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Abstract. Let S be a planar point set in general position, and let P(S)
be the set of all plane straight-line paths with vertex set S. A flip on a
path P € P(S) is the operation of replacing an edge e of P with another
edge f on S to obtain a new valid path from P(S). It is a long-standing
open question whether for every given point set S, every path from P(S)
can be transformed into any other path from P(S) by a sequence of
flips. To achieve a better understanding of this question, we show that
it is sufficient to prove the statement for plane spanning paths whose
first edge is fixed. Furthermore, we provide positive answers for special
classes of point sets, namely, for wheel sets and generalized double circles
(which include, e.g., double chains and double circles).

Keywords: flips - plane spanning paths - generalized double circles

1 Introduction

Reconfiguration is a classical and widely studied topic with various applications
in multiple areas. A natural way to provide structure for a reconfiguration prob-
lem is by studying the so-called flip graph. For a class of objects, the flip graph
has a vertex for each element and adjacencies are determined by a local flip oper-
ation (we will give the precise definition shortly). In this paper we are concerned
with transforming plane spanning paths via edge flips.

Let S be a set of n points in the plane in general position (i.e., no three points
are collinear), and let P(S) be the set of all plane straight-line spanning paths
for S, i.e., the set of all paths with vertex set S whose straight-line embedding
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2 O. Aichholzer et al.

Type 1 Type 2 Type 3

Figure 1. The three types of flips in plane spanning paths.

on S is crossing-free. A flip on a path P € P(S) is the operation of removing
an edge e from P and replacing it by another edge f on S such that the graph
(P\ e)U f is again a path from P(S). Note that the edges e and f might cross.
The flip graph on P(S) has vertex set P(S) and two vertices are adjacent if and
only if the corresponding paths differ by a single flip. The following conjecture
will be the focus of this paper:

Conjecture 1 (Akl et al. [3]). For every point set S in general position, the flip
graph on P(S) is connected.

Related work. For further details on reconfiguration problems in general we
refer the reader to the surveys of Nishimura [10] and Bose and Hurtado [4].
Connectivity properties of flip graphs have been studied extensively in a huge
variety of settings, see, e.g., [6,7,8,9,11] for results on triangulations, matchings
and trees.

In our setting of plane spanning paths, flips are much more restricted, making
it more difficult to prove a positive answer. Prior to our work only results for
point sets in convex position and very small point sets were known. Akl et al. [3],
who initiated the study of flip connectivity on plane spanning paths, showed
connectedness of the flip graph on P(S) if S is in convex position or |S| < 8.
In the convex setting, Chang and Wu [5] derived tight bounds concerning the
diameter of the flip graph, namely, 2n — 5 for n = 3,4, and 2n — 6 for n > 5.

For the remainder of this paper, we consider the flip graph on P(S) (or a
subset of P(5)). Moreover, unless stated otherwise, the word path always refers
to a path from P(S) for an underlying point set S that is clear from the context.

Flips in plane spanning paths. Let us have a closer look at the different
types of possible flips for a path P = v1,...,v, € P(S) (see also Figure 1).
When removing an edge v;_1v; from P with 2 <1 < n, there are three possible
new edges that can be added in order to obtain a path (where, of course, not
all three choices will necessarily lead to a plane path in P(S)): viv;, v;_1vn,
and v1vy,. A flip of Type 1 is a valid flip that adds the edge v1v; (if ¢ > 2) or the
edge v;—_1v, (if i < n). It results in the path v;_1,...,v1,v;,..., 0y, or the path
V1y---yVi—1,Un,-..,v;. That is, a Type 1 flip inverts a contiguous chunk from
one of the two ends of the path. A flip of Type 2 adds the edge v1v, and has the
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Flipping Plane Spanning Paths 3

Figure 2. Example where the flip graph is disconnected if the first three vertices
of the paths are fixed. No edge of the solid path can be flipped, but there is at
least one other path (dotted) with the same three starting vertices.

additional property that the edges v;_1v; and vyv, do not cross. In this case,
the path P together with the edge viv, forms a plane cycle. If a Type 2 flip is
possible for one edge v;_1v; of P, then it is possible for all edges of P. A Type 2
flip can be simulated by a sequence of Type 1 flips, e.g., flip v1v5 to viv,, then
flip vavs to vive, then vzvy to vavs, ete., until flipping v;_1v; to v;_sv;_1. A flip
of Type 8 also adds the edge viv,, but now the edges viv, and v;_jv; cross.
Note that a Type 3 flip is only possible if the edge vyv,, crosses exactly one edge
of P, and then the flip is possible only for the edge v;_1v; that is crossed.

