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Abstract. Let S be a planar point set in general position, and let P(S)1

be the set of all plane straight-line paths with vertex set S. A flip on a2

path P ∈ P(S) is the operation of replacing an edge e of P with another3

edge f on S to obtain a new valid path from P(S). It is a long-standing4

open question whether for every given point set S, every path from P(S)5

can be transformed into any other path from P(S) by a sequence of6

flips. To achieve a better understanding of this question, we show that7

it is sufficient to prove the statement for plane spanning paths whose8

first edge is fixed. Furthermore, we provide positive answers for special9

classes of point sets, namely, for wheel sets and generalized double circles10

(which include, e.g., double chains and double circles).11

Keywords: flips · plane spanning paths · generalized double circles

1 Introduction12

Reconfiguration is a classical and widely studied topic with various applications13

in multiple areas. A natural way to provide structure for a reconfiguration prob-14

lem is by studying the so-called flip graph. For a class of objects, the flip graph15

has a vertex for each element and adjacencies are determined by a local flip oper-16

ation (we will give the precise definition shortly). In this paper we are concerned17

with transforming plane spanning paths via edge flips.18

Let S be a set of n points in the plane in general position (i.e., no three points19

are collinear), and let P(S) be the set of all plane straight-line spanning paths20

for S, i.e., the set of all paths with vertex set S whose straight-line embedding21
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Type 1 Type 2 Type 3

Figure 1. The three types of flips in plane spanning paths.45

on S is crossing-free. A flip on a path P ∈ P(S) is the operation of removing22

an edge e from P and replacing it by another edge f on S such that the graph23

(P \ e) ∪ f is again a path from P(S). Note that the edges e and f might cross.24

The flip graph on P(S) has vertex set P(S) and two vertices are adjacent if and25

only if the corresponding paths differ by a single flip. The following conjecture26

will be the focus of this paper:27

Conjecture 1 (Akl et al. [3]). For every point set S in general position, the flip28

graph on P(S) is connected.29

Related work. For further details on reconfiguration problems in general we30

refer the reader to the surveys of Nishimura [10] and Bose and Hurtado [4].31

Connectivity properties of flip graphs have been studied extensively in a huge32

variety of settings, see, e.g., [6,7,8,9,11] for results on triangulations, matchings33

and trees.34

In our setting of plane spanning paths, flips are much more restricted, making35

it more difficult to prove a positive answer. Prior to our work only results for36

point sets in convex position and very small point sets were known. Akl et al. [3],37

who initiated the study of flip connectivity on plane spanning paths, showed38

connectedness of the flip graph on P(S) if S is in convex position or |S| ≤ 8.39

In the convex setting, Chang and Wu [5] derived tight bounds concerning the40

diameter of the flip graph, namely, 2n− 5 for n = 3, 4, and 2n− 6 for n ≥ 5.41

For the remainder of this paper, we consider the flip graph on P(S) (or a42

subset of P(S)). Moreover, unless stated otherwise, the word path always refers43

to a path from P(S) for an underlying point set S that is clear from the context.44

Flips in plane spanning paths. Let us have a closer look at the different46

types of possible flips for a path P = v1, . . . , vn ∈ P(S) (see also Figure 1).47

When removing an edge vi−1vi from P with 2 ≤ i ≤ n, there are three possible48

new edges that can be added in order to obtain a path (where, of course, not49

all three choices will necessarily lead to a plane path in P(S)): v1vi, vi−1vn,50

and v1vn. A flip of Type 1 is a valid flip that adds the edge v1vi (if i > 2) or the51

edge vi−1vn (if i < n). It results in the path vi−1, . . . , v1, vi, . . . , vn, or the path52

v1, . . . , vi−1, vn, . . . , vi. That is, a Type 1 flip inverts a contiguous chunk from53

one of the two ends of the path. A flip of Type 2 adds the edge v1vn and has the54



