
Unions of Onions: Preprocessing Imprecise1

Points for Fast Onion Layer Decomposition2

Maarten Löffler1 and Wolfgang Mulzer23

1 Department of Information and Computing Sciences, Universiteit Utrecht, The4
Netherlands, m.loffler@uu.nl5

2 Institut für Informatik, Freie Universität Berlin, Germany,6
mulzer@inf.fu-berlin.de7

Abstract. Let D be a set of n pairwise disjoint unit disks in the plane.8
We describe how to build a data structure for D so that for any point9
set P containing exactly one point from each disk, we can quickly find10
the onion decomposition (convex layers) of P .11
Our data structure can be built in O(n logn) time and has linear size.12
Given P , we can find its onion decomposition in O(n log k) time, where13
k is the number of layers. We also provide a matching lower bound.14
Our solution is based on a recursive space decomposition, combined with15
a fast algorithm to compute the union of two disjoint onion decomposi-16
tions.17

1 Introduction18

Let P be a planar n-point set. Take the convex hull of P and remove it; repeat19
until P becomes empty. This process is called onion peeling, and the resulting20
decomposition of P into convex polygons is the onion decomposition, or onion for21
short, of P . It can be computed in O(n log n) time [6]. Onions provide a natural,22
more robust, generalization of the convex hull, and they have applications in23
pattern recognition, statistics, and planar halfspace range searching [7, 14,22]24

Recently, a new paradigm has emerged for modeling data imprecision. Sup-25
pose we need to compute some interesting property of a planar point set. Suppose26
further that we have some advance knowledge about the possible locations of the27
points, e.g., from an imprecise sensor measurement. We would like to preprocess28
this information, so that once the precise inputs are available, we can obtain29
our structure faster. We will study the complexity of computing onions in this30
framework.31

1.1 Related Work32

The notion of onion layer decompositions first appears in the computational33
statistics literature [14], and several rather brute-force algorithms to compute it34
have been suggested (see [9] and the references therein). In the computational35
geometry community, Overmars and van Leeuwen [21] presented the first near-36
linear time algorithm, requiring O(n log2 n) time. Chazelle [6] improved this37

(a) (b)

Fig. 1. (a) Two disjoint onions. (b) Their union.

to an optimal O(n log n) time algorithm. Nielsen [20] gave an output-sensitive1
algorithm to compute only the outermost k layers in O(n log hk) time, where hk2
is the number of vertices participating on the outermost k layers. In R3, Chan [5]3
described an O(n log6 n) expected time algorithm.4

The framework for preprocessing regions that represent points was first in-5
troduced by Held and Mitchell [12], who show how to store a set of disjoint6
unit disks in a data structure such that any point set containing one point from7
each disk can be triangulated in linear time. This result was later extended to8
arbitrary disjoint regions in the plane by van Kreveld et al. [16]. Löffler and9
Snoeyink first showed that the Delaunay triangulation (or its dual, the Voronoi10
diagram) can also be computed in linear time after preprocessing a set of disjoint11
unit disks [17]. This result was later extended by Buchin et al. [4], and Devillers12
gives a practical alternative [8]. Ezra and Mulzer [10] show how to preprocess13
a set of lines in the plane such that the convex hull of a set of points with one14
point on each line can be computed faster than n log n time.15

These results also relate to the update complexity model. In this paradigm,16
the input values or points come with some uncertainty, but it is assumed that17
during the execution of the algorithm, the values or locations can be obtained18
exactly, or with increased precision, at a certain cost. The goal is then to compute19
a certain combinatorial property or structure of the precise set of points, while20
minimising the cost of the updates made by the algorithm [3,11,13,23].21

1.2 Results22

We begin by showing that the union of two disjoint onions can be computed in23
O(n+ k2 log n) time, where k is the number of layers in the resulting onion.24

