
EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

Unions of Onions

Maarten Löffler∗ Wolfgang Mulzer†

Abstract

Let D be a set of n pairwise disjoint unit disks in the
plane. We describe how to build a data structure for
D so that for any point set P containing exactly one
point from each disk, we can quickly find the onion
decomposition (convex layers) of P .

Our data structure can be built in O(n log n) ex-
pected time and has linear size. Given P , we can find
its onion decomposition in O(n log k) time, where k is
the number of layers. We also provide a lower bound
showing that the running time must depend on k.

Our solution is based on a recursive space decom-
position, combined with a fast algorithm to compute
the union of two disjoint onion decompositions.

1 Introduction

Let P be a planar n-point set. Take the convex hull
of P and remove it; repeat until P becomes empty.
This process is called onion peeling, and the result-
ing decomposition of P into convex polygons is the
onion decomposition, or onion for short, of P . It can
be computed in O(n log n) time [4]. Onions provide
a natural, more robust, generalization of the convex
hull, and they have applications in pattern recogni-
tion, statistics, and planar halfspace range search-
ing [5, 9].

Recently, a new paradigm has emerged for modeling
data imprecision. Suppose we need to compute some
interesting property of a planar point set. Suppose
further that we have some advance knowledge about
the possible locations of the points, e.g., from an im-
precise sensor measurement. We would like to pre-
process this information, so that once the precise in-
puts are available, we can obtain our structure faster.
Many problems have been considered in this model,
e.g., point set triangulation, Voronoi diagrams, and
convex hulls [2, 6–8, 11, 12]. We will study the com-
plexity of computing onions in this framework.

1.1 Results

We begin by showing that the union of two disjoint
onions can be computed in O(n+k2 log n) time, where

∗Universiteit Utrecht, m.loffler@uu.nl. Funded by Nether-
lands Organisation for Scientific Research (NWO) grant
639.021.123.
†Freie Universität Berlin, mulzer@inf.fu-berlin.de. Sup-

ported in part by DFG project MU/3501/1.

(a) (b)

Figure 1: (a) Two disjoint onions. (b) Their union.

k is the number of layers in the resulting onion.

We apply this algorithm to obtain an efficient solu-
tion to the onion preprocessing problem mentioned in
the introduction. Given n pairwise disjoint unit disks
that model an imprecise point set, we build a data
structure of size O(n) such that the onion decomposi-
tion of an instance can be retrieved in O(n log k) time,
where k is the number of layers in the resulting onion.
The expected preprocessing time is O(n log n).

We also show that without paramerising by k, it is
not possible to speed up the computation of the onion
decomposition: in the worst case, any algorithm can
be forced to take Ω(n log n) time on some instances.

2 Preliminaries and Definitions

Let P be a set of n points in R2. The onion de-
composition, or onion, of P , is the sequence (P) of
pairwise disjoint convex polygons with vertices from
P , constructed recursively as follows: if P 6= ∅, we set

(P) := {ch(P)} ∪ (P \ ch(P)), where ch(P) is the
convex hull of P ; if P = ∅, then (P) := ∅ [4]. An
element of (P) is called a layer of P .

Let D be a set of disjoint unit disks in R2. We say
a point set P is a sample from D if every disk in D
contains exactly one point from P . We write log for
the logarithm with base 2.

3 The Algorithm

In the following sections, we will describe the individ-
ual pieces required for our result.

3.1 Unions of Onions

Suppose we have two point sets P and Q, together
with their onions. We show how to find (P ∪ Q)

This is an extended abstract of a presentation given at EuroCG 2013. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

29th European Workshop on Computational Geometry, 2013

(a) (b)

Figure 2: (a) A half-eaten onion; (b) the restored onion.

quickly, given that (P) and (Q) are disjoint. Delet-
ing points can only decrease the number of layers, so:

Observation 1 Let P,Q ⊆ R2. Then (P) and
(Q) cannot have more layers than (P ∪Q). �

The following lemma constitutes the main ingredi-
ent of our onion-union algorithm. By a convex chain,
we mean any connected subset of a convex closed
curve.

Lemma 1 Let A and B be two non-crossing convex
chains. We can find ch(A ∪B) in O(log n) time.