Contribution. We approach Conjecture 1 from two directions. First, we show
that it is sufficient to prove flip connectivity for paths with a fixed starting edge.
Second, we verify Conjecture 1 for several classes of point sets, namely wheel
sets and generalized double circles (which include, e.g., double chains and double
circles).

Towards the first part, we define, for two distinct points p, ¢ € S, the following
subsets of P(S): let P(S,p) be the set of all plane spanning paths for S that
start at p, and let P(S,p,q) be the set of all plane spanning paths for S that
start at p and continue with ¢g. Then for any S, the flip graph on P(S,p,q) is
a subgraph of the flip graph on P(S,p), which in turn is a subgraph of the flip
graph on P(S). We conjecture that all these flip graphs are connected:

Congecture 2. For every point set S in general position and every p € S, the flip
graph on P(S,p) is connected.

Conjecture 3. For every point set S in general position and every p,q € S, the
flip graph on P(S, p, q) is connected.

Towards Conjecture 1, we show that it suffices to prove Conjecture 3:

Theorem 1. Conjecture 2 implies Conjecture 1.

Theorem 2. Conjecture 3 implies Conjecture 2.

Note that the analogue of Conjecture 3 for paths where the first £ > 3
vertices are fixed, does not hold: Figure 2 shows a counterexample with 7 points
and k = 3.
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4 O. Aichholzer et al.

Towards the flip connectivity for special classes of point e
sets, we consider wheel sets and generalized double circles. A .
point set is in wheel configuration if it has exactly one point
inside the convex hull. For generalized double circles we
defer the precise definition to Section 4, however, intuitively .
speaking a generalized double circle is obtained by replacing .
each edge of the convex hull by a flat enough concave chain
of arbitrary size (as depicted on the right). We show that
the flip graph is connected in both cases:

Theorem 3. (x) Let S be a set of n points in wheel configuration. Then the flip
graph (on P(S)) is connected with diameter at most 2n — 4.

Theorem 4. (x) Let S be a set of n points in generalized double circle configu-
ration. Then the flip graph (on P(S)) is connected with diameter O(n?).

Finally, we remark that using the order type database [1], we are able to
computationally verify Conjecture 1 for every set of n < 10 points in general
position (even when using only Type 1 flips).?

Notation. We denote the convex hull of a point set S by CH(S). All points
p € S on the boundary of CH(S) are called extreme points and the remaining
points are called interior points. All results marked by a (x) have a full proof in
the full version of this paper [2].

2 A Sufficient Condition

In this section we prove Theorem 1 and Theorem 2.

Lemma 1. (%) Let S be a point set in general position and p,q € S. Then there
exists a path P € P(S) which has p and q as its end vertices.

Theorem 1. Conjecture 2 implies Conjecture 1.

Proof. Let S be a point set and Py, P, € P(S). If P; and P; have a common
endpoint, we can directly apply Conjecture 2 and the statement follows. So
assume that P; has the endpoints v, and v, and P; has the endpoints v. and
v4, which are all distinct. By Lemma 1 there exists a path P, having the two
endpoints v, and v.. By Conjecture 2 there is a flip sequence from P to P,
with the common endpoint v,, and again by Conjecture 2 there is a further
flip sequence from P, to P; with the common endpoint v.. This concludes the
proof. ad

3 The source code is available at https://github.com/jogo23/f1lipping_plane_
spanning_paths.
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Flipping Plane Spanning Paths 5

Towards Theorem 2, we first have a closer look at what edges form wviable
starting edges. For a given point set S and points p, q € S, we say that pq forms
a viable starting edge if there exists a path P € P(S) that starts with pg. For
instance, an edge connecting two extreme points that are not consecutive along
CH(S) is not a viable starting edge. The following lemma shows that these are
the only non-viable starting edges.