We apply this algorithm to obtain an efficient solution to the onion prepro-25
cessing problem mentioned in the introduction. Given n pairwise disjoint unit26
disks that model an imprecise point set, we build a data structure of size O(n)27
such that the onion decomposition of an instance can be retrieved in O(n log k)28
time, where k is the number of layers in the resulting onion. We present several29
preprocessing algorithms. The first is very simple and achieves O(n log n) ex-30
pected time. The second and third algorithm make this guarantee deterministic,31
at the cost of worse constants and/or a more involved algorithm.32

2

We also show that the dependence on k is necessary: in the worst case,1
any comparison-based algorithm can be forced to take Ω(n log k) time on some2
instances.3

2 Preliminaries and Definitions4

Let P be a set of n points in R2. The onion decomposition, or onion, of P , is5
the sequence (P) of nested convex polygons with vertices from P , constructed6
recursively as follows: if P 6= ∅, we set (P) := {ch(P)} ∪ (P \ ch(P)), where7
ch(P) is the convex hull of P ; if P = ∅, then (P) := ∅ [6]. An element of (P) is8
called a layer of P . We represent the layers of (P) as dynamic balanced binary9
search trees, so that operations split and join can be performed in O(log n) time.10

Let D be a set of disjoint unit disks in R2. We say a point set P is a sample11
from D if every disk in D contains exactly one point from P . We write log for12
the logarithm with base 2.13

3 The Algorithm14

Our algorithm requires several pieces, to be described in the following sections.15

3.1 Unions of Onions16

Suppose we have two point sets P and Q, together with their onions. We show17
how to find (P ∪Q) quickly, given that (P) and (Q) are disjoint. Deleting18
points can only decrease the number of layers, so:19

Observation 3.1 Let P,Q ⊆ R2. Then (P) and (Q) cannot have more lay-20
ers than (P ∪Q). �21

The following lemma constitutes the main ingredient of our onion-union al-22
gorithm. A convex chain is any connected subset of a convex closed curve.23

Lemma 3.2. Let A and B be two non-crossing convex chains. We can find24
ch(A ∪B) in O(log n) time.25

Proof. Since A and B do not cross, the pieces of A and B that appear on26
ch(A ∪ B) are both connected: otherwise, ch(A ∪ B) would contain four points27
belonging to A, B, A, and B, in that order. However, the points on A must be28
connected inside ch(A ∪ B); as do the points on B. Thus, the chains A and B29
cross, which is impossible. Since A and B are convex chains, we can compute30
ch(A), ch(B) in O(log n) time. Furthermore, since A and B are disjoint, we can31
also, in O(log n) time, make sure that ch(A) ∩ ch(B) = ∅, by removing parts32
from A or B, if necessary. Now we can find the bitangents of ch(A) and ch(B)33
in logarithmic time [15]. �34

3

(a) (b)

Fig. 2. (a) A half-eaten onion; (b) the restored onion.

Lemma 3.3. Suppose (P) has k layers. Let A be the outer layer of (P),1
and p, q be two vertices of A. Let A1 be the points on A between p and q, going2
counter-clockwise. We can find (P \A1) in O(k log n) time.3

Proof. The points p and q partition A into two pieces, A1 and A2. Let B be the4
second layer of (P). The outer layer of (P \A1) is the convex hull of P \A1,5
i.e., the convex hull of A2 and B. By Lemma 3.2, we can find it in O(log n) time.6
Let p′, q′ ∈ P be the points on B where the outer layer of (P \ A1) connects.7
We remove the part between p′ and q′ from B, and use recursion to compute8
the remaining layers of (P \A1) in O((k − 1) log n) time; see Figure 2. �9

We conclude with the main theorem of this section:10

Theorem 3.4. Let P and Q be two planar point sets of total size n. Suppose11
that (P) and (Q) are disjoint. We can find the onion (P ∪Q) in O(k2 log n)12
time, where k is the resulting number of layers.13

Proof. By Observation 3.1, (P) and (Q) each have at most k layers. We use14
Lemma 3.2 to find ch(P ∪Q) in O(log n) time. By Lemma 3.3, the remainders of15

(P) and (Q) can be restored to proper onions in O(k log n) time. The result16
follows by induction. �17

