
Computing the Fréchet Distance with a
Retractable Leash

Kevin Buchin1, Maike Buchin2, Rolf van Leusden1, Wouter Meulemans1?, and
Wolfgang Mulzer3??

1 Technical University Eindhoven, The Netherlands, k.a.buchin@tue.nl,
r.v.leusden@student.tue.nl, w.meulemans@tue.nl

2 Ruhr Universität Bochum, Germany, Maike.Buchin@ruhr-uni-bochum.de
3 Freie Universität Berlin, Germany, mulzer@inf.fu-berlin.de

Abstract. All known algorithms for the Fréchet distance between curves
proceed in two steps: first, they construct an efficient oracle for the deci-
sion version; then they use this oracle to find the optimum among a finite
set of critical values. We present a novel approach that avoids the detour
through the decision version. We demonstrate its strength by presenting
a quadratic time algorithm for the Fréchet distance between polygonal
curves in Rd under polyhedral distance functions, including L1 and L∞.
We also get a (1 + ε)-approximation of the Fréchet distance under the
Euclidean metric. For the exact Euclidean case, our framework currently
gives an algorithm with running time O(n2 log2 n). However, we conjec-
ture that it may eventually lead to a faster exact algorithm.

1 Introduction

Measuring the similarity of curves is a classic problem in computational geome-
try with many applications. For example, it is used for map-matching tracking
data [3, 15] and moving objects analysis [5, 6]. In all these applications it is im-
portant to take the continuity of the curves into account. Therefore, the Fréchet
distance and its variants are popular metrics to quantify (dis)similarity.

The Fréchet distance between two curves is defined by taking a homeomor-
phism between the curves that minimizes the maximum pairwise distance. It is
commonly described using the leash-metaphor: a man walks on one curve and
has a dog on a leash on the other curve. Both man and dog can vary their
speeds, but they may not walk backwards. The Fréchet distance is the length of
the shortest leash with which man and dog can walk from the beginning to the
end of the respective curves.

Related work. The algorithmic study of the Fréchet distance was initiated by
Alt and Godau [1]. For polygonal curves, they give an algorithm to solve the

? Supported by the Netherlands Organisation for Scientific Research (NWO) under
project no. 639.022.707.

?? Supported in part by DFG project MU/3501/1.

decision version in O(n2) time, and then use parametric search to find the op-
timum in O(n2 log n) time. Several randomized algorithms have been proposed
which are based on the decision version in combination with sampling possi-
ble values for the distance, one running in O(n2 log2 n) time [10] and the other
in O(n2 log n) time [13]. Recently, Buchin et al. [8] showed how to solve the
decision version in subquadratic time, resulting in a randomized algorithm for
computing the Fréchet distance in O(n2 log1/2 n log log3/2 n) time. In terms of
the leash-metaphor these algorithms simply give a leash to the man and his dog
to try if a walk is possible. By cleverly picking the different leash-lengths, one
then finds the Fréchet distance in an efficient way. Several algorithms exist to
approximate the Fréchet distance (e.g. [2, 12]). However, these rely on various
assumptions of the input curve; no approximation algorithm is known for the
general case.

Contribution. We present a novel approach that does not use the decision prob-
lem as an intermediate stage. We give the man a “retractable leash” which can
be lengthened or shortened as required. To this end, we consider monotone paths
on the distance terrain, a generalization of the free space diagram typically used
for the decision problem. Similar concepts have been studied before, but without
the monotonicity requirement (e.g., [11] or the weak Fréchet distance [1]).

We show that it is sufficient to focus on the boundaries of cells of the dis-
tance terrain (defined by the vertices of the curves). It seems natural to propagate
through the terrain for any point on a boundary the minimal “height” (leash
length) ε required to reach that point. However, this may lead to an amortized
linear number of changes when moving from one boundary to the next, giving a
lower bound of Ω(n3). We therefore do not maintain these functions explicitly.
Instead, we maintain sufficient information to compute the lowest ε for a bound-
ary. A single pass over the terrain then finds the lowest ε for reaching the other
end, giving the Fréchet distance.

We present the core ideas for our approach in Section 2. This framework gives
a choice of distance metric, but it requires an implementation of a certain data
structure. We apply this framework to the Euclidean distance (Section 3) and
polyhedral distances (Section 4). We also show how to use the latter to obtain a
(1 + ε)-approximation for the former. This is the first approximation algorithm
for the general case. We conclude with two open problems in Section 5.