Proof. Since A and B do not cross, the pieces of A
and B that appear on ch(A∪B) are both connected:
otherwise, ch(A ∪ B) would contain four points be-
longing to A, B, A, and B, in that order. However,
the points on A must be connected inside ch(A∪B); as
do the points on B. Thus, the chains A and B cross,
which is impossible. Since A and B are convex chains,
we can compute ch(A), ch(B) in O(log n) time. Fur-
thermore, since A and B are disjoint, we can also, in
O(log n) time, make sure that ch(A) ∩ ch(B) = ∅, by
removing parts from A or B, if necessary. Now we can
find the bitangents of ch(A) and ch(B) in logarithmic
time [10]. �

Lemma 2 Suppose (P) has k layers. Let A be the
outer layer of (P), and p, q be two vertices of A. Let
A1 be the points on A between p and q, going counter-
clockwise. We can find (P \A1) in O(k log n) time.

Proof. The points p and q partition A into two
pieces, A1 and A2. Let B be the second layer of

(P). The outer layer of (P \ A1) is the convex
hull of P \ A1, i.e., the convex hull of A2 and B.
By Lemma 1, we can find it in O(log n) time. Let
p′, q′ ∈ P be the points on B where the outer layer
of (P \ A1) connects. We remove the part between
p′ and q′from B, and use recursion to compute the
remaining layers of (P \A1) in O((k−1) log n) time;
see Figure 2. �

We conclude with the main theorem of this section:

Figure 3: A space decomposition tree for 21 unit disks.

Theorem 3 Let P and Q be two planar point sets of
total size n. Suppose that (P) and (Q) are disjoint.
We can find the onion (P ∪Q) in O(k2 log n) time,
where k is the resulting number of layers.

Proof. By Observation 1, (P) and (Q) each have
at most k layers. We use Lemma 1 to find ch(P ∪Q)
in O(log n) time. By Lemma 2, the remainders of

(P) and (Q) can be restored to proper onions in
O(k log n) time. The result follows by induction. �

3.2 Space Decomposition Trees

We now describe how to preprocess the disks in D for
fast divide-and-conquer. A space decomposition tree
T is a rooted binary tree where each node v is associ-
ated with a planar region Rv. The root corresponds
to all of R2; for each leaf v of T , the region Rv inter-
sects at most one disk in D. Furthermore, each inner
node v in T is associated with a directed line `v, so
that if u is the left child and w the right child of v,
then Ru := Rv ∩ `+v and Rw := Rv ∩ `−v . Here, `+v is
the halfplane to the left of `v and `−v the halfplane to
the right of `v.

We would like to construct a space decomposition
tree for D whose height is as low as possible. For this,
we use the following lemma, which is a constructive
version of a result by Alon et al. [1, Theorem 1.2].

Lemma 4 There exists a constant c ≥ 0, so that for
any set D of m congruent nonoverlapping disks in the
plane, there is a line ` with at least m/2− c

√
m logm

disks completely to each side of it. We can find ` in
O(m) expected time.

Proof. Our proof closely follows Alon et al. [1, Sec-
tion 2]. Set r := b

√
m/ logmc. Pick a random inte-

ger z between 1 and r/2. Find a line ` whose angle
with the x-axis is (z/r)π and that has bm/2c centers
of disks in D on each side. Given z, we can find `
in O(m) time by a median computation. The proof
by Alon et al. shows that with probability at least
1/2 over the choice of z, the line ` intersects at most

EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

c
√
m logm disks in D, for some constant c ≥ 0. Thus,

we need two tries in expectation to find a good line `.
The expected total running time is O(m). �

To obtain our space decomposition tree T , we apply
Lemma 4 recursively until the region for each node
intersects at most one disk in D. The next lemma
helps us analyze the complexity of T .

Lemma 5 Let T be a space decomposition tree ob-
tained by recursive application of Lemma 4. For
k = 0, . . . , log n, let dk be the maximum number of
disks that intersect the region for a node in T of depth
k. Then log dk ≤ log n− k + O(1). Furthermore, the
tree T has O(n) nodes and height log n+O(1).

Proof. We have d0 = n. Furthermore, by Lemma 4,

dk/2 ≤ dk+1 ≤ dk/2 + c
√
dk log dk.

Define

βk :=
k−1∑
i=0

(2i

n

)1/3

.