Flipping Plane Spanning Paths 3

v1

v2

v3

Figure 2. Example where the flip graph is disconnected if the first three vertices
of the paths are fixed. No edge of the solid path can be flipped, but there is at
least one other path (dotted) with the same three starting vertices.
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additional property that the edges vi−1vi and v1vn do not cross. In this case,55

the path P together with the edge v1vn forms a plane cycle. If a Type 2 flip is56

possible for one edge vi−1vi of P , then it is possible for all edges of P . A Type 257

flip can be simulated by a sequence of Type 1 flips, e.g., flip v1v2 to v1vn, then58

flip v2v3 to v1v2, then v3v4 to v2v3, etc., until flipping vi−1vi to vi−2vi−1. A flip59

of Type 3 also adds the edge v1vn, but now the edges v1vn and vi−1vi cross.60

Note that a Type 3 flip is only possible if the edge v1vn crosses exactly one edge61

of P , and then the flip is possible only for the edge vi−1vi that is crossed.62

Contribution. We approach Conjecture 1 from two directions. First, we show63

that it is sufficient to prove flip connectivity for paths with a fixed starting edge.64

Second, we verify Conjecture 1 for several classes of point sets, namely wheel65

sets and generalized double circles (which include, e.g., double chains and double66

circles).67

Towards the first part, we define, for two distinct points p, q ∈ S, the following68

subsets of P(S): let P(S, p) be the set of all plane spanning paths for S that69

start at p, and let P(S, p, q) be the set of all plane spanning paths for S that70

start at p and continue with q. Then for any S, the flip graph on P(S, p, q) is71

a subgraph of the flip graph on P(S, p), which in turn is a subgraph of the flip72

graph on P(S). We conjecture that all these flip graphs are connected:73

Conjecture 2. For every point set S in general position and every p ∈ S, the flip74

graph on P(S, p) is connected.75

Conjecture 3. For every point set S in general position and every p, q ∈ S, the76

flip graph on P(S, p, q) is connected.77

Towards Conjecture 1, we show that it suffices to prove Conjecture 3:78

Theorem 1. Conjecture 2 implies Conjecture 1.79

Theorem 2. Conjecture 3 implies Conjecture 2.80

Note that the analogue of Conjecture 3 for paths where the first k ≥ 384

vertices are fixed, does not hold: Figure 2 shows a counterexample with 7 points85

and k = 3.86
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Towards the flip connectivity for special classes of point87

sets, we consider wheel sets and generalized double circles. A88

point set is in wheel configuration if it has exactly one point89

inside the convex hull. For generalized double circles we90

defer the precise definition to Section 4, however, intuitively91

speaking a generalized double circle is obtained by replacing92

each edge of the convex hull by a flat enough concave chain93

of arbitrary size (as depicted on the right). We show that94

the flip graph is connected in both cases:95

Theorem 3. (?) Let S be a set of n points in wheel configuration. Then the flip96

graph (on P(S)) is connected with diameter at most 2n− 4.97

Theorem 4. (?) Let S be a set of n points in generalized double circle configu-98

ration. Then the flip graph (on P(S)) is connected with diameter O(n2).99

Finally, we remark that using the order type database [1], we are able to102

computationally verify Conjecture 1 for every set of n ≤ 10 points in general103

position (even when using only Type 1 flips).3104

Notation. We denote the convex hull of a point set S by CH(S). All points105

p ∈ S on the boundary of CH(S) are called extreme points and the remaining106

points are called interior points. All results marked by a (?) have a full proof in107

the full version of this paper [2].108

2 A Sufficient Condition109

In this section we prove Theorem 1 and Theorem 2.110

Lemma 1. (?) Let S be a point set in general position and p, q ∈ S. Then there111

exists a path P ∈ P(S) which has p and q as its end vertices.112

Theorem 1. Conjecture 2 implies Conjecture 1.113

Proof. Let S be a point set and Ps, Pt ∈ P(S). If Ps and Pt have a common114

endpoint, we can directly apply Conjecture 2 and the statement follows. So115

assume that Ps has the endpoints va and vb, and Pt has the endpoints vc and116

vd, which are all distinct. By Lemma 1 there exists a path Pm having the two117

endpoints va and vc. By Conjecture 2 there is a flip sequence from Ps to Pm118

with the common endpoint va, and again by Conjecture 2 there is a further119

flip sequence from Pm to Pt with the common endpoint vc. This concludes the120

proof. ut121

3 The source code is available at https://github.com/jogo23/flipping_plane_
spanning_paths.

100

101

https://github.com/jogo23/flipping_plane_spanning_paths
https://github.com/jogo23/flipping_plane_spanning_paths
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Towards Theorem 2, we first have a closer look at what edges form viable122

starting edges. For a given point set S and points p, q ∈ S, we say that pq forms123

a viable starting edge if there exists a path P ∈ P(S) that starts with pq. For124

instance, an edge connecting two extreme points that are not consecutive along125

