
Minimum Weight Triangulation is NP-Hard

Wolfgang Mulzer
Department of Computer Science

Princeton University
35 Olden Street

Princeton, NJ 08540, USA

wmulzer@cs.princeton.edu

Günter Rote
Institut für Informatik

Freie Universität Berlin
Takustraße 9

D-14195 Berlin, Germany

rote@inf.fu-berlin.de

ABSTRACT
A triangulation of a planar point set S is a maximal plane
straight-line graph with vertex set S. In the minimum weight

triangulation (MWT) problem, we are looking for a trian-
gulation of a given point set that minimizes the sum of the
edge lengths. We prove that the decision version of this
problem is NP-hard. We use a reduction from PLANAR-1-
IN-3-SAT. The correct working of the gadgets is established
with computer assistance, using geometric inclusion and ex-
clusion criteria for MWT edges, such as the diamond test
and the LMT-Skeleton heuristic, as well as dynamic pro-
gramming on polygonal faces.

General Terms
Algorithms, Theory

Keywords
Optimal triangulations, PLANAR-1-IN-3-SAT

Categories and Subject Descriptors
F.2.2 [Nonnumerical Algorithms and Problems]: Ge-
ometrical problems and computations; G.2.2 [Graph The-
ory]: Graph algorithms

1. INTRODUCTION
Given a set S of points in the euclidean plane, a tri-

angulation T of S is a maximal plane straight-line graph
with vertex set S. The weight of T is defined as the to-
tal euclidean length of all edges in T . A triangulation that
achieves minimum weight is called a minimum weight trian-

gulation (MWT) of S.
The problem of computing a triangulation for a given pla-

nar point set S arises naturally in many applications such
as stock cutting, finite element analysis, terrain modeling,
and numerical approximation. The minimum-weight trian-
gulation has attracted the attention of many researchers,
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mainly due to its natural definition of optimality, and not
so much because it would be important for the mentioned
applications. We show that it is NP-hard to compute a
minimum-weight triangulation of a given planar point set.
Our proof uses a polynomial time reduction from PLANAR-
1-IN-3-SAT. The input to the PLANAR-1-IN-3-SAT prob-
lem consists of a Boolean formula Φ in 3-CNF whose asso-
ciated graph is planar, and the formula is accepted if there
exists an assignment to its variables such that in each clause
exactly one literal is satisfied. The associated graph of Φ has
one vertex vx for each variable x in Φ and one vertex vC for
each clause C in Φ. There is an edge between vx and vC if
and only if x or ¬x appears in C. PLANAR-1-IN-3-SAT is
NP-complete (see Section 2.2).

1.1 History and previous results
The minimum weight triangulation problem has a long

and rich history, dating back to the 1970s. At the end of
Garey and Johnson’s book from 1979 on NP-completeness
[14], there is a list of 12 major problems whose complexity
status was open at the time of writing. So far, 9 problems
from this list have been resolved by proving NP-hardness or
by exhibiting a polynomial-time algorithm, the latest one
being the deterministic prime number test (see [18] for a
recent status update on the list). With the present paper,
only two problems from the original list remain open.

It seems that the MWT problem was first considered by
Duppe and Gottschalk [13] who propose the greedy algo-
rithm for solving the MWT problem which always adds the
shortest possible edge to the triangulation. Later, Shamos
and Hoey [32] suggest using the Delaunay triangulation as a
minimum weight triangulation. In 1977, Lloyd [27] provides
examples which show that both proposed algorithms usually
do not compute the MWT. He also shows that given a set
of edges of a planar point set, it is NP-complete to decide
whether it contains a triangulation. Later, Gilbert [15] and
Klincsek [20] independently show how to compute a mini-
mum weight triangulation of a simple polygon in O

`

n3
´

time
by dynamic programming. There have also been attempts
to attack the general problem with dynamic programming
techniques. For example, Cheng, Golin, and Tsang [6] use
dynamic programming in order to compute a minimum-
weight triangulation of a given point set S in O

`

nk+2
´

time
if a subgraph of a MWT of S with k connected components
is known. Using branch and cut, Kyoda et al. [24] show
how to compute MWTs of 100 points. For large point sets,
however, mere dynamic programming becomes absolutely
infeasible, and hence different ideas are needed.