Lemma 2. (x) Let S be a point set in general position and u,v € S. The edge
wv is a viable starting edge if and only if one of the following is fulfilled: (1) u
or v lie in the interior of CH(S), or (ii) u and v are consecutive along CH(S).

The following lemma is the analogue of Lemma 1:

Lemma 3. (x) Let S be a point set in general position and vi € S. Further
let 8" C S be the set of all points p € S such that vip forms a viable starting
edge. Then for two points q,r € S’ that are consecutive in the circular order
around vy, there exists a plane spanning cycle containing the edges viq and v17.

Theorem 2. Conjecture 3 implies Conjecture 2.

Proof. Let S be a point set and v; € S. Further let P, P’ € P(S,v1). If P and
P’ have the starting edge in common, then we directly apply Conjecture 3 and
are done. So let us assume that the starting edge of P is v1vy and the starting
edge of P’ is vyv). Clearly vq, v € S’ holds. Sort the points in S’ in radial order
around v;. Further let v, € S’ be the next vertex after vy in this radial order
and C be the plane spanning cycle with edges v1v2 and vyv,, as guaranteed by
Lemma 3.

By Conjecture 3, we can flip P to C'\ viv,. Then, flipping vivy to viv, we
get to the path C \ vjvy, which now has viv, as starting edge. We iteratively
continue this process of “rotating” the starting edge until reaching v v}. a

Theorems 1 and 2 imply that it suffices to show connectedness of certain
subgraphs of the flip graph. A priori it is not clear whether this is an easier or a
more difficult task — on the one hand we have smaller graphs, making it easier
to handle. On the other hand, we may be more restricted concerning which flips
we can perform, or exclude certain “nice” paths.

3 Flip Connectivity for Wheel Sets

AKkl et al. [3] proved connectedness of the flip graph if the underlying point set S
is in convex position. They showed that every path in P(S) can be flipped to
a canonical path that uses only edges on the convex hull of S. To generalize
this approach to other classes of point sets, we need two ingredients: (i) a set of
canonical paths that serve as the target of the flip operations and that have the
property that any canonical path can be transformed into any other canonical
path by a simple sequence of flips, usually of constant length; and (ii) a strategy
to flip any given path to some canonical path.
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Recall that a set S of n > 4 points in the plane is a wheel set if there is
exactly one interior point ¢y € S. We call ¢y the center of S and classify the
edges on S as follows: an edge incident to the center ¢ is called a radial edge,
and an edge along CH(S) is called spine edge (the set of spine edges forms the
spine, which is just the boundary of the convex hull here). All other edges are
called inner edges. The canonical paths are those that consist only of spine edges
and one or two radial edges.

We need one observation that will also be useful later. Let S be a point set
and P =wvy,...,v, € P(S). Further, let v; (¢ > 3) be a vertex such that no edge
on S crosses v1v;. We denote the face bounded by vy, ..., v;,v1 by @(v;).

Observation 5. Let S be a point set, P = vq,...,v, € P(S), andv; (i > 3)
be a vertex such that mo edge on S crosses viv;. Then all vertices after v;
(i.e., {Vit1,...,0n}) must entirely be contained in either the interior or the
exterior of ®(v;).

Theorem 3. (%) Let S be a set of n points in wheel configuration. Then the flip
graph (on P(S)) is connected with diameter at most 2n — 4.