3.2 Space Decomposition Trees18

We now describe how to preprocess the disks in D for fast divide-and-conquer.19
A space decomposition tree (SDT) T is a rooted binary tree where each node20
v is associated with a planar region Rv. The root corresponds to all of R2; for21
each leaf v of T , the region Rv intersects only a constant number of disks in22
D. Furthermore, each inner node v in T is associated with a directed line `v, so23
that if u is the left child and w the right child of v, then Ru := Rv ∩ `+v and24
Rw := Rv ∩ `−v . Here, `+v is the halfplane to the left of `v and `−v the halfplane25
to the right of `v; see Figure 326

4

Let α, β ∈ (0, 1), and let T be an SDT. For a node v of T , let dv denote the1
number of disks in D that intersect Rv. We call T an (α, β)-SDT for D if for2
every inner node v we have that (i) the line `v intersects at most dβv disks in Rv;3
and (ii) du, dw ≤ αdv, where u and w are the children of v.4

Lemma 3.5. Let T be an (α, β)-SDT. The tree T has height O(log n) and O(n)5
nodes. Furthermore,

∑
v∈T dv = O(n log n).6

Proof. The fact that T has height O(log n) is immediate from property (ii) of7
an (α, β)-SDT. For i = 0, . . . , log n, let Vi := {v ∈ T | dv ∈ [2i, 2i+1)}, the set8
of nodes whose regions intersect between 2i and 2i+1 disks. Note that the sets9
Vi constitute a partition of the nodes. Let Ṽi ⊆ Vi be the nodes in Vi whose10
parent is not in Vi. By property (ii) again, the dv along any root-leaf path in T11

are monotonically decreasing, so the nodes in Ṽi are unrelated (i.e., no node in12

Ṽi is an ancestor or descendant of another node in Ṽi). Furthermore, the nodes13

in Vi induce in T a forest Fi such that each tree in Fi has a root from Ṽi and14
constant height (depending on α).15

Let Di :=
∑
v∈Ṽi dv. We claim that for i = 0, . . . , log n, we have16

Di ≤ n
logn∏
j=i

(
1 + c2j(β−1)

)
, (1)

for some large enough constant c. Indeed, consider a node v ∈ Ṽj . As noted17
above, v is the root of a tree Fv of constant height in the forest induced by Vj .18
By property (i), any node u in this subtree adds at most dβu < 2(j+1)β additional19
disk intersections (i.e., da + db ≤ du + 2(j+1)β , where a, b are the children of20
u). Since Fv has constant size, the total increase in disk intersections in Fv is21
thus at most c′2(j+1)β , for some constant c′. Since dv ≥ 2j , it follows that the22
number of disk intersections increases multiplicatively by a factor of at most23
1 + c′2(j+1)β/2j ≤ 1 + c2j(β−1), for some constant c. The trees Fv partition T24

and the root intersects n disks, so for the nodes in Ṽi, the total number of disk25
intersections has increased by a factor of at most

∏logn
j=i

(
1 + c2j(β−1)

)
, giving26

(1). The product in (1) is easily estimated:27

Di ≤ n
logn∏
j=i

(1 + c2j(β−1)) ≤ ne
∑logn
j=i c2j(β−1)

= neO(1) = O(n),

since β < 1. Hence, each set Ṽi has at most O(n/2i) nodes for i = 1, . . . , log n.28

The total size of all Ṽi is O(n). Since each v ∈ Vi lies in a constant size subtree29

rooted at a w ∈ Ṽi, it follows that T has O(n) nodes. For the same reason, we30
get that

∑
v∈T dv = O(n log n). �31

Now there are several ways to obtain an (α, β)-SDT for D. A very simple32
construction is based on the following lemma, which is an algorithmic version of33
a result by Alon et al. [2, Theorem 1.2]. See Section 4 for alternative approaches.34

5

Fig. 3. A space decomposition tree for 21 unit disks.