For special classes of point sets, it is possible to com-
pute the MWT in polynomial time. For example, Anagos-
tou and Corneil [1] give an algorithm to compute the MWT
of the vertex set of k nested convex polygons in O

`

n3k+1
´

time. More recently, Hoffmann and Okamoto [17] show how
to obtain the MWT of a point set with k inner points in
O

`

6kn5 log n
´

time.
In another line of attack, researchers were looking for tri-

angulations that approximate the MWT. The Delaunay tri-
angulation is not a good candidate, since it may be longer by
a factor of Ω(n) [23, 28]. The greedy triangulation approxi-
mates the MWT by a factor of Θ(

√
n) [28, 25, 26]. Plaisted

and Hong [29] show how to approximate the MWT up to
a factor of O (log n) in O

`

n2 log n
´

time. Levcopoulos and
Krznaric [26] introduce quasi-greedy triangulations, which
approximate the MWT within a constant factor. Very re-
cently, Remy and Steger [30] discovered an approximation
scheme for MWT that runs in quasi-polynomial time: for

every fixed ε, it finds a (1 + ε)-approximation in nO(log8 n)

time.
Let us now turn to subgraphs and supergraphs of the

MWT. Gilbert [15] shows that the MWT always contains the
shortest edge. Yang, Xu, and You [33] extend that result by
proving that edges which join mutual nearest neighbors are
in the MWT. A larger subgraph of the MWT is identified by
Keil [19], who shows that the β-skeleton, the graph formed
by all edges e such that the two circles of radius β

2
|e| passing

through the endpoints of e are empty, is a subgraph of the
MWT for a β ≤

√
2. This is improved to β ≤ 1.17682 by

Cheng and Xu [8], which is nearly optimal, since there is a
lower bound of about 1.154701 [19]. The β-skeleton usually
has many connected components. Often, the LMT-skeleton

heuristic described by Dickerson, Keil, and Montague [10]
yields better results. We describe it in the next section.

Approaching the problem from the other direction, Das
and Joseph [9] describe the diamond test, which yields a
supergraph of the MWT: An edge e can only be contained
in the MWT if at least one of the two isosceles triangles
with base e and base angles π/8 is empty. This constant
is improved to π/4.6 by Drysdale, McElfresh, and Snoeyink
[11]. The diamond test gives an easy criterion to exclude
impossible edges from the MWT. Usually, this eliminates
all edges except a set of O(n) remaining candidate edges.
(This statement is true for random point sets, with high
probability. With bucketing techniques, such a set of O(n)
edges can be found in linear expected time [12].)

2. PRELIMINARIES

2.1 The LMT-Skeleton
The locally-minimum triangulation (LMT) heuristic was

introduced by Dickerson, Keil, and Montague [10]. The idea
is that an edge e can only be included in the MWT if it is
on the convex hull or if there is an empty quadrilateral that
has e as its diagonal and is either not convex or has e as the
shorter of its diagonals. Such a quadrilateral is called a cer-

tificate for e. Edges which do not have a certificate can be
eliminated. This can cause other certificates to fail, and one
can iterate the certificate-checking until the set of remain-
ing edges stabilizes. The set of remaining edges which are
not intersected by any other remaining edge forms a subset
of the MWT. It is called the LMT-skeleton. The remain-
ing edges which are intersected by another remaining edge

x1 x3 x4 x5x2

C2

C1

C3

Figure 1: A rectilinear embedding of the associ-
ated graph for the Boolean formula (x1 ∨ ¬x3 ∨ x5) ∧
(¬x1 ∨ x2 ∨ x3) ∧ (x2 ∨ x4 ∨ ¬x5).

are called the candidate edges. Several implementations of
the LMT heuristic exist. For our computations we follow
Beirouti and Snoeyink [2]. Other implementations are de-
scribed by Cheng, Katoh, and Sugai [7] as well as Hainz,
Aichholzer, and Aurenhammer [16].