Proof (Sketch). Let P = vy,...,v, € P(S) be a non-canonical path and w.l.o.g.,
let v # cg. We show how to apply suitable flips to increase the number of spine
edges of P. By Lemma 2, v1v5 can only be radial or a spine edge. In the former
case we can flip the necessarily radial edge vov3 to the spine edge vyvz. In the
latter case, let v, with a # 2 be a neighbor of v; along the convex hull. Then,
either v,_1v, is not a spine edge and hence, we can flip it to vyv,, or otherwise
we show, using Observation 5, that P actually already is a canonical path. 0O

4 Flip Connectivity for Generalized Double Circles

The proof for generalized double circles is in principle similar to the one for
wheel sets but much more involved. For a point set S and two extreme points
p,q € S, we call a subset CC(p,q) C S concave chain (chain for short) for S,
if (i) p,q € CC(p,q); (i) CC(p,q) is in convex position; (iii) CC(p,q) contains
no other extreme points of S; and (iv) every line ¢, through any two points
x,y € CC(p,q) has the property that all points of S\ CC(p, ¢q) are contained in
the open halfplane bounded by ¢, that contains neither p nor ¢. Note that the
extreme points p and ¢ must necessarily be consecutive along CH(S). If there is
no danger of confusion, we also refer to the spanning path from p to g along the
convex hull of CC(p, q) as the concave chain.

A point set S is in generalized double circle position if there exists a family of
concave chains such that every inner point of S is contained in exactly one chain
and every extreme point of S is contained in exactly two chains. We denote the
class of generalized double circles by GDC. For S € GDC, it is not hard to see
that the union of the concave chains forms an uncrossed spanning cycle (cf. the
full version [2]). Figure 3 gives an illustration of generalized double circles.
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(a) (b) double chain (c) double circle (d)

Figure 3. (a-c) Examples of generalized double circles (the uncrossed spanning
cycle is depicted in orange). (d) A point set that is not a generalized double
circle, but admits an uncrossed spanning cycle.

Before diving into the details of the proof of Theorem 4, we start by collecting
preliminary results in a slightly more general setting, namely for point sets S
fulfilling the following property:

(P1) there is an uncrossed spanning cycle C' on S, i.e., no edge joining two
points of S crosses any edge of C.

A point set fulfilling (P1) is called spinal point set. When considering a spinal
point set S, we first fix an uncrossed spanning cycle C, which we call spine and
all edges in C spine edges. For instance, generalized double circles are spinal
point sets and the spine is precisely the uncrossed spanning cycle formed by
the concave chains as described above. Whenever speaking of the spine or spine
edges for some point set without further specification, the underlying uncrossed
cycle is either clear from the context, or the statement holds for any choice of
such a cycle. Furthermore, we call all edges in the exterior/interior of the spine
outer/inner edges.

We define the canonical paths to be those that consist only of spine edges.
Note that this definition also captures the canonical paths used by Akl et al. [3],
and that any canonical path can be transformed into any other by a single flip
(of Type 2). Two vertices incident to a common spine edge are called neighbors.

Valid flips. We collect a few observations which will be useful to confirm the
validity of a flip. Whenever we apply more than one flip, the notation in subse-
quent flips refers to the original path and not the current (usually we apply one
or two flips in a certain step). Figure 4 gives an illustration of Observation 6.

Observation 6. Let S be a spinal point set, P =wv1,...,v, € P(S), and vy, v,
(a # 2) be neighbors. Then the following flips are valid (under the specified
additional assumptions):

(a) flip va—1v, to V1V,

(b) flip vVaVat1 t0 Va—1Va41  (if the triangle Av, 10,0441 s empty and (b) is
performed subsequently after the flip in (a))

(¢) flip vVavay1 to V1Ve11 (if the triangle Av1vava41 is emply and
Va—1Vq 18 @ spine edge)
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Figure 4. Left to right: lllustration of the three flips in Observation 6. The spine
is depicted in orange and edge flips are indicated by replacing dashed edges for
dotted (in the middle, the two flips must of course be executed one after the
other).

Strictly speaking, in Observation 6(c) we do not require v,_1v, to be a spine
edge, but merely to be an edge not crossing v1v,41. The following lemma provides
structural properties for generalized double circles, if the triangles in Observa-
tion 6(b,c) are non-empty, i.e., contain points from S (see also Figure 5 (left)):

Lemma 4. (x) Let S € GDC and p,q,x € S such that p and q are neighbors.
Further, let the triangle Apgx be non-empty. Then the following holds:

(i) At least one of the two points p,q is an extreme point (say p),
(ii) x does not lie on a common chain with p and q, but shares a common chain
with either p or q (the latter may only happen if q is also an extreme point).