CH(S) is not a viable starting edge. The following lemma shows that these are126

the only non-viable starting edges.127

Lemma 2. (?) Let S be a point set in general position and u, v ∈ S. The edge128

uv is a viable starting edge if and only if one of the following is fulfilled: (i) u129

or v lie in the interior of CH(S), or (ii) u and v are consecutive along CH(S).130

The following lemma is the analogue of Lemma 1:131

Lemma 3. (?) Let S be a point set in general position and v1 ∈ S. Further132

let S′ ⊂ S be the set of all points p ∈ S such that v1p forms a viable starting133

edge. Then for two points q, r ∈ S′ that are consecutive in the circular order134

around v1, there exists a plane spanning cycle containing the edges v1q and v1r.135

Theorem 2. Conjecture 3 implies Conjecture 2.136

Proof. Let S be a point set and v1 ∈ S. Further let P, P ′ ∈ P(S, v1). If P and137

P ′ have the starting edge in common, then we directly apply Conjecture 3 and138

are done. So let us assume that the starting edge of P is v1v2 and the starting139

edge of P ′ is v1v′2. Clearly v2, v′2 ∈ S′ holds. Sort the points in S′ in radial order140

around v1. Further let vx ∈ S′ be the next vertex after v2 in this radial order141

and C be the plane spanning cycle with edges v1v2 and v1vx, as guaranteed by142

Lemma 3.143

By Conjecture 3, we can flip P to C \ v1vx. Then, flipping v1v2 to v1vx we144

get to the path C \ v1v2, which now has v1vx as starting edge. We iteratively145

continue this process of “rotating” the starting edge until reaching v1v′2. ut146

Theorems 1 and 2 imply that it suffices to show connectedness of certain147

subgraphs of the flip graph. A priori it is not clear whether this is an easier or a148

more difficult task – on the one hand we have smaller graphs, making it easier149

to handle. On the other hand, we may be more restricted concerning which flips150

we can perform, or exclude certain “nice” paths.151

3 Flip Connectivity for Wheel Sets152

Akl et al. [3] proved connectedness of the flip graph if the underlying point set S153

is in convex position. They showed that every path in P(S) can be flipped to154

a canonical path that uses only edges on the convex hull of S. To generalize155

this approach to other classes of point sets, we need two ingredients: (i) a set of156

canonical paths that serve as the target of the flip operations and that have the157

property that any canonical path can be transformed into any other canonical158

path by a simple sequence of flips, usually of constant length; and (ii) a strategy159

to flip any given path to some canonical path.160
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Recall that a set S of n ≥ 4 points in the plane is a wheel set if there is161

exactly one interior point c0 ∈ S. We call c0 the center of S and classify the162

edges on S as follows: an edge incident to the center c0 is called a radial edge,163

and an edge along CH(S) is called spine edge (the set of spine edges forms the164

spine, which is just the boundary of the convex hull here). All other edges are165

called inner edges. The canonical paths are those that consist only of spine edges166

and one or two radial edges.167

We need one observation that will also be useful later. Let S be a point set168

and P = v1, . . . , vn ∈ P(S). Further, let vi (i ≥ 3) be a vertex such that no edge169

on S crosses v1vi. We denote the face bounded by v1, . . . , vi, v1 by Φ(vi).170

Observation 5. Let S be a point set, P = v1, . . . , vn ∈ P(S), and vi (i ≥ 3)171

be a vertex such that no edge on S crosses v1vi. Then all vertices after vi172

(i.e., {vi+1, . . . , vn}) must entirely be contained in either the interior or the173

exterior of Φ(vi).174

Theorem 3. (?) Let S be a set of n points in wheel configuration. Then the flip175

graph (on P(S)) is connected with diameter at most 2n− 4.176

Proof (Sketch). Let P = v1, . . . , vn ∈ P(S) be a non-canonical path and w.l.o.g.,177

let v1 6= c0. We show how to apply suitable flips to increase the number of spine178

edges of P . By Lemma 2, v1v2 can only be radial or a spine edge. In the former179

case we can flip the necessarily radial edge v2v3 to the spine edge v1v3. In the180

latter case, let va with a 6= 2 be a neighbor of v1 along the convex hull. Then,181