In this work, we use the LMT-skeleton heuristic to com-
pute MWTs for our gadgets.

2.2 PLANAR-1-IN-3-SAT

Definition 1. Let Φ be a Boolean formula in 3-CNF.

The associated graph of Φ, G (Φ), has one vertex vx for

each variable x in Φ and one vertex vC for each clause C
in Φ. There is an edge between a variable-vertex vx and a

clause-vertex vC if and only if x or ¬x appears in C.

The Boolean formula Φ is called planar iff its associated

graph G (Φ) is planar.

Lichtenstein [22] showed that 3-SAT remains NP-complete
if the input is restricted to a planar formula (the PLANAR-
3-SAT problem). As Knuth and Raghunathan [21] observed,
it follows from Lichtenstein’s proof that it suffices to consider
formulae whose associated graph can be embedded such that
the variables are arranged on a straight line, with three-
legged clauses above and below them. The edges between
the variables and the clauses are embedded in a rectilinear
fashion (see Figure 1).

In our reduction we will use a variant of PLANAR-3-SAT
in which we ask for an assignment to the variables such that
in each clause exactly one literal is set to true.

Definition 2. In the PLANAR-1-IN-3-SAT problem we

are given a collection Φ of clauses containing exactly three

literals together with a planar embedding of the associated

graph G(Φ) as described above.

The problem is to decide whether there exists an assign-

ment of truth values to the variables of Φ such that exactly

one literal in each clause is true.

Proposition 1. PLANAR-1-IN-3-SAT is NP-complete.

Proof. We describe a reduction from PLANAR-3-SAT.
For that, we describe how to replace a clause C = (x∨y∨z)
with literals x, y, z by 1-in-3 clauses in such a way that
the associated graph remains planar. The clause C can be
replaced by

(x, γ, a) ∧ (y, γ, b) ∧ (a, b, q) ∧ (¬γ, β, c) ∧ (z, β, d) ∧
(c, d, r) ∧ (β, e, f) ∧ (β,¬e,¬f) .
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Figure 2: The replacement for a CNF clause with
three literals. Negations are indicated by little
crosses.

Here, we denote a 1-IN-3 clause by a triple (l1, l2, l3). The
clause (l1, l2, l3) is satisfied if exactly one of the literals l1,
l2, l3 is true.

Lemma 1. Given x, y, and z, the expression (1) is satis-

fiable iff x ∨ y ∨ z holds.

We need to add additional variables and clauses to make
sure that x and z are reachable from all other clauses. More
precisely, we add variables g, h, i, x′ and variables j, k, l,
z′ and clauses (g, h, i)∧ (¬g,¬h, i)∧ (x, i,¬x′) and (j, k, l)∧
(¬j,¬k, l) ∧ (z, l,¬z′). These clauses ensure x = x′ and
z = z′:

Lemma 2. (g, h, i) ∧ (¬g,¬h, i) ∧ (x, i,¬x′) is satisfiable

iff x and x′ have the same value.

Figure 2 shows the 1-in-3 clauses that replace a clause
C = (x∨y∨z) with three literals x, y, and z. In a satisfying
assignment, the new variables x′ and y′ have the same truth
values as x and y, and they can be used to access the values
of x and y from other clauses in the planar embedding.

3. THE GADGETS
In this section we describe the gadgets which are needed

in our reduction. Our gadgets require a large number of
points, and we rely on computer assistance to verify them.
We implemented the LMT heuristic for minimum weight
triangulations as described by Beirouti and Snoeyink [2] in
C++ as an Ipelet for Otfried Cheong’s extensible drawing
editor Ipe1 [31], which we used as a front-end and user inter-
face. For the calculations we used double-precision floating
point arithmetic. We verified the results of our heuristic

1http://ipe.compgeom.org

Figure 3: A wire piece. The wire piece can be ex-
tended arbitrarily by mirroring the point set along
the dashed lines.

(a)

(b)

Figure 4: The two states that can be transported
by the wire. There are several optimal triangula-
tions of the shaded parts filling up the space around
the wire; these triangulations are irrelevant for the
state.