2 Framework

2.1 Preliminaries

Curves and distances. Throughout we wish to compute the dissimilarity of
two polygonal curves, P and Q. For simplicity, we assume that both curves
consist of n segments. This represents the computational worst case; of course
our algorithm can also cope with asymmetric cases. Both curves are given as
piecewise-linear functions P,Q : [0, n] → Rd. That is, P (i + λ) = (1 − λ)P (i) +
λP (i + 1) holds for any integer i ∈ [0, n) and λ ∈ [0, 1], and similarly for Q.

2

Let Ψ be the set of all continuous and nondecreasing functions ψ : [0, n]→ [0, n]
with ψ(0) = 0 and ψ(n) = n. Then the Fréchet distance is defined as

dF(P,Q) = inf
ψ∈Ψ

max
t∈[0,n]

{δ(P (t), Q(ψ(t)))}.

Here, δ may represent any distance function between two points in Rd. Typically,
the Euclidean distance function is used; we consider this scenario in Section 3.
Another option we shall consider are polyhedral distance functions (Section 4).
For our framework, we require that the distance function is convex.

Distance terrain. Let us consider the joint parameter space R = [0, n] × [0, n]
of P and Q. A pair (s, t) ∈ R corresponds to the points P (s) and Q(t), and
the distance function δ assigns a value δ(P (s), Q(t)) to (s, t). We interpret this
value as the “height” at point (s, t) ∈ R. This gives a distance terrain T , i.e.,
T : R → R with T (s, t) = δ(P (s), Q(t)). We segment T into n2 cells based on
the vertices of P and Q . For integers i, j ∈ [0, n), the cell C[i, j] is defined as
the subset [i, i + 1] × [j, j + 1] of the parameter space. The cells form a regular
grid, and we assume that i represents the column and j represents the row of
each cell. An example of two curves and their distance terrain is given in Fig. 1.

A path π : [0, 1] → R is called bimonotone if it is both x- and y-monotone.
For (s, t) ∈ R, we let Π(s, t) denote the set of all bimonotone continuous paths

from the origin to (s, t). The acrophobia function T̃ : R→ R is defined as

T̃ (s, t) = inf
π∈Π(s,t)

max
λ∈[0,1]

T (π(λ)).

Intuitively, T̃ (s, t) represents the lowest height that an acrophobic climber needs
to master in order to reach (s, t) from the origin on a bimonotone path. Clearly,

we have dF(P,Q) = T̃ (n, n).
Let x ∈ R and π ∈ Π(x) be a bimonotone path from (0, 0) to x. Let ε be a

value greater than zero. We call π an ε-witness for x if maxλ∈[0,1] T (π(λ)) ≤ ε.

We call π a witness for x if maxλ∈[0,1] T (π(λ)) = T̃ (x), i.e., π is an optimal path
for the acrophobic climber.

Fig. 1. Distance terrain with the Euclidean distance in R2. (left) Two curves. (middle)
Cells as seen from above. Dark colors indicate low “height”. (right) Perspective view.

3

2.2 Analysis of the distance terrain

To compute T̃ (n, n), we show that it is sufficient to consider only the cell bound-
aries. For this, we generalize the fact that cells of the free space diagram are
convex [1] to convex distance functions. For the proof, we refer to [7].

Lemma 2.1. For a convex distance function δ and ε ∈ R, the set of points (s, t)
in a given cell C[i, j] with T (s, t) ≤ ε is convex.

Lemma 2.1 has two important consequences. First, it implies that it is indeed
sufficient to consider only the cell boundaries. Second, it tells us that the distance
terrain along a boundary is well-behaved. In this corollary and in the remainder
of the paper, we refer to a function with a single local minimum as unimodal.

Corollary 2.2. Let C[i, j] be a cell of the distance terrain, and let x1 and x2
be two points on different boundaries of C[i, j]. For any y on the line segment
x1x2, we have T (y) ≤ max{T (x1), T (x2)}.

Corollary 2.3. The distance along every boundary of a cell in distance terrain
T is a unimodal function.

For any cell C[i, j], we denote with L[i, j] and B[i, j] its left and bottom
boundary respectively (and their height functions in T). The right and top

boundary are given by L[i + 1, j] and B[i, j + 1].4 With L̃[i, j] and B̃[i, j] we
denote the acrophobia function along the boundary. All these restricted func-
tions have a single parameter in the interval [0, 1] that represents the boundary.

Assuming that the distance function δ is symmetric, computing values for
rows and columns of T is symmetric as well. Hence, we present only how to
compute with rows. If δ is asymmetric, our methods still work, but some extra
care needs to be taken when computing distances.