Note that βk ≤ 4, for k = 0, . . . , log n. We assume
that n ≥ 212(3c+2)9, and we prove by induction that
log dk ≤ log n − k + βk, for k = 0, . . . , log n − 12 −
9 log(3c + 2). For k = 0, this is clear, since β0 = 0.
Now note that for every k ≥ 0, we have dk ≤ n and
dk ≥ n/2k. Thus,

log dk+1 ≤ log(dk/2 + c
√
dk log dk)

= log(dk/2) + log
(

1 + 2c

√
log dk
dk

)
≤ log dk − 1 + log

(
1 + 2c

√
2k log dk

n

)
≤ log n− (k + 1) + βk +

2c

ln 2

√
2k(log n− k + 4)

n

= log n− (k + 1) + βk+1,

since for k ≤ log n− 12− 9 log(3c+ 2), we have

2c

ln 2

√
2k(log n− k + 4)

n
≤
(2k

n

)1/3

.

It follows that after k∗ := log n− 12− 9 log(3c+ 2) it-
erations, there are at most 212+9 log(3c+2)+βk∗ = O(1)
disks per region left. Hence, T has height log n+O(1)
and O(n) nodes. �

By Lemma 5, T induces a planar subdivision GT
with O(n) faces. We add a large enough bounding box
to GT and triangulate the resulting graph. Since GT
is planar, the triangulation has complexity O(n) and
can be computed in the same time (no need for heavy
machinery—all faces of GT are convex). With each
disk in D, we store the list of triangles that intersect it
(recall that each triangle intersects at most one disk).
This again takes O(n) time and space. We conclude
with the main theorem of this section:

Theorem 6 Let D be a set of n disjoint unit disks
in R2. In O(n log n) expected time, we can construct
a space partition tree T for D with O(n) nodes and
height log n + O(1). Furthermore, for each disk D ∈
D, we have a list of triangles TD that cover the leaf
regions of T that intersect D. �

3.3 Processing a Precise Input

Let P be a sample from D. Suppose first that we
know k, the number of layers in (P). For each input
point pi, let Di ∈ D be the corresponding disk. We
check all triangles in TDi

, until we find the one that
contains pi. Since there are O(n) triangles, this takes
O(n) time. Afterwards, we know for each point in P
the leaf of T that contains it.

The upper tree Tu of T consists of all nodes with
depth at most log n − 2 log k. Each leaf of Tu is the
root of a subtree of T of height at most 2 log k+O(1).
Hence it corresponds to a subset of P with O(k2)
points. For each such subset, we use Chazelle’s algo-
rithm [4] to find its onion decomposition in O(k2 log k)
time. This takes O(n log k) total time. Now, in order
to obtain (P), we perform a postorder traversal of
Tu, using Theorem 3 in each node to unite the onions
of its children.

For a node of depth i, this takes time O(k2 log di) =
O(k2(log n−i+1)), by Lemma 5. Thus, the total work
is proportional to

logn−2 log k∑
i=0

2ik2(log n− i+ 1)

= k2 n

k2

log n
k2∑

i=0

2 log k + i+ 1

2i

= O(n log k).

So far, we have assumed that k is given. Using
standard exponential search, this requirement can
be removed. More precisely, let ki = 22i

, for i =
1, . . . , log log n. Run the algorithm for k0, k1, If
the algorithm succeeds, report the result. If not, abort
as soon as it turns out that an intermediate onion has
more than ki layers and try ki+1. The total time is

log log k∑
i=0

O(n2i) = O(n log k),

as desired. This finally proves our main result.

Theorem 7 Let D be a set of n disjoint unit disks in
R2. We can build a data structure that stores D, of
sizeO(n), inO(n log n) expected time, such that given
a sample P of D, we can compute (P) in O(n log k)
time, where k is the number of layers in (P). �

Remark. Using the same approach, without the ex-
ponential search, we can also compute the outermost

29th European Workshop on Computational Geometry, 2013

`+5`−5

Figure 4: The lower bound construction consists of n/3 unit disks centered on a horizontal line (5 in the figure),
and two groups of n/3 points sufficiently far to the left and to the right of the disks. Distances not to scale.

k layers of an onion with arbitrarily many layers in
O(n log k) time, for any k. In order to achieve this,
we simply abort the union algorithm whenever k lay-
ers have been found, and note that the points in P
not on the outermost k layers of (P) will never be
part of the outermost k layers of (Q) for any Q ⊃ P .