(b) state R

(a) state L

Figure 5: Symbolically, we refer to the two states by
L and R, according to the direction (left or right) in
which the triangles incident to the boundary of the
wire are inclined when looking from the boundary.

using an independent implementation of the LMT heuris-
tic by Reinhard Hainz from TU Graz, prepared under the
supervision of Oswin Aichholzer. The source code for our
implementation and XML files containing the exact coor-
dinates of our gadgets are available on the Internet.2 The
coordinates are given as precise decimal numbers which are
multiples of 0.000001. The scale was chosen for convenient
representation of the gadgets in Ipe.

The gadgets will be composed in such a way that they sim-
ulate a PLANAR-1-IN-3-SAT formula, so the figures shown
in this section show details of the overall construction. The
optimal triangulations we show were computed only for the
local gadgets. The part of the triangulation that is of inter-
est is inside the wires, the outer triangles can be ignored.
We will frequently indicate this by shading the unimportant
parts.

3.1 Wires
A wire provides a means to transport information from

one location in the plane to another. For our construction
we use the wire conceived by Jack Snoeyink (see [2]). Its
main building block is the wire piece shown in Figure 3.

The wire piece has a vertical axis of symmetry, and it
terminates in two isosceles triangles that are indicated in
Figure 3. The wires in all our gadgets can be extended
arbitrarily along the terminating triangles by inserting an
appropriate repetition of wire pieces. This wire has two
symmetric optimal triangulations, which are used to encode

2 http://www.inf.fu-berlin.de/inst/ag-ti/people/rote/Soft-
ware/MWT/ . This site also contains the full version of
this paper as a technical report, with more illustrations.



input best triangulation weight in C0 weight in C1 relative to (b)
(a) 01 = RL RRL (or RLL) 3634.078764 . . . 3634.290718 . . . 0.004333 . . . =: ε2

(b) 00 = RR RLR 3634.180409 . . . 3634.286385 . . . 0
(c) 11 = LL LRL 3634.180409 . . . 3634.286385 . . . 0
(d) 10 = LR LLR (or LRR) 3634.290543 . . . 3634.290543 . . . 0.004158 . . . =: ε1

(b′), (c′) RRR∗ or LLL∗ 3634.188899 . . . 3634.294876 . . . 0.008491 . . . = ε1 + ε2

Table 1: The weights for the four triangulations in Figure 8, for the initial configuration (C0) and after
the perturbation (C1). The numbers represent the total length of the edges inside the wires only. The two
triangulations in the last line are marked∗ because they are not optimal.

Figure 6: A bent wire piece. The central dashed line
shows the axis of symmetry, and the dashed lines at
the boundary indicate where other wire pieces will
be connected.

logical values and transport them over long distances. We
will call these two states L and R (see Figures 4–5). The
state L will be used to represent the truth value 1 (true),
the state R will correspond to 0 (false). Note that a rotation
of a wire by 180◦ leaves the wire in the same state.

All our gadgets will have the same terminal triangles at
which they can be connected. The terminal triangles occur
in two sizes (for “thick” and “thin” wires) and four orienta-
tions (rotated by multiples of 90◦). (An exception are the
resizing gadgets in Section 3.5, with also occurs in interme-
diate sizes.)

The wire has some flexibility in its construction. It can be
bent to achieve a turn by 90 degrees, By connecting straight
wires and right angle turns, we can transport state from one
location in the plane to another. By closing a wire into a
loop, we get a gadget that has two optimal triangulations
of equal weight, thus representing two possible states of a
logical variable. All this has been known before [2]. In the
next sections we shall discuss how to connect variables to
wires and how to construct the clauses.

3.2 Connecting Two Wires
In this section we describe how to connect two wires. As

we mentioned above, it is possible to bend a wire piece.
When we take this operation to an extreme, we obtain the
wire piece shown in Figure 6.