Consider a vertical boundary L[i, j]. We use L̃∗[i, j] to denote the minimum

of the acrophobia function L̃[i, j] along L[i, j]. An analogous definition is used

for horizontal boundaries. Our goal is to compute L̃∗[i, j] and B̃∗[i, j] for all cell
boundaries of the grid. We say that an ε-witness π passes through an edge B[i, j],
if there is a λ ∈ [0, 1] with π(λ) ∈ B[i, j].

Lemma 2.4. Let ε > 0, and let x be a point on L[i, j]. Let π be an ε-witness
for x that passes through B[a, j], for 1 ≤ a < i. Suppose further that there exists

a column b with a < b < i and B̃∗[b, j] ≤ ε. Then there exists an ε-witness for x
that passes through B[b, j].

Proof. Let y be the point on B[b, j] that achieves B̃∗[b, j], and let πy be a witness
for y. Since π is bimonotone and since π passes through B[a, j], it follows that π
must also pass through L[b+ 1, j]. Let z be the (lowest) intersection point, and
πz the subpath of π from z to x. Let π′ be the path obtained by concatenating
πy, line segment yz, and πz. By our assumption on ε and by Corollary 2.2, path
π′ is an ε-witness for x that passes through B[b, j]. ut
4 Note that there need not be an actual cell C[i+ 1, j] or C[i, j + 1].

4

Lemma 2.4 implies that there are always rightmost witnesses for any point
x on L[i, j]. For such witness, if it passes through B[a, j] for some a < i, then

B̃∗[b, j] > T̃ (x) for any a < b < i.

Corollary 2.5. Let x be a point on L[i, j]. Then there is a witness for x that

passes through some B[a, j] such that B̃∗[b, j] > T̃ (x) for any a < b < i.

Next, we argue that there is a witness for L̃∗[i + 1, j] that enters row j at

or after the horizontal boundary point used by the witness for L̃∗[i, j]. In other
words, the rightmost witnesses behave “monotonically” in the terrain.

Lemma 2.6. Let π be a witness for L̃∗[i, j] that passes through B[a, j], for a

1 ≤ a < i. Then there exists a a ≤ b ≤ i such that L̃∗[i+ 1, j] has a witness that
passes through B[b, j].

Proof. Choose b maximal such that L̃∗[i+1, j] has a witness that passes through

B[b, j]. Suppose b < a. Let π′ be such a witness. We know that L̃∗[i + 1, j] ≥
L̃∗[i, j], since π′ passes through L[i, j]. However, we can now construct a witness

for L̃∗[i + 1, j] that passes through B[a, j]: follow π to B[a, j] and then switch
to the intersection of π′ and L[a+ 1, j]. This contradicts the choice of b. ut

We now characterize L̃[i, j] via a witness envelope, defined as follows. Fix a

row j and two columns a < i. Suppose that L̃∗[i−1, j] has a witness that passes
through B[a′, j] with a′ ≤ a. The witness envelope for the column interval [a, i]
in row j is the upper envelope of the following functions on the interval [0, 1]:

(i) the terrain function L[i, j](λ);

(ii) the constant function B̃∗[a, j];

(iii) the constant function L̃∗[i− 1, j] if a ≤ i− 2;
(iv) the truncated terrain functions L[b, j](λ) = minµ∈[0,λ] L[b, j](µ) for a < b < i.

Lemma 2.7. Fix a row j and two columns a < i as above. Let α ∈ [0, 1] and
ε > 0. The point x = (i, j + α) has an ε-witness that passes through B[a, j] if
and only if (α, ε) lies above the witness envelope for [a, i] in row j.

Proof. Let π be an ε-witness for x that passes through B[a, j]. Then clearly

ε ≥ B̃∗[a, j] and ε ≥ L[i, j](α). If a ≤ i− 2, then π must pass through L[i− 1, j],

so ε ≥ L̃∗[i − 1, j]. Since π is bimonotone, it has to pass through L[b, j] for
a < b < i. Let y1 = (a+ 1, j + α1), y2 = (a+ 2, j + α2), . . . , yk = (a+ k, j + αk)
be the points of intersection, from left to right. Then α1 ≤ α2 ≤ · · · ≤ αk ≤ α
and ε ≥ T (yl) = L[a + l, j](αi) ≥ L[a + l, j](α), for l = 1, . . . , k. Hence (α, ε) is
above the witness envelope.