either va−1va is not a spine edge and hence, we can flip it to v1va, or otherwise182

we show, using Observation 5, that P actually already is a canonical path. ut183

4 Flip Connectivity for Generalized Double Circles184

The proof for generalized double circles is in principle similar to the one for185

wheel sets but much more involved. For a point set S and two extreme points186

p, q ∈ S, we call a subset CC(p, q) ⊂ S concave chain (chain for short) for S,187

if (i) p, q ∈ CC(p, q); (ii) CC(p, q) is in convex position; (iii) CC(p, q) contains188

no other extreme points of S; and (iv) every line `xy through any two points189

x, y ∈ CC(p, q) has the property that all points of S \CC(p, q) are contained in190

the open halfplane bounded by `xy that contains neither p nor q. Note that the191

extreme points p and q must necessarily be consecutive along CH(S). If there is192

no danger of confusion, we also refer to the spanning path from p to q along the193

convex hull of CC(p, q) as the concave chain.194

A point set S is in generalized double circle position if there exists a family of198

concave chains such that every inner point of S is contained in exactly one chain199

and every extreme point of S is contained in exactly two chains. We denote the200

class of generalized double circles by GDC. For S ∈ GDC, it is not hard to see201

that the union of the concave chains forms an uncrossed spanning cycle (cf. the202

full version [2]). Figure 3 gives an illustration of generalized double circles.203
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(a) (b) double chain (c) double circle (d)

Figure 3. (a-c) Examples of generalized double circles (the uncrossed spanning
cycle is depicted in orange). (d) A point set that is not a generalized double
circle, but admits an uncrossed spanning cycle.

195

196

197

Before diving into the details of the proof of Theorem 4, we start by collecting204

preliminary results in a slightly more general setting, namely for point sets S205

fulfilling the following property:206

(P1) there is an uncrossed spanning cycle C on S, i.e., no edge joining two207

points of S crosses any edge of C.208

A point set fulfilling (P1) is called spinal point set. When considering a spinal209

point set S, we first fix an uncrossed spanning cycle C, which we call spine and210

all edges in C spine edges. For instance, generalized double circles are spinal211

point sets and the spine is precisely the uncrossed spanning cycle formed by212

the concave chains as described above. Whenever speaking of the spine or spine213

edges for some point set without further specification, the underlying uncrossed214

cycle is either clear from the context, or the statement holds for any choice of215

such a cycle. Furthermore, we call all edges in the exterior/interior of the spine216

outer/inner edges.217

We define the canonical paths to be those that consist only of spine edges.218

Note that this definition also captures the canonical paths used by Akl et al. [3],219

and that any canonical path can be transformed into any other by a single flip220

(of Type 2). Two vertices incident to a common spine edge are called neighbors.221

Valid flips. We collect a few observations which will be useful to confirm the222

validity of a flip. Whenever we apply more than one flip, the notation in subse-223

quent flips refers to the original path and not the current (usually we apply one224

or two flips in a certain step). Figure 4 gives an illustration of Observation 6.225

Observation 6. Let S be a spinal point set, P = v1, . . . , vn ∈ P(S), and v1, va230

(a 6= 2) be neighbors. Then the following flips are valid (under the specified231

additional assumptions):232

(a) flip va−1va to v1va233

(b) flip vava+1 to va−1va+1 (if the triangle ∆va−1vava+1 is empty and (b) is
performed subsequently after the flip in (a))

234

(c) flip vava+1 to v1va+1 (if the triangle ∆v1vava+1 is empty and
va−1va is a spine edge)

235
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v1

va

va−1
v1

va

va−1

va+1
v1

va

va−1

va+1

Figure 4. Left to right: Illustration of the three flips in Observation 6. The spine
is depicted in orange and edge flips are indicated by replacing dashed edges for
dotted (in the middle, the two flips must of course be executed one after the
other).