By adding additional points adjacent to the corner of the
wire piece, it becomes possible to “break out” through the
boundary and to transmit information out of the wire seg-
ment. Figure 7 shows how to do this. The small wire leaving

(a)

(b)

Figure 7: Transporting information out of the wire
into a smaller attached wire.

the corner ends in a thinner wire scaled down by a factor of
about 1/5. We will refer to wires of the two sizes shown in
Figure 7 as thick wires and thin wires. Thus, we can use the
thin wire in order to transport information from one thick
wire to another as shown in Figure 8. We will refer to this
gadget as the C0 connection. The wire pieces on the left and
right side represent pieces of two thick wires, For each of the
four combinations of states of the two thick “input” wires,
we can compute the shortest triangulation. Table 1 which
shows the lengths of the respective triangulations inside the
wire, up to the first ten significant digits. The intermediate
thin wire is also in one of the two states L and R, which
is indicated by a small letter in the table. Configurations
RR and LL are symmetric to each other, and the configu-
ration of the thin wire is forced by the triangulations of the
thick wires. In configurations RL and LR, the symmetric
triangulation of the thin wire is also possible.

According to Table 1, the most favorable configuration is
RL. In order to enforce an equality constraint between the
inputs, we want to favor configurations RR and LL over the
other two configurations. Thus we penalize the state R for
the left input by moving the points a along the line 0a by a
small distance (approximately 0.4558), and symmetrically,



(a) RL

(b) RR

(c) LL

(d) LR

0

a

0′
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′

0

0

0

a

a

a

a
′

a
′

a
′

0′

0′

0′

100

Figure 8: The four ways to connect two wires.



Figure 9: A storage loop in state L (storing 1). This building block has four symmetric “ports” for C0 or C1

connections. See Figure 10 for a close-up view.

we penalize the state L for the right input by moving a′

along 0′a′. (The precise amount of movement is not im-
portant.) This increases the weight of configurations RL,
RR, and LL, and configuration RL receives twice as much
penalty. The resulting weights are shown in Table 1. Now
configurations RR and LL are cheapest. We call this gad-
get the C1 connection. By inserting wire pieces and 90◦ turn
into the thin wire, we can construct more complicated forms
of this gadget.

3.3 Storage Loops
A storage loop is our basic building block for storing a

bit. It is composed from right angle gadgets from Section
3.1 and C1 connections from Section 3.2, see Figures 9–10.

Lemma 3. In an optimal triangulation, the thick wire of

a storage loop is always uniformly triangulated, either in the

L state or in the R state.

Proof. This can be checked by a computer calculation.
We know that the LMT-skeleton, and thus the wire bound-
aries must form part of the optimal triangulation.

Let us take a closer look at the LMT-skeleton at some
section of a wire (see Figure 11). Every minimum-weight
triangulation must either use edge x or edge y. Thus we
just have to look at a small number of possibilities (a binary
choice for each thick and thin wire occurring in the gadget)
and calculate the optimum triangulation for each possibility.

Moreover, if the triangulation uses edge x, two edges x′

and x′′ that form a triangle with x are also forced to be
in the triangulation. Thus, in either case we have an edge
that connects the two boundaries of the wire. We therefore
get a connected subgraph and can compute the optimum
triangulation by dynamic programming.

Figure 10: A close-up view of the upper connection
in the storage loop of Figure 9. This is the beginning
of a thin wire that can connect the storage loop to
other loops. (Like most illustrations in this paper,
this figure shows the optimal triangulation of the
point set which is a section of an intended larger
construction, as it was calculated by the computer.)

xyx
′

x
′′

Figure 11: The LMT-skeleton of a part of the stor-
age loop. Exactly one of edges x and y is included
in the MWT. If x is included, also x′ and x′′ will
be forced into the MWT, so in any case the LMT-
skeleton becomes connected.



Figure 13: Extracting the state from the thin wire (state 0).

· · ·

Figure 12: Building a variable from the storage
loops.

3.4 Variables
A variable is constructed by linking together an appro-

priate number of storage loops with thin wires, as shown in
Figure 12. In each storage loop — except the first and last
one — two C1 connections are used to connect the storage
loops together and two C1 connections are available to trans-
port the information out of the variables to the clauses. If an
exit to the top or the bottom of the variable is not needed,
we replace the C1 connection by the simple C0 bent wire
piece without an attached thin wire.