Suppose (α, ε) is above the witness envelope. The conclusion follows directly

if a = i− 1. Otherwise, ε ≥ L̃∗[i− 1, j] holds. Let α′ be such that the witness for

L̃∗[i−1, j] that passes through B[a′, j] reaches L[i−1, j] at point (i−1, j+α′). If
α ≥ α′, we construct an appropriate ε-witness π′ for x by following the witness
for B̃∗[a, j], then passing to the witness for L̃∗[i − 1, j] and then taking the

5

line segment to x. If α < α′, we construct a curve π′ as before. However, π′

is not bimonotone (the last line segment goes down). To fix this, let p and x
be the two intersection points of π′ with the horizontal line y = j + α. We
shortcut π′ at the line segment px. The resulting curve π is clearly bimonotone
and passes through B[a, j]. To see that π is an ε-witness, it suffices to check
that along the segment px, the distance terrain never goes above ε. For this, we
need to consider only the intersections of px with the vertical cell boundaries.
Let L[b, j] be such a boundary. We know that L[b, j] is unimodal (Corollary 2.3)
and let α∗ denote the value where the minimum is obtained. By definition of
the truncated terrain function, L[b, j](α) = L[b, j](α) if α ≤ α∗. By assumption,

the witness for L̃∗[i − 1, j] passes L[b, j] at α or higher. Hence, if α ≥ α∗, then

L̃∗[i− 1, j] ≥ L[b, j](α). It follows that max{L[b, j](α), L̃∗[i− 1, j]} ≥ L[b, j](α).

By definition ε ≥ max{L[b, j](α), L̃∗[i− 1, j]} holds and thus ε ≥ L[b, j](α). ut

2.3 Algorithm

We are now ready to present the algorithm. We walk through the distance ter-
rain, row by row, in each row from left to right. When processing a cell C[i, j],

we compute L̃∗[i+ 1, j] and B̃∗[i, j + 1]. For each row j, we maintain a double-
ended queue (deque) Qj that stores a sequence of column indices. We also store
a data structure Uj that contains a set of (truncated) terrain functions on the
vertical boundaries in j. It supports insertion, deletion, and a minimum-point
query that, given up to two additional constants, returns the lowest point on the
upper envelope of the terrain functions and the given constants.

The data structures fulfill the following invariant. Suppose that L̃∗[i, j] is
the rightmost optimum we have computed so far in row j, and suppose that a
rightmost witness for L̃∗[i, j] passes through B[a, j]. A point (α, β) dominates
a point (γ, δ) if α > γ and β ≤ δ. Then Qj stores the first coordinates of the

points in the sequence (a, B̃∗[a, j]), (a + 1, B̃∗[a + 1, j]), . . . , (i − 1, B̃∗[i − 1, j])
that are not dominated by any other point in the sequence. Furthermore, the
structure Uj stores the terrain functions for the boundaries from column a + 1
to i. We maintain analogous data structures for each column i.

The algorithm proceeds as follows (see Algorithm 1): since (0, 0) belongs to
any path through the distance terrain, we initialize C[0, 0] to use (0, 0) as its
lowest point and compute the distance accordingly. The left- and bottommost
boundaries of the distance terrain are considered unreachable. Any path to such a
point also goes through the adjacent horizontal boundaries or vertical boundaries
respectively. These adjacent boundaries therefore ensure a correct result.

In the body of the for-loop, we compute L̃∗[i+ 1, j] and B̃∗[i, j + 1]. Let us

describe how to find L̃∗[i + 1, j]. First, we add index i to Qj and remove all
previous indices that are dominated by it from the back of the deque. We add
L[i + 1, j] to upper envelope Uj . Let h and h′ be the first and second element
of Qj . We perform a minimum query on Uj in order to find the smallest εα for
which a point on L[i + 1, j] has an εα-witness that passes through B[h, j]. By
Lemma 2.7, this query requires the height at which the old witness enters the

6

Algorithm 1 FrechetDistance(P,Q, δ)

Input: P and Q are polygonal curves with n edges in Rd;
δ is a convex distance function in Rd

Output: Fréchet distance dF(P,Q)

{We show computations only within a row, column computations are analogous}
1: L̃∗[0, 0]← δ(P (0), Q(0))

2: L̃∗[0, j]←∞ for all 0 < j < n
3: For each row j, create empty deque Qj and upper envelope structure Uj
4: for j ← 0 to n− 1; i← 0 to n− 1 do
5: Remove any values x from Qj with B̃∗[x, j] ≥ B̃∗[i, j] and append i to Qj
6: if |Qj | = 1 then Clear Uj
7: Add L[i+ 1, j] to Uj
8: Let h and h′ be the first and second element in Qj
9: (α, εα)← Uj .minimumQuery(L̃∗[i, j], B̃∗[h, j])