Lemma 3.6. There exists a constant c ≥ 0, so that for any set D of m congruent1
nonoverlapping disks in the plane, there is a line ` with at least m/2−c

√
m logm2

disks completely to each side of it. We can find ` in O(m) expected time.3

Proof. Our proof closely follows Alon et al. [2, Section 2]. Set r := b
√
m/ logmc,4

and pick a random integer z between 1 and r/2. Find a line ` whose angle with5
the x-axis is (z/r)π and that has bm/2c disk centers on each side. Given z,6
we can find ` in O(m) time by a median computation. The proof by Alon et al.7
implies that with probability at least 1/2 over the choice of z, the line ` intersects8
at most c

√
m logm disks in D, for some constant c ≥ 0. Thus, we need two tries9

in expectation to find a good line `. The expected running time is O(m). �10

To obtain a (1/2 + ε, 1/2 + ε)-SDT T for D, we apply Lemma 3.6 recursively11
until the region for each node intersects only a constant number of disks. Since12
the expected running time per node is linear in the number of intersected disks,13
Lemma 3.5 shows that the total expected running time is O(n log n).14

By Lemma 3.5, the leaves of T induce a planar subdivision GT with O(n)15
faces. We add a large enough bounding box to GT and triangulate the resulting16
graph. Since GT is planar, the triangulation has complexity O(n) and can be17
computed in the same time (no need for heavy machinery—all faces of GT are18
convex). With each disk in D, we store the list of triangles that intersect it (recall19
that each triangle intersects a constant number of disks). This again takes O(n)20
time and space. We conclude with the main theorem of this section:21

Theorem 3.7. Let D be a set of n disjoint unit disks in R2. In O(n log n)
expected time, we can construct an (1/2 + ε, 1/2 + ε) space partition tree T for
D. Furthermore, for each disk D ∈ D, we have a list of triangles TD that cover
the leaf regions of T that intersect D. ut

3.3 Processing a Precise Input22

Suppose we have an (α, β)-SDT together with a point location structure as23
in Theorem 3.7. Let P be a sample from D. Suppose first that we know k,24

6

the number of layers in (P). For each input point pi, let Di ∈ D be the1
corresponding disk. We check all triangles in TDi , until we find the one that2
contains pi. Since there are O(n) triangles, this takes O(n) time. Afterwards, we3
know for each point in P the leaf of T that contains it.4

For each node v of T , let nv be the number of points in the subtree rooted5
at v. We can compute the nv’s in total time O(n) by a postorder traversal of6
T . The upper tree Tu of T consists of all nodes v with nv ≥ k2. Each leaf of7
Tu corresponds to a subset of P with O(k2) points. For each such subset, we8
use Chazelle’s algorithm [6] to find its onion decomposition in O(k2 log k) time.9
Since the subsets are disjoint, this takes O(n log k) total time. Now, in order to10
obtain (P), we perform a postorder traversal of Tu, using Theorem 3.4 in each11
node to unite the onions of its children. This gives (P) at the root.12

The time for the onion union at a node v is O(k2 log nv). We claim that for13
i = 2 log k, . . . , log n, the upper tree Tu contains at most O(n/2i) nodes v with14
nv ∈ [2i, 2i+1). Given the claim, the total work is proportional to15 ∑

v∈Tu
k2 log nv ≤

logn∑
i=2 log k

n

2i
k2(i+ 1) = nk2

logn∑
i=2 log k

i+ 1

2i
= O(n log k),

since the series
∑logn
i=2 log k(i + 1)/2i is dominated by the first term (log k)/k2.16

It remains to prove the claim. Fix i ∈ {2 log k, . . . , log n} and let Vi be the17
nodes in Tu with nv ∈ [2i, 2

i+1), whose parents have nv ≥ 2i+1. Since the18
nodes in Vi represent disjoint subsets of P , we have |Vi| ≤ n/2i. Furthermore,19
by property (i) of an (α, β)-SDT , both children w1, w2 for every node v ∈ Tu20
have nw1 , nw2 ≤ αnv, so that after O(1) levels, all descendants w of v ∈ V have21
nw < 2i. The claim follows.22