By Lemma 3, there are two possible ways to triangulate
each storage loop, but the C1 connections ensure that all
storage loops are triangulated in the same way, since other-
wise the weight of the triangulation increases.

The following lemma is established in the same way as
Lemma 3.

Lemma 4. In an optimal triangulation, a thin wire con-

necting two storage loops is always uniformly triangulated,

either in the L state or in the R state (no matter how the

thin wire is composed of straight pieces and 90◦ turns.)

From Table 1 we see that the penalty for a mismatched
C1 connection is at least ε1 ≈ 0.004158.

3.5 Negation
Now let us turn to negation gadgets. In configurations

LL and RR in Figure 8, the thin wire contains the negation
of the value transported in the thick wire. Thus, we need
to extract the value from the thin wire and transfer it into
another thick wire. We do this by copying the information
from the thin wire to a sequence of wires that gradually
become thicker and thicker.

First, we extract the state from the thin wire, this is shown
in Figure 13. Here, we insert two thin copies of the origi-
nal C0 connection into the thin wire that connects two thick
wires (which may be part of some storage loop). The two C0

connections are connected to two C0 connections on another
copy of the thin wire by a “micro-wire” (which appears like
a very dense circular arc in the picture). The C0 connections
are arranged in such a way that either we get a combination
of configurations RL and LR or a combination of configu-
rations LL and RR. As can be seen in Table 1, the latter
combination is cheaper and thus ensures that the two thin
wires are in the same configuration. We chose to connect the
two wires in this way instead of using the C1 connections,
because this configuration turns out to be more stable.

Having extracted the state from the thin wire, we trans-
port it into a thick wire using a resizing gadget. The resizing
loop is almost identical to the storage loop, except that the
right or left half is enlarged by a factor of 1.001. The whole
point set is still symmetric with respect to the horizontal
axis, and there are two optimal states as in Figure 9. The
construction has some flexibility, and such a set can be con-
structed for any rational factor between 1 and 1.001.

By composing an appropriate number of these devices, it
is possible to scale up the wire and its state to any desired
degree. This is outlined in Figure 14. As with the original
storage loop, there are exactly two possible ways to trian-
gulate the resizing loops, and the thin wires ensure that the
triangulations are consistent (Lemmas 3 and 4).

Lemma 5. Let K be the cost of the optimal triangulation

within all wires if the two upper blocks in Figure 14 are in

the same state and the lowest block is in the opposite state.

If these three blocks are in any other combination of states,

then the cost is at least K + 10−4.

The reason for resizing the wire in this seemingly compli-
cated way is that each individual loop is in a stable state,
and thus one can analyze the components of the gadget (the
loops and the C1 connections) in isolation. Our initial at-
tempts to have a single wire that gradually increases its
width failed because we could not limit the interaction be-
tween larger and smaller pieces in a long wire whose width
increases gradually.
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Figure 14: Schematic outline of a track of the nega-
tion gadget. The detailed picture of the upper mid-
dle part is shown in Figure 13. For clarity, the size
increase between successive stages has been exagger-
ated. The enlarged half of the resizing loop (+) is
alternately on the left and on the right hand side of
the gadget and connects to the next resizing loop in
the chain. The first and the last loop have uniform
size (U).
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Figure 15: Outline of the complete negation gadget,
connecting many parallel tracks of Figure 14 in a
row.

Now, to boost the penalty for a triangulation that does not
enforce the negation, we connect many tracks in parallel as
shown in Figure 15. In this gadget, the inputs and outputs of
the negation blocks are connected by normal C1 connections.
Thus, all inputs and outputs must be the same, or we will
incur the penalty for a mismatched connection. If one of the
negation gadgets is not triangulated correctly, we will either
incur the penalty for an inconsistency in the outputs or all
of the negation gadgets will be incorrect. Then, each of the
negation gadgets will be penalized. If we connect sufficiently
many negation gadgets, this total penalty will always be
larger than the penalty ε1 for a mismatched connection.