10: while |Qj | ≥ 2 and B̃∗[h′, j] ≤ εα do
11: Remove all L[x, j] from Uj with x ≤ h′ and remove h from Qj
12: Let h and h′ be the first and second element in Qj
13: (α, εα)← Uj .minimumQuery(L̃∗[i, j], B̃∗[h, j])

14: L̃∗[i+ 1, j]← εα
15: return max{δ(P (n), Q(n)),min{L̃∗[n− 1, n− 1], B̃∗[n− 1, n− 1]}}

row (B̃∗[h, j]) and the value of the previous boundary L̃∗[i, j]. (The latter is
needed only for h < i, i.e. if |Qj | ≥ 2. For simplicity, we omit this detail in the

overview.) If εα ≥ B̃∗[h′, j], there is an εα witness for L[i+1, j] through B[h′, j],
so we can repeat the process with h′ (after updating Uj). If h′ does not exist

(i.e., |Qj | = 1) or εα < B̃∗[h′, j], we stop and declare εα to be optimal. We prove
that this process is correct and maintains the invariant. Since the invariant is
clearly satisfied at the beginning, correctness then follows by induction.

Lemma 2.8. Algorithm 1 computes L̃∗[i+ 1, j] and maintains the invariant.

Proof. By the invariant, a rightmost witness for L̃∗[i, j] passes through B[h0, j],
where h0 is initial head of Qj . Let h∗ be the column index such that a rightmost

witness for L̃∗[i + 1, j] passes through B[h∗, j]. Then h∗ must be contained in
Qj initially, because by Lemma 2.6, we have h0 ≤ h∗ ≤ i, and by Corollary 2.5,
there can be no column index a with h∗ < a ≤ i that dominates (h∗, B[h∗, j]).
(Note that if h∗ = i, it is added at the beginning of the iteration.)

Now let h be the current head of Qj . By Lemma 2.7, the minimum query on
Uj gives the smallest εα for which there exists an εα-witness for L[i+ 1, j] that

passes through B[h, j]. If the current h is less than h∗, then εα ≥ L̃∗[i + 1, j]

(definition of L̃∗); L̃∗[i + 1, j] ≥ B̃∗[h∗, j] (there is a witness through B[h∗, j]);

and B̃∗[h∗, j] ≥ B̃∗[h′, j] (the dominance relation ensures that the B̃∗-values for
the indices in Qj are increasing). Thus, the while-loop in line 10 proceeds to
the next iteration. If the current h equals h∗, then by Corollary 2.5, we have
B̃∗[a, j] > B̃∗[h∗, j] for all h∗ < a ≤ i, and the while-loop terminates with

7

the correct value for L̃∗[i, j]. It is straightforward to check that Algorithm 1
maintains the data structures Qj and Uj according to the invariant. ut

Theorem 2.9. Algorithm 1 computes dF(P,Q) for convex distance function δ
in Rd in O(n2 · f(n, d, δ)) time, where f(n, d, δ) represents the time to insert
into, delete from, and query the upper envelope data structure.

Proof. The correctness of the algorithm follows from Lemma 2.8. For the running
time, we observe that we insert values only once into Qj and Uj . Hence, we
can remove elements at most once, leading to an amortized running time of
O(1 + f(n, d, δ)) for a single iteration of the loop. Since there are O(n2) cells,
the total running time is O(n2 · f(n, d, δ)) assuming that f(n, d, δ) is Ω(1). ut

In the generic algorithm, we must take care that Uj uses the (full) unimodal
function only for L[i+ 1, j] and the truncated versions for the other boundaries.
As it turns out, we can use the full unimodal distance functions if these behave as
pseudolines (i.e., they intersect at most once). Since we compare only functions
in the same row (or column), functions of different rows or columns may still
intersect more than once. For this approach to work, we must remove from Uj
any function that is no longer relevant for our computation. This implies that
Uj no longer contains all functions L[k, j] with h < k ≤ i + 1 but a subset of
these. We prove the following (see [7] for a full proof).

Lemma 2.10. Assume that distance functions L[x, j] in row j intersect pairwise
at most once. Let h denote a candidate bottom boundary. Let (α, εα) denote the
minimum on the upper envelope of the full unimodal distance functions in Uj.
Then one of the following holds:

(i) (α, εα) is the minimum of the upper envelope of L[i+ 1, j] and the truncated
L[k, j] for h < k ≤ i.

(ii) (α, εα) lies on two functions L[a, j] and L[b, j], one of which can be removed
from Uj.

(iii) εα ≤ L̃∗[i, j].