So far, we have assumed that k is given. Using standard exponential search,23
this requirement can be removed. More precisely, for i = 1, . . . , log log n, set24
ki = 22

i

. Run the above algorithm for k = k0, k1, If the algorithm succeeds,25
report the result. If not, abort as soon as it turns out that an intermediate onion26
has more than ki layers and try ki+1. The total time is27

log log k∑
i=0

O(n2i) = O(n log k),

as desired. This finally proves our main result.28

Theorem 3.8. Let D be a set of n disjoint unit disks in R2. We can build a29
data structure that stores D, of size O(n), in O(n log n) expected time, such that30
given a sample P of D, we can compute (P) in O(n log k) time, where k is the31
number of layers in (P). �32

Remark. Using the same approach, without the exponential search, we can33
also compute the outermost k layers of an onion with arbitrarily many layers in34
O(n log k) time, for any k. In order to achieve this, we simply abort the union35
algorithm whenever k layers have been found, and note that by Observation 3.1,36
the points in P not on the outermost k layers of (P) will never be part of the37
outermost k layers of (Q) for any Q ⊃ P .38

7

4 Deterministic Preprocessing1

We now present alternatives to Lemma 3.6. First, we describe a very simple2
construction that gives a deterministic way to build an (9/10 + ε, 1/2 + ε)-SDT3
in O(n log n) time.4

Lemma 4.1. Let D be a set of m non-overlapping unit disks. Suppose that the5
centers of D have been sorted in horizontal and vertical direction. Then we can6
find in O(m) time a (vertical or horizontal) line `, such that ` intersects O(

√
m)7

disks and such that ` has at least m/10 disks from D completely to each side.8

Proof. Let Dl, Dr, Dt, Db be the m/10 left-, right-, top-, and bottommost disks9
in D, respectively. We can find these disks in O(m) time, since we know the10
horizontal and vertical order of their centers. We call Do := Dl ∪ Dr ∪ Dt ∪ Db11
the outer disks, and Di := D \ Do the inner disks.12

Let R be the smallest axis-aligned rectangle that contains all inner disks.13
Again, R can be found in linear time. There are Ω(m) inner disks, and all disks14
are disjoint, so the area of R must be Ω(m). Thus, R has width or height Ω(

√
m);15

assume wlog that it has width Ω(
√
m). Let R′ ⊆ R be the rectangle obtained by16

moving the left boundary of R to the right by two units, and the right boundary17
of R to the left by two units. The rectangle R′ still has width Ω(

√
m), and it18

intersects no disks from Dl ∪ Dr. There are Ω(
√
m) vertical lines that intersect19

R′ and that are spaced at least one unit apart. Each such line has at least m/1020
disks completely to each side, and each disk is intersected by at most one line.21
Hence, there must be a line that intersects O(

√
m) disks, as claimed. We can22

find such a line in O(m) time by sweeping the disks from left to right. �23

The next lemma improves the constants of the previous construction. It24
allows us to compute an (1/2 + ε, 5/6 + ε)-SDT tree in deterministic time25
O(n log2 n), but it requires comparatively heavy machinery.26

Lemma 4.2. Let D be a set of m congruent non-overlapping disks. In determin-27
istic time O(m logm), we can find a line ` such that there are at least m/2−cm5/628
disks completely to each side of `.29

Proof. Let X be a planar n-point set, and let 1 ≤ r ≤ n be a parameter. A30
simplicial r-partition of X is a sequence ∆1, . . . ,∆a of a = Θ(r) triangles and31
a partition X = X1∪̇ · · · ∪̇Xa of X into a pieces such that (i) for i = 1, . . . , a,32
we have Xi ⊆ ∆i and |Xi| ∈ {n/r, . . . , 2n/r}; and (ii) every line ` intersects33
O(
√
r) triangles ∆i. Matoušek showed that a simplicial r-partition exists for34

every planar n-point set and for every r. Furthermore, this partition can be found35
in O(n log r) time (provided that r ≤ n1−δ, for some δ > 0) [18, Theorem 4.7].36