226

227

228

229

Strictly speaking, in Observation 6(c) we do not require va−1va to be a spine236

edge, but merely to be an edge not crossing v1va+1. The following lemma provides237

structural properties for generalized double circles, if the triangles in Observa-238

tion 6(b,c) are non-empty, i.e., contain points from S (see also Figure 5 (left)):239

Lemma 4. (?) Let S ∈ GDC and p, q, x ∈ S such that p and q are neighbors.240

Further, let the triangle ∆pqx be non-empty. Then the following holds:241

(i) At least one of the two points p, q is an extreme point (say p),242

(ii) x does not lie on a common chain with p and q, but shares a common chain243

with either p or q (the latter may only happen if q is also an extreme point).244

Combinatorial distance measure. In contrast to the proof for wheel sets, it245

may now not be possible anymore to directly increase the number of spine edges246

and hence, we need a more sophisticated measure. Let C be the spine of a spinal247

point set S and p, q ∈ S. Further let o ∈ {cw, ccw} be an orientation. We define248

the distance between p, q in direction o, denoted by do(p, q), as the number of249

spine edges along C that lie between p and q in direction o. Furthermore, we250

define the distance between p and q to be251

d(p, q) = min{dcw(p, q), dccw(p, q)}.252

Note that neighboring points along the spine have distance 1. Using this253

notion, we define the weight of an edge to be the distance between its endpoints254

and the (overall) weight of a path on S to be the sum of its edge weights.255

Our goal is to perform weight-decreasing flips. To this end, we state two more262

preliminary results (see also Figure 5 (middle) and (right)):263

Observation 7. Let S be a spinal point set, p, q, r be three neighboring points264

in this order (i.e., q lies between p and r), and s ∈ S \ {p, q, r} be another point.265

Then d(p, s) < d(q, s) or d(r, s) < d(q, s) holds.266

Combining Observation 6 and Observation 7, it is apparent that we can per-267

form weight-decreasing flips whenever ∆va−1vava+1 and ∆v1vava+1 are empty.268
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p

s

q

r

p q

x

v1 va

vn

vb

vc vd

Figure 5. Left: Illustration of Lemma 4. If p and q are neighbors, x has to lie
on the depicted chain in order to obtain a non-empty triangle ∆pqx. Middle:
Illustration of Observation 7. One of the dashed edges has smaller weight than
the solid: d(s, q) = 4; d(s, p) = 4; d(s, r) = 3. Right: Illustration of Lemma 5.
The initial path is depicted by solid and dashed edges. Flipping the dashed edges
to the dotted edges increases the number of spine edges.

256

257

258

259

260

261

Lemma 5. (?) Let S be a spinal point set, P = v1, . . . , vn ∈ P(S), and va, vb269

(a, b 6= 2) be neighbors of v1 as well as vc, vd (c, d 6= n− 1) be neighbors of vn. If270

max(a, b) > min(c, d), then the number of spine edges in P can be increased by271

performing at most two flips, which also decrease the overall weight of P .272

Note that vb or vd in Lemma 5 may not exist, if the first or last edge of P is273

a spine edge. Lemma 5 essentially enables us to perform weight decreasing flips274

whenever the path traverses a neighbor of vn before it reached both neighbors275

of v1. We are now ready to prove Theorem 4, but briefly summarize the proof276

strategy from a high-level perspective beforehand:277

High level proof strategy. To flip an arbitrary path P ∈ P(S) to a canonical278

path, we perform iterations of suitable flips such that in each iteration we either279

(i) increase the number of spine edges along P , while not increasing the overall280

weight of P , or281

(ii) decrease the overall weight of P , while not decreasing the number of spine282

edges along P .283

Note that for the connectivity of the flip graph it is not necessary to guarantee284

the non increasing overall weight in the first part. However, this will provide us285

with a better bound on the diameter of the flip graph.286

Theorem 4. (?) Let S be a set of n points in generalized double circle configu-287

ration. Then the flip graph (on P(S)) is connected with diameter O(n2).288

Proof (Sketch). Let P = v1, . . . , vn ∈ P(S) be a non-canonical path. We show289

how to iteratively transform P to a canonical path by increasing the number of290

spine edges or decreasing its overall weight. Let va (a 6= 2) be a neighbor of v1.291

We can assume, w.l.o.g, that v1 and vn are not neighbors (i.e., a < n),292

since otherwise we can flip an arbitrary (non-spine) edge of P to the spine edge293
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v1

va+1

v2

va

Figure 6. Illustration of Case 1. If v1v2 is not a spine edge and ∆v1vava+1 is
empty, we make progress by flipping the dashed edges to the dotted.