Proof (sketch). (α, εα) either lies on the minimum of a function or on the inter-
section of two, one increasing and one decreasing. In the first case, it is easy to
see that case (i) holds. In the second case, it depends on whether the increasing
function is from an earlier or later column than the decreasing one. If the in-
creasing one comes first, then we can argue that the truncated function is never
part of the witness envelope for L[i+ 1, j] or later boundaries. Hence, case (ii) is
applicable. If the decreasing one comes first, then we argue that case three must
hold: the given intersection is a lower bound for the minimum of the acrophobia
function on the second boundary and therefore a lower bound on L̃∗[i, j]. ut

From this lemma, we learn how to modify a minimum-point query. We run
the query on the full unimodal functions, ignoring the given constants. If case
(ii) holds, that is, the minimum lies on an increasing L[a, j] and a decreasing
L[b, j] with a < b, we remove L[a, j] from Uj and repeat the query. In both of
the other cases, the minimum is either the computed minimum or one of the
constants L̃∗[i, j] and B̃∗[h, j]. We take the maximum of these three values.

8

3 Euclidean distance

In this section we apply our framework to the Euclidean distance measure δE.
Obviously, δE is convex (and symmetric), so our framework applies. However,
instead of computing with the Euclidean distance, we use the squared Euclidean
distance δ2E = δE(x, y)2. Squaring does not change any relative order of height
on the distance terrain T , so computing the Fréchet distance with the squared
Euclidean distance is equivalent to the Euclidean distance: if ε = dF(P,Q) for δ2E,
then

√
ε = dF(P,Q) for δE. We now show that for δ2E, the distance functions in a

row or column behave like pseudolines. We argue only for the vertical boundaries;
horizontal boundaries are analogous.

Lemma 3.1. For δ = δ2E, each distance terrain function L[i, j] is part of a
parabola, and any two functions L[i, j] and L[i′, j] intersect at most once.

Proof. Function L[i, j] represents part of the distance between point p = P (i)
and line segment ` = Q(j)Q(j + 1). Assume `′ is the line though `, uniformly
parameterized by λ ∈ R, i.e. `(λ) = (1− λ)Q(j) + λQ(j + 1). Let λp denote the
λ such that `′(λ) is closest to p. We see that L[i, j](λ) = |p− `′(λp)|2 + |`′(λ)−
`′(λp)|2. Since `′ is uniformly parameterized according to `, we get that the last
term is |`|2(λ− λp)2. Hence, the function is equal to |`|2λ2− 2|`|2λpλ+ |`|2λ2p +
|p − `′(λp)|2, which is a parabolic function in λ. The quadratic factor depends
only on `. For two functions in the same row, this line segment is the same, and
thus the parabolas intersect at most once. ut

By Lemma 2.10, we know that data structure Uj can use the full parabolas.
The parabolas of a single row share the same quadratic term, so we can treat
them as lines by subtracting |`|λ2. Now we can use for Uj a standard data
structure for dynamic half-plane intersections, or its dual problem: dynamic
convex hulls. The fastest dynamic convex hull structure is given by Brodal and
Jacob [4]. However, it does not support a query to find a minimal point for the
upper envelope; it is unclear whether the structure can support such a query.
Instead, we use the slightly slower structure by Overmars and Van Leeuwen [14]
with O(log2 n) time insertions and deletions. For each insertion, we also have
to compute the corresponding parabola, in O(d) additional time. It remains to
show how to perform the minimum-point query. The data structure by Overmars
and Van Leeuwen maintains a concatenable queue for the upper envelope. We
assume this to be implemented via a red-black tree that maintains predecessor
and successor pointers. We perform a binary for the minimum point using the
intersection pattern of a node, its predecessor, and its successor (see [7] for
details). To include the constants, we take the maximum of the minimum point
and the constants. Hence, a single query takes O(log n) time. We obtain the
following result.

Theorem 3.2. Algorithm 1 computes the Fréchet distance under the Euclidean
distance in R2 in O(n2(d+ log2 n)) time.

This is slightly slower than known results for the Euclidean metric. However,
we think that our framework has potential for a faster algorithm (see Section 5).

9

4 Polyhedral distance

Here we consider the Fréchet distance with a (convex) polyhedral distance func-
tion δP, i.e., the “unit sphere” of δP is a convex polytope in Rd. For instance, the
L1 and the L∞ distance are polyhedral with the cross-polytope and the hyper-
cube as respective unit spheres. Throughout we assume that δP has complexity k,
i.e., its unit sphere has k facets. The distance terrain functions L[i, j] and B[i, j]
are now piecewise linear with at most k parts; in each row and column the cor-
responding parts are parallel. Depending on the polytope, the actual maximum
number k′ of parts may be less. The distance δP has to be neither regular nor
symmetric, but as before, we simplify the presentation by assuming symmetry.