Let γ, δ ∈ (0, 1) be two constants to be determined later. Set r := mγ . Let37
Q be the set of centers of the disks in D. We compute a simplicial r-partition38
for Q in O(m logm) time. Let ∆1, . . . ,∆a be the resulting triangles and Q =39
Q1∪̇ · · · ∪̇Qa the partition of Q. Set s := mδ, and for i = 1, . . . , s, let `′i be the40
line through the origin that forms an angle (i/2s)π with the positive x-axis.41

8

Let Yi be the projection of the triangles ∆1, . . . ,∆a onto `′i. We interpret Yi as1
a set of weighted intervals, where the weight of an interval is the size |Qj | of2
the associated point set for the corresponding triangle. By the properties of the3
simplicial partition, the interval set Yi has depth O(

√
r), i.e., every point on `′i4

is covered by at most O(
√
r) intervals of Yi.5

Note that the sets Yi can be determined in O(sr log r) = O(mγ+δ logm) =6
O(m) total time, for γ, δ small enough. Now, for each Yi, we find a point ci on7
`′i that has intervals of total weight m/2 − O(

√
r(m/r)) = m/2 − O(m1−γ/2)8

completely to each side. Since the depth of Yi is O(
√
r), we can find such a point9

in time O(log r) with binary search, for a total of O(s log r) = O(m) time (it10
would even be permissible to spend time O(r) on each Yi). Let `i be the line11
perpendicular to `′i through ci.12

The analysis of Alon et al. shows that for each `i, there are at most O(s log s)13
disks that intersect `i and at least one other line `j [2, Section 2]. Thus, it suffices14
to focus on the disks in D that intersect at most one line `i. By simple counting,15
there is a line `i that exclusively intersects at most m/s = m1−δ disks. It remains16
to find such a line in O(m) time. For this, we compute the arrangement A17
of the strips with width 2 centered around each `i, together with an efficient18
point location structure. For each cell in the arrangement, we store whether it19
is covered by 0, 1, or more strips. Using standard techniques, the construction20
takes O(s2) = O(m2δ) time. We locate for each triangle ∆i the cells of A that21
contain the vertices of ∆i. This needs O(r log s) = O(mγ logm) steps. Since22
every line intersects at most O(

√
r) = O(mγ/2) triangles, we know that there23

are at most O(smγ/2) = O(mδ+γ/2) triangles that intersect a cell boundary of24
A. We call these triangles the bad triangles.25

For all other triangles ∆i, we know that the associated point set Qi lies26
completely in one cell of A. Let Di be the corresponding disks. By using the27
information stored with the cells, we can now determine for each disk D ∈ Di28
in O(1) time whether D intersects exactly one line `i. Thus, we can determine29
in total time O(m) for each line `i the total number of disks that intersect only30
`i and whose center is not associated with a bad triangle. Let ` be the line for31
which this number is minimum.32

In total, it has taken us O(m logm) steps to find `. Let us bound the number33
of disks that intersect `. First, we know that there are at most O(mδ+γ/2 ·34
m1−γ) = O(m1+δ−γ/2) disks whose centers lie in bad triangles. Then, there are35
at most O(mδ logm) disks that intersect ` and at least one other line. Finally,36
there are at most m1−δ disks with a center in a good triangle that intersect only37
`. Thus, if we choose, say, δ = 1/6 and γ = 2/3, then ` crosses at most O(m5/6)38
disks in D. Furthermore, by construction, ` has at least m/2 − O(m2/3) disk39
centers on each side. The result follows. �40

Remark. Actually, we can use the approach from Lemma 4.2 to compute an41
(1/2+ε, 5/6+ε)-SDT in total deterministic time O(m logm). The bottleneck lies42
in finding the simplicial partition for Q. All other steps take O(m) time. However,43
when applying Lemma 4.2 recursively, we do not need to compute a simplicial44
partition from scratch. Instead, as in Matoušek’s paper, we can recursively refine45

9

`+5`−5

Fig. 4. The lower bound construction consists of n/3 unit disks centered on a horizontal
line (5 in the figure), and two groups of n/3 points sufficiently far to the left and to the
right of the disks. Distances not to scale.