Combinatorial distance measure. In contrast to the proof for wheel sets, it
may now not be possible anymore to directly increase the number of spine edges
and hence, we need a more sophisticated measure. Let C be the spine of a spinal
point set S and p,q € S. Further let o € {cw, ccw} be an orientation. We define
the distance between p, q in direction o, denoted by d°(p,q), as the number of
spine edges along C' that lie between p and ¢ in direction o. Furthermore, we
define the distance between p and q to be

d(p, q) = min{d*(p, q),d“"(p,q)}.

Note that neighboring points along the spine have distance 1. Using this
notion, we define the weight of an edge to be the distance between its endpoints
and the (overall) weight of a path on S to be the sum of its edge weights.

Our goal is to perform weight-decreasing flips. To this end, we state two more
preliminary results (see also Figure 5 (middle) and (right)):

Observation 7. Let S be a spinal point set, p,q,r be three neighboring points
in this order (i.e., q lies between p and r), and s € S\ {p,q,r} be another point.
Then d(p,s) < d(q,s) or d(r,s) < d(g,s) holds.

Combining Observation 6 and Observation 7, it is apparent that we can per-
form weight-decreasing flips whenever Av,_1v,v4+1 and Aviv,v,41 are empty.
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Uy

p q . . . 1 Va
Ij
. L]
.
.
L] . * * .

Figure 5. Left: Illustration of Lemma 4. If p and ¢ are neighbors, = has to lie
on the depicted chain in order to obtain a non-empty triangle Apqz. Middle:
Mustration of Observation 7. One of the dashed edges has smaller weight than
the solid: d(s,q) = 4; d(s,p) = 4; d(s,r) = 3. Right: lllustration of Lemma 5.
The initial path is depicted by solid and dashed edges. Flipping the dashed edges
to the dotted edges increases the number of spine edges.

Lemma 5. (x) Let S be a spinal point set, P = vy,...,v, € P(S), and vy, vy
(a,b # 2) be neighbors of v1 as well as ve,vq (¢,d # n—1) be neighbors of v,. If
max(a,b) > min(c,d), then the number of spine edges in P can be increased by
performing at most two flips, which also decrease the overall weight of P.

Note that vy or v4 in Lemma 5 may not exist, if the first or last edge of P is
a spine edge. Lemma 5 essentially enables us to perform weight decreasing flips
whenever the path traverses a neighbor of v,, before it reached both neighbors
of v;. We are now ready to prove Theorem 4, but briefly summarize the proof
strategy from a high-level perspective beforehand:

High level proof strategy. To flip an arbitrary path P € P(S) to a canonical
path, we perform iterations of suitable flips such that in each iteration we either

(i) increase the number of spine edges along P, while not increasing the overall
weight of P, or

(ii) decrease the overall weight of P, while not decreasing the number of spine
edges along P.

Note that for the connectivity of the flip graph it is not necessary to guarantee
the non increasing overall weight in the first part. However, this will provide us
with a better bound on the diameter of the flip graph.

Theorem 4. (x) Let S be a set of n points in generalized double circle configu-
ration. Then the flip graph (on P(S)) is connected with diameter O(n?).

Proof (Sketch). Let P = vy,...,v, € P(S) be a non-canonical path. We show
how to iteratively transform P to a canonical path by increasing the number of
spine edges or decreasing its overall weight. Let v, (a # 2) be a neighbor of v;.

We can assume, w.l.o.g, that v; and v, are not neighbors (i.e., a < n),
since otherwise we can flip an arbitrary (non-spine) edge of P to the spine edge
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Figure 6. Illustration of Case 1. If vyvy is not a spine edge and Avjv,v441 is
empty, we make progress by flipping the dashed edges to the dotted.

v10, (performing a Type 2 flip). Furthermore, we can also assume w.l.o.g., that

Va—1V, 18 & spine edge, since otherwise we can flip v,_1v, to the spine edge v1v,

(Observation 6(a)). This also implies that the edge v4vq41, which exists because

a < n, is not a spine edge, since v, already has the two neighbors v,_; and v;.
We distinguish two cases — v1v5 being a spine edge or not:

Case 1: vy is not a spine edge.