We present three approaches. First, we use an upper envelope structure on
piecewise linear functions. Second, we use a brute-force approach which is more
efficient for small d and k. Third, we combine these methods.

Upper envelope data structure. For piecewise linear L[i, j] and B[i, j], we can
relax the requirements for the upper envelope data structure Uj . There are no
parabolas involved, so we only need a data structure that dynamically maintains
the upper envelope of lines under insertions, deletions, and minimum queries.
Every function contains at most k′ parts, so we insert at most nk′ lines into the
upper envelope. Maintaining and querying the upper envelope per row or column
takes O(nk′ log(nk′)) time [4]. Thus, the total running time is O(n2k′ log(nk′) +
n2gδ(d)), where gδ(d) is the time to find the parts of the function.

Brute-force approach. We implement Uj naively. For each segment of P,Q,
we sort the facets of δP by the corresponding slope on the witness envelope,
in O(nk(d + log k)) total time. For each facet l = 1, . . . k, we store a doubly
linked list Fl of lines representing the linear parts of the unimodal functions in
Uj corresponding to facet l, sorted from top to bottom (the lines are parallel).
When processing a cell boundary L[i, j], we update each list Fl: remove all lines
below the line for P (i) from the back, and append the line for P (i). This takes
amortizedO(d) time per facet,O(kd) time per cell boundary. We then go through
the top lines in the Fl in sorted order to determine (the minimum of) the upper
envelope. This takes O(k) time. The total time is O(n2kd+ nk(d+ log k)).

A hybrid approach. As in the brute force approach, we maintain a list Fl for
each of the k slopes. For each segment in P,Q we initialize these lists, which
takes O(nkd) time. But instead of sorting the slopes initially, we maintain the
upper hull of the top lines in each Fl. Thus, we only need a dynamic upper
hull for k lines. At each cell boundary, we only update k′ lines, so we need
O(k′ log k) time per cell boundary, O(n2k′ log k) in total. Therefore, the total
time is O(n2k′ log k + nkd), an improvement for k′ � k.

Combining the previous three paragraphs, yields the following result. The
method that works best depends on the relation between n, k, k′, and d.

Theorem 4.1. Algorithm 1 computes the Fréchet distance with a convex polyhe-
dral distance function δ of complexity k in Rd in O(min{n2k′ log(nk′)+n2gδ(d),
n2kd+nk(d+ log k), n2k′ log k+nkd}) time, where gδ(d) is the time to find the
parts of a distance function.

10

Let us consider the implications for L1 and L∞. Let ` be the line segment and
p the point defining L[i, j]. For L1 at the breakpoints between the linear parts of
L[i, j] one of the coordinates of `− p is zero: there are at most k′ = d+ 1 parts.
The facet of the cross-polytope is determined by the signs of the coordinates. For
each linear part we compute the slope in O(d) time, thus g(d) = O(d2). Hence,
the hybrid approach outperforms the brute-force approach.

Corollary 4.2. Algorithm 1 computes the Fréchet distance with the L1 distance
in Rd in O(min{n2d log(nd) + n2d2, n2d2 + nd2d}) time.

For the L∞ distance the facet is determined by the maximum coordinate.
We have k′ ≤ k = 2d. However a facet depends on only one dimension. Hence,
for the brute-force method computing the slopes does not take O(kd) time, but
O(k). Thus the brute-force method outperforms the other methods for L∞.

Corollary 4.3. Algorithm 1 computes the Fréchet distance with the L∞ distance
in Rd in O(n2d+ nd log d) time.

Approximating the Euclidean distance. We can use a polyhedral distance func-
tion to approximate the Euclidean distance. A line segment and a point span
exactly one single plane in Rd (unless they are collinear, in which case we pick
an arbitrary one). On this plane, the Euclidean unit sphere is a circle. We ap-
proximate this circle with a k-regular polygon in R2 that has one side parallel
to the line segment. Simple geometry shows that for k = O(ε−1/2), we get a
(1 + ε)-approximation. The computation is two-dimensional, but we must find
the appropriate transformations, which takes O(d) time per boundary. We no
longer need to sort the facets of the polytope for each edge; the order is given
by the k-regular polygon. This saves a logarithmic factor for the initialization.
Again, the brute-force method is best, and Theorem 4.1 gives the following.

Corollary 4.4. Algorithm 1 computes a (1 + ε)-approximation of the Fréchet
distance with the Euclidean distance in Rd in O(n2(d+ ε−1/2)) time.