Fig. 5. n/k copies of the construction on a regular n/k-gon.

the existing partitions in linear time [18, Corollary 3.5] (while duplicating the1
triangles for the disks that are intersected by `). Thus, after spending O(m logm)2
time on the simplicial partition for the root, we need only linear time per node3
to find the dividing lines, for a total of O(m logm), by Lemma 3.5.4

5 Lower Bounds5

We now show that our algorithm is optimal in the decision tree model. We begin6
with a lower bound of Ω(n log n) for k = Ω(n). Let n be a multiple of 3, and7
consider the lines8

`−n : y = −1/2− 6/n− x/n2; `+n : y = −1/2− 6/n+ x/n2.

Let Dn consist of n/3 disks centered on the x-axis at x-coordinates between −n/69
and n/6; a group of n/3 disks centered on `−n at x-coordinates between n2 and10
n2 + n/3; and a symmetric group of n/3 disks centered on `+n at x-coordinates11
between −n2 − n/3 and −n2. Figure 4 shows D15.12

Lemma 5.1. Let π be a permutation on n/3 elements. There is a sample P of13
Dn such that pi (the point for the ith disk from the left in the main group) lies14
on layer π(i) of (P).15

10

Proof. Take P as the n/3 centers of the disks in D on `−n , the n/3 centers1
of the disks in D on `+n , and for each disk Di ∈ D on the x-axis the point2
pi = (i − n/6, π(i) · 3/n − 1/2). By construction, the outermost layer of (P)3
contains at least the leftmost point on `+n , the rightmost point on `−n , and the4
highest point (with y-coordinate 1/2). However, it does not contain any more5
points: the line segments connecting these three points have slope at most 2/n2.6
The second highest point lies 3/n lower, and at most n/3 further to the left or7
the right. The lemma follows by induction. �8

There are (n/3)! = 2Θ(n logn) permutations π; so any corresponding decision9
tree has height Ω(n log n). We can strengthen the lower bound to Ω(n log k) by10
taking n/k copies of Dk and placing them on the sides of a regular (n/k)-gon,11
see Figure 5. By Lemma 5.1, we can choose independently for each side of the12
(n/k)-gon one of (k/3)! permutations. The onion depth will be k/3, and the13
number of permutations is ((k/3)!)n/k = 2Θ(n log k).14

Theorem 5.2. Let k ∈ N and n ≥ k. There is a set D of n disjoint unit disks in15
R2, such that any decision-based algorithm to compute (P) for a sample P of16
D, based only on prior knowledge of D, takes Ω(n log k) time in the worst case.17

The lower bound still applies if the input points come from an appropriate18
probability distribution (e.g., [1, Claim 2.2]). Thus, Yao’s minimax principle [19,19
Chapter 2.2] yields a corresponding lower bound for any randomized algorithm.20

6 Conclusion and Further Work21

It would be interesting how much the parameter k can vary for a set of imprecise22
bounds and how to estimate k efficiently. Further work includes considering more23
general regions, such as overlapping disks, disks of different sizes, or fat regions.24
It would also be interesting to consider the problem in 3D. Three-dimensional25
onions are not well understood. The best general algorithm is due to Chan and26
needs O(n log6 n) expected time [5], giving more room for improvement.27
Acknowledgments. The authors would like to thank an anonymous reviewer28
for comments that improved the paper. M.L. supported by the Netherlands Or-29
ganisation for Scientific Research (NWO) under grant 639.021.123. W.M. sup-30
ported in part by DFG project MU/3501/1.31

References32

[1] N. Ailon, B. Chazelle, K. L. Clarkson, D. Liu, W. Mulzer, and C. Seshadhri.33
Self-improving algorithms. SIAM J. Comput., 40(2):350–375, 2011.34

