Theorem 2.17. Given an abstract order type, a hull structure of its radial sys-
tem can be found in O(n log n) time. Further, the faces in the hull structure that
can become convex hulls can be reported in the same time.
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