Alternatively we can use Corollary 4.3 to obtain a
√
d-approximation for the

Euclidean distance. If we are willing to invoke an algorithm for the decision
version, we can go to a (1 + ε)-approximation by binary search.

Corollary 4.5. We can calculate a (1+ε)-approximation of the Fréchet distance

with the Euclidean distance in O(n2d+nd log d+T (n) log
√
d−1
ε) time, where T (n)

is the time needed to solve the decision problem for the Fréchet distance.

5 Open problems

Faster Euclidean distance. Our framework computes the Fréchet distance for
polyhedral distance functions in quadratic time. For the Euclidean distance we
do not achieve this running time, but we conjecture that our result can be
improved to an O(n2) algorithm. Currently we use the full power of dynamic
upper envelopes, which seems unnecessary as all information is available upfront.

11

We can for instance determine the order in which the parabolas occur on the
upper envelopes, in O(n2) time for all boundaries. From the proof of Lemma 3.1,
we know that the order is given by the projection of the vertices onto the line. We
compute the arrangement of the lines dual to the vertices of a curve in O(n2)
time. We then determine the order of the projected points by traversing the
zone of a vertical line. This takes O(n) for one row or column. Unfortunately,
this alone is insufficient to obtain the quadratic time bound.

Locally correct Fréchet matchings. A matching between two curves that is a
Fréchet matching for any two matched subcurves is called a locally correct
Fréchet matching [9]. It enforces a relatively “tight” matching. The algorithm
in [9] uses a linear overhead on the algorithm of Alt and Godau [1] resulting in
an O(n3 log n) execution time. We conjecture that our framework is able to avoid
this overhead. However, the information we currently propagate is insufficient:
a large distance early on may “obscure” the rest of the computations.

References

[1] H. Alt and M. Godau. Computing the Fréchet distance between two polygonal
curves. IJCGA, 5(1–2):78–99, 1995.

[2] H. Alt, C. Knauer, and C. Wenk. Matching Polygonal Curves with Respect to
the Fréchet Distance. In Proc. 18th STACS, LNCS 2010, pages 63–74, 2001.

[3] S. Brakatsoulas, D. Pfoser, R. Salas, and C. Wenk. On map-matching vehicle
tracking data. In Proc. 31st Int. Conf. VLDBs, pages 853–864, 2005.

[4] G. Brodal and R. Jacob. Dynamic planar convex hull. In Proc. 43rd FOCS, pages
617–626, 2002.

[5] K. Buchin, M. Buchin, and J. Gudmundsson. Constrained free space diagrams: a
tool for trajectory analysis. IJGIS, 24(7):1101–1125, 2010.

[6] K. Buchin, M. Buchin, J. Gudmundsson, M. Löffler, and J. Luo. Detecting com-
muting patterns by clustering subtrajectories. IJCGA, 21(3):253–282, 2011.

[7] K. Buchin, M. Buchin, R. van Leusden, W. Meulemans, and W. Mulzer. Com-
puting the Fréchet Distance with a Retractable Leash. CoRR, abs/1306.5527,
2013.

[8] K. Buchin, M. Buchin, W. Meulemans, and W. Mulzer. Four soviets walk the dog
- with an application to Alt’s conjecture. CoRR, abs/1209.4403, 2012.

[9] K. Buchin, M. Buchin, W. Meulemans, and B. Speckmann. Locally correct Fréchet
matchings. In Proc. 20th ESA, LNCS 7501, pages 229–240, 2012.

[10] A. F. Cook and C. Wenk. Geodesic Fréchet distance inside a simple polygon.
ACM Trans. on Algo., 7(1):Art. 9, 9, 2010.

[11] M. de Berg and M. J. van Kreveld. Trekking in the Alps Without Freezing or
Getting Tired. Algorithmica, 18(3):306–323, 1997.

[12] A. Driemel, S. Har-Peled, and C. Wenk. Approximating the Fréchet distance for
realistic curves in near linear time. In Proc. 26th SoCG, pages 365–374, 2010.

[13] S. Har-Peled and B. Raichel. The Fréchet distance revisited and extended. In
Proc. 27th SoCG, pages 448–457, 2011.

[14] M. Overmars and J. van Leeuwen. Maintenance of configurations in the plane. J.
Comput. System Sci., 23(2):166–204, 1981.

[15] C. Wenk, R. Salas, and D. Pfoser. Addressing the need for map-matching speed:
Localizing global curve-matching algorithms. In Proc. 18th Int. Conf. on Sci. and
Stat. Database Management, pages 379–388, 2006.

12