299

300

v1vn (performing a Type 2 flip). Furthermore, we can also assume w.l.o.g., that294

va−1va is a spine edge, since otherwise we can flip va−1va to the spine edge v1va295

(Observation 6(a)). This also implies that the edge vava+1, which exists because296

a < n, is not a spine edge, since va already has the two neighbors va−1 and v1.297

We distinguish two cases – v1v2 being a spine edge or not:298

Case 1: v1v2 is not a spine edge.301

This case is easier to handle, since we are guaranteed that both neighbors302

of v1 are potential candidates to flip to. In order to apply Observation 6, we303

require ∆v1vava+1 to be empty. If that is the case we apply the following flips304

(see also Figure 6):305

flip vava+1 to v1va+1 and flip v1v2 to v1va,306

where the first flip results in the path va, . . . , v1, va+1, . . . , vn (and is valid by Ob-307

servation 6(c)) and the second flip results in the path v2, . . . , va, v1, va+1, . . . , vn308

(valid due to Observation 6(a)). Together, the number of spine edges increases,309

while the overall weight does not increase.310

If∆v1vava+1 is not empty we need to be more careful, using Lemma 4 (details311

can be found in the full version [2]).312

Case 2: v1v2 is a spine edge.313

In this case we will consider P from both ends v1 and vn. Our general strategy314

here is to first rule out some easier cases and collect all those cases where we315

cannot immediately make progress. For these remaining “bad” cases we consider316

the setting from both ends of the path.317

Again, we skip the analysis of the easier cases and just summarize the six318

“bad” cases. These “bad” cases always involve v1, va, or va−1 being an extreme319

point. Instead of spelling all these cases out, we give an illustration in Figure 7.320

In the remainder of the proof we settle these “bad” cases by arguing about326

both ends of the path, i.e, we consider all
(
6
2

)
+ 6 = 21 combinations of “bad”327

cases.328

We exclude several combinations as follows. By Lemma 5, we can assume329

that a < c holds (otherwise there are weight decreasing flips) and hence, no330
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v1

va va−1

va+1

v2

v1

va

va−1

va+1
v2

v1

va

va+1

v2

v1 va

va−1

va+1

v2

v1 va

va−1

va+1

v2

v1

va+1

v2

va

(I)

(II)

(IIIa)

(IIIb)

(IVa)

(IVb)

va−2

va−1

va−1

Figure 7. The six “bad” cases. The solid edges depict the fixed edges of the
corresponding “bad” case and the red arcs (here and in the following) indicate
that there is no vertex other than the two extreme points lying on this chain.

321

322

323

vn

vc

vc+1

vc−1

vn−1

v1

va+1

v2va
(I)

(IIIa)

va−2

va−1

vn

vc

vc+1

vc−1

vn−1

v1

va+1

v2va

va−2

va−1
(I)

(IIIa)

Figure 8. (I) and (IIIa) cannot be combined in a plane manner (left), except if
the path traverses a neighbor of vn before those of v1, i.e., c < a holds (right).

324

325

“bad” case where va+1 is in the interior of Φ(va) can be combined with a “bad”331

case having vn or vc as extreme point (Observation 5). This excludes (almost)332

all combinations involving (I), (II), or (IVb); see Figure 8 for an example.333

For the remaining cases, we try to decrease the weight of P by flipping334

vava+1 either to v1va+1 or va−1va+1 (see Observation 7). If these flips are valid335

they are either weight-decreasing or we can identify disjoint regions that must336

each contain at least n/2 vertices, which will result in a contradiction. Again,337

we skip the details of this analysis.338

Iteratively applying the above process transforms P to a canonical path and339

the O(n2) bound for the required number of flips also follows straightforwardly.340

ut341
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5 Conclusion342

In this paper, we made progress towards a positive answer of Conjecture 1,343

though it still remains open in general. We approached Conjecture 1 from two344

directions and believe that Conjecture 3 might be easier to tackle, e.g. for an345

inductive approach. For all our results we used only Type 1 and Type 2 flips346

(which can be simulated by Type 1 flips). It is an intriguing question whether347

Type 3 flips are necessary at all.348

Concerning the approach of special classes of point sets, of course one can349

try to further adapt the ideas to other classes. Most of our results hold for the350

setting of spinal point sets; the main obstacle that remains in order to show351

flip connectivity for the point sets satisfying condition (P1) would be to adapt352

Lemma 4. A proof for general point sets, however, seems elusive at the moment.353

Lastly, there are several other directions for further research conceivable, e.g.354

non-straight-line drawings.355
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