4 Lower Bounds

We now show that the query time must depend on k
(i.e. for onions with many layers, we cannot hope to
speed up the computation).

Let n be a multiple of 3, and consider the lines

`−n : y = −1/2− 6/n− x/n2;

`+n : y = −1/2− 6/n+ x/n2.

Let Dn consist of n/3 disks centered on the x-axis at
x-coordinates between −n/6 and n/6; a group of n/3
disks centered on `−n at x-coordinates between n2 and
n2+n/3; and a symmetric group of n/3 disks centered
on `+n at x-coordinates between −n2 − n/3 and −n2.
Figure 4 shows D15.

Lemma 8 Let π be a permutation on n/3 elements.
There is a sample P of Dn such that pi (the point for
the ith disk from the left in the main group) lies on
layer π(i) of (P).

Proof. Take P as the n/3 centers of the disks in
D on `−n , the n/3 centers of the disks in D on `+n ,
and for each disk Di ∈ D on the x-axis the point
pi = (i− n/6, π(i) · 3/n− 1/2). By construction, the
outermost layer of (P) contains at least the leftmost
point on `+n , the rightmost point on `−n , and the high-
est point (with y-coordinate 1/2). However, it does
not contain any more points: the line segments con-
necting these three points have slope at most 2/n2.
The second highest point lies 3/n lower, and at most
n/3 further to the left or the right. The lemma follows
by induction. �

There are (n/3)! = 2Θ(n logn) permutations π; so
any corresponding decision tree has height Ω(n log n).

Theorem 9 For any n, there is a set D of n disjoint
unit disks in R2, such that any decision-based algo-
rithm to compute (P) for P a sample of D, based
only on prior knowledge of D, takes Ω(n log n) time
in the worst case.

We expect that our lower bound can be strength-
ened to Ω(n log k) and that it also applies to random-
ized algorithms. Details will follow in the full version.

5 Conclusion and Further Work

It would be interesting how much the parameter k
can vary for a set of imprecise bounds and how to es-
timate k efficiently. Further work includes considering
more general regions, such as overlapping disks, disks
of different sizes, or fat regions. Furthermore, three-
dimensional onions are not well understood. The best
general algorithm needs O(n log6 n) expected time [3],
giving more room for improvement in our setting.

References

[1] N. Alon, M. Katchalski, and W. Pulleyblank. Cut-
ting disjoint disks by straight lines. DCG, 4:239–243,
1989.

[2] K. Buchin, M. Löffler, P. Morin, and W. Mulzer.
Preprocessing imprecise points for Delaunay trian-
gulation: simplified and extended. Algorithmica,
61(3):675–693, 2011.

[3] T. M. Chan. A dynamic data structure for 3-D con-
vex hulls and 2-D nearest neighbor queries. J. ACM,
57(3):Art. 16, 15 pp., 2010.

[4] B. Chazelle. On the convex layers of a planar set.
IEEE Trans. Inform. Theory, 31(4):509–517, 1985.

[5] B. Chazelle, L. J. Guibas, and D. T. Lee. The power
of geometric duality. BIT, 25(1):76–90, 1985.

[6] O. Devillers. Delaunay triangulation of imprecise
points: preprocess and actually get a fast query time.
J. Comput. Geom., 2(1):30–45, 2011.

[7] E. Ezra and W. Mulzer. Convex hull of points lying
on lines in o(n logn) time after preprocessing. Com-
put. Geom., 46(4):417–434, 2013.

[8] M. Held and J. S. B. Mitchell. Triangulating input-
constrained planar point sets. IPL, 109:54–56, 2008.

[9] P. J. Huber. Robust statistics: A review. Ann. Math.
Statist., 43:1041–1067, 1972.

[10] D. Kirkpatrick and J. Snoeyink. Computing com-
mon tangents without a separating line. In Proc. 4th
WADS, pages 183–193, 1995.

[11] M. van Kreveld, M. Löffler, and J. S. B. Mitchell.
Preprocessing imprecise points and splitting triangu-
lations. SIAM J. Comput., 39(7):2990–3000, 2010.

[12] M. Löffler and J. Snoeyink. Delaunay triangulation
of imprecise points in linear time after preprocessing.
Comput. Geom., 43(3):234–242, 2010.