This case is easier to handle, since we are guaranteed that both neighbors
of v; are potential candidates to flip to. In order to apply Observation 6, we
require Av1v,v,41 to be empty. If that is the case we apply the following flips
(see also Figure 6):

flip vaVa 41 tO V1Ve41 and flip v1v2 to v1v,,

where the first flip results in the path v,, ..., v1, 0441, - . ., v, (and is valid by Ob-
servation 6(c)) and the second flip results in the path vs, ..., va, V1, Vat1,--.,0n
(valid due to Observation 6(a)). Together, the number of spine edges increases,
while the overall weight does not increase.

If Av1v,0441 is not empty we need to be more careful, using Lemma 4 (details
can be found in the full version [2]).

Case 2: vyvy is a spine edge.

In this case we will consider P from both ends v; and v,,. Our general strategy
here is to first rule out some easier cases and collect all those cases where we
cannot immediately make progress. For these remaining “bad” cases we consider
the setting from both ends of the path.

Again, we skip the analysis of the easier cases and just summarize the six
“bad” cases. These “bad” cases always involve vy, v,, or v,_1 being an extreme
point. Instead of spelling all these cases out, we give an illustration in Figure 7.

In the remainder of the proof we settle these “bad” cases by arguing about
both ends of the path, i.e, we consider all (g) + 6 = 21 combinations of “bad”
cases.

We exclude several combinations as follows. By Lemma 5, we can assume
that @ < ¢ holds (otherwise there are weight decreasing flips) and hence, no
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. 7,
s (T) o (IITa) ” (IVa)
Vs ? \\ . e

nat] i .
.'-./Uu+l'

4 Vo

. (IIb) v (IVD) v,
? Ul gy
Vg f1e
Va1

21 Figure 7. The six “bad” cases. The solid edges depict the fixed edges of the
322 corresponding “bad” case and the red arcs (here and in the following) indicate
323 that there is no vertex other than the two extreme points lying on this chain.

@ s O oy
$Va v, Vo . $— Vo v U2 .
,uaj? : %y
R R h Ya-+1 B
o« T » o .
Ves1% ) -
Up Uno1
v Vpoi ®
e
(IITa) (ITa)

s2a  Figure 8. (I) and (IITa) cannot be combined in a plane manner (left), except if
;25 the path traverses a neighbor of v,, before those of vy, i.e., ¢ < a holds (right).

s “bad” case where v,41 is in the interior of @(v,) can be combined with a “bad”
;2 case having v, or v, as extreme point (Observation 5). This excludes (almost)
;33 all combinations involving (I), (II), or (IVDb); see Figure 8 for an example.

334 For the remaining cases, we try to decrease the weight of P by flipping
335 UgUqt1 either to v1v,41 O V4—1vVa41 (see Observation 7). If these flips are valid
336 they are either weight-decreasing or we can identify disjoint regions that must
;37 each contain at least n/2 vertices, which will result in a contradiction. Again,
338 we skip the details of this analysis.

330 Iteratively applying the above process transforms P to a canonical path and
sa0  the O(n?) bound for the required number of flips also follows straightforwardly.
341 D
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5 Conclusion

In this paper, we made progress towards a positive answer of Conjecture 1,
though it still remains open in general. We approached Conjecture 1 from two
directions and believe that Conjecture 3 might be easier to tackle, e.g. for an
inductive approach. For all our results we used only Type 1 and Type 2 flips
(which can be simulated by Type 1 flips). It is an intriguing question whether
Type 3 flips are necessary at all.

Concerning the approach of special classes of point sets, of course one can
try to further adapt the ideas to other classes. Most of our results hold for the
setting of spinal point sets; the main obstacle that remains in order to show
flip connectivity for the point sets satisfying condition (P1) would be to adapt
Lemma 4. A proof for general point sets, however, seems elusive at the moment.

Lastly, there are several other directions for further research conceivable, e.g.
non-straight-line drawings.
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