[2] N. Alon, M. Katchalski, and W. R. Pulleyblank. Cutting disjoint disks by straight35
lines. Discrete Comput. Geom., 4(3):239–243, 1989.36

[3] R. Bruce, M. Hoffmann, D. Krizanc, and R. Raman. Efficient update strategies for37
geometric computing with uncertainty. Theory of Computing Systems, 38(4):411–38
423, 2005.39

11

[4] K. Buchin, M. Löffler, P. Morin, and W. Mulzer. Preprocessing imprecise points1
for Delaunay triangulation: simplified and extended. Algorithmica, 61(3):675–693,2
2011.3

[5] T. M. Chan. A dynamic data structure for 3-D convex hulls and 2-D nearest4
neighbor queries. J. ACM, 57(3):Art. 16, 15 pp., 2010.5

[6] B. Chazelle. On the convex layers of a planar set. IEEE Trans. Inform. Theory,6
31(4):509–517, 1985.7

[7] B. Chazelle, L. J. Guibas, and D. T. Lee. The power of geometric duality. BIT,8
25(1):76–90, 1985.9

[8] O. Devillers. Delaunay triangulation of imprecise points: preprocess and actually10
get a fast query time. J. Comput. Geom., 2(1):30–45, 2011.11

[9] W. F. Eddy. Convex hull peeling. In Proc. 5th Symp. Comp. Statistics (COMP-12
STAT), pages 42–47, 1982.13

[10] E. Ezra and W. Mulzer. Convex hull of points lying on lines in o(n logn) time14
after preprocessing. Comput. Geom., 46(4):417–434, 2013.15

[11] P. G. Franciosa, C. Gaibisso, G. Gambosi, and M. Talamo. A convex hull algorithm16
for points with approximately known positions. Internat. J. Comput. Geom. Appl.,17
4(2):153–163, 1994.18

[12] M. Held and J. S. B. Mitchell. Triangulating input-constrained planar point sets.19
Inform. Process. Lett., 109(1):54–56, 2008.20

[13] M. Hoffmann, T. Erlebach, D. Krizanc, M. Mihalák, and R. Raman. Computing21
minimum spanning trees with uncertainty. In Proc. 25th Sympos. Theoret. Aspects22
Comput. Sci. (STACS), pages 277–288, 2008.23

[14] P. J. Huber. Robust statistics: A review. Ann. Math. Statist., 43:1041–1067, 1972.24
[15] D. Kirkpatrick and J. Snoeyink. Computing common tangents without a sepa-25

rating line. In Proc. 4th Workshop on Algorithms and Data Structures (WADS),26
pages 183–193, 1995.27

[16] M. van Kreveld, M. Löffler, and J. S. B. Mitchell. Preprocessing imprecise points28
and splitting triangulations. SIAM J. Comput., 39(7):2990–3000, 2010.29

[17] M. Löffler and J. Snoeyink. Delaunay triangulation of imprecise points in linear30
time after preprocessing. Comput. Geom., 43(3):234–242, 2010.31

[18] J. Matoušek. Efficient partition trees. Discrete Comput. Geom., 8(3):315–334,32
1992.33

[19] R. Motwani and P. Raghavan. Randomized algorithms. Cambridge University34
Press, 1995.35

[20] F. Nielsen. Output-sensitive peeling of convex and maximal layers. Inform. Pro-36
cess. Lett., 59:255–259, 1996.37

[21] M. H. Overmars and J. van Leeuwen. Maintenance of configurations in the plane.38
J. Comput. System Sci., 23(2):166–204, 1981.39

[22] T. Suk and J. Flusser. Convex layers: A new tool for recognition of projectively40
deformed point sets. In Proc. 8th Int. Conf. Computer Analysis of Images and41
Patterns (CAIP), pages 454–461, 1999.42

[23] K.-C. R. Tseng and D. G. Kirkpatrick. Input-thrifty extrema testing. In Proc. 22nd43
Annu. Internat. Sympos. Algorithms Comput. (ISAAC), pages 554–563, 2011.44

12