The negation gadget becomes very large and needs sev-
eral million points, but still the amount of space needed
is constant. The resizing loop must be repeated approxi-
mately 2000 times to achieve the desired enlargement factor
1.0012000 > 5. The coordinates are multiplied by 1.001 in
each step, producing three new decimal digits at the end.
One finally arrives at coordinates which are multiples of
ε0 := 10−6000 .

NEG

NEG

α β

δ

NEG

C0

C1

C1C0

C1C1

C1

C0 C1

C1 C1

C1

C1

γ

C1 C1

C1

Figure 16: Outline of the clause gadget. The inputs
arrive from above.

3.6 Clauses
Using the connection gadgets, we build a clause gadget

by connecting four storage loops α, β, γ, δ as shown in Fig-
ure 16. The connections are annotated according to their
type. Let ε1 ≈ 0.004158 and ε2 ≈ 0.004333 be the the two
penalties we incur when a C1 connection is not triangulated
correctly. More precisely, we incur a penalty of ε1 when the
“left” wire of the C1 connection is in state 1 (or L) and the
“right” wire is in state 0 (or R), and so on. Note that we
can control which wire is the “left” and the “right” input by
bending the wire appropriately. Thus, for example, in the
C1 connection between α and β, the “left” wire is β.

Lemma 6. The weight of the shortest triangulation of the

clause gadget achieves its minimum value W when exactly

one of the input wires carries the state 1. In any other

triangulation, the weight is at least W + ε2 − ε1 ≈ W +
0.00017.

Proof. We claim than, among the 16 ways to triangulate
the four storage loops of the clause gadget, the minimum
possible penalty is ε1. We have connected γ and δ by two
parallel negation gadgets. As discussed above, we can ensure
that the penalty for a mis-triangulated negation gadget is
at least ε1. Thus, if δ and γ are not opposite, the penalty
is at least 2ε1 > ε1. Table 2 lists all possibilities with δ 6= γ
and the according penalties. The cheapest configurations
are 0001, 0110, and 1101, with penalty ε1, as desired.

α β γ δ penalty
0 0 0 1 ε1

0 0 1 0 ε2

0 1 0 1 3ε1

0 1 1 0 ε1

1 0 0 1 ε2

1 0 1 0 3ε2

1 1 0 1 ε1

1 1 1 0 ε2

Table 2: The different ways to triangulate the clause
gadget.



4. THE REDUCTION

Theorem 1. Minimum weight triangulation is strongly

NP-hard.

Proof. A rectilinear embedding of the given PLANAR-
1-IN-3-SAT formula can be constructed on a grid of size
O(n)×O(n). The reduction procedure then simply replaces
the edges, variables and clauses of PLANAR-1-IN-3-SAT
formula by the appropriate gadgets.

We have constructed gadgets of various (constant) sizes,
and for connecting them, we may wish to have wires of arbi-
trary lengths available. We solve this by using two different
wire pieces for the thin wire. We know that all gadgets are
embedded on a grid of size ε0 = 10−6000 . So we use a “na-
tive” thin wire piece of length L1 ≤ 30 from Figure 7 and
an extended version of length L1 + ε0. These two storage
loops can be combined to build wires any length larger than
900×106000 . This length is also more than enough to ensure
that edges are long enough to accommodate two 90◦ turns
at their endpoints. Thus, we can realize any rectilinear lay-
out with 90◦ turn and straight wire pieces, after blowing it
up sufficiently.

This procedure yields a point set S. By construction,
the boundaries of all wires belong to the minimum-weight
triangulation of S. One can argue that the properties that
we have proved for single gadgets remain true when we put
them together to create the set S: the gadgets which are far
away do not interfere with each other since the additional
edges would fail the “diamond test” of Das and Joseph [9].

The faces outside the wires are simple polygons and can be
triangulated using dynamic programming. For each gadget,
we know the desired “ideal triangulation” and can calculate
its weight. Adding up these weights and the weights of the
faces outside the wires yields a target weight W . By con-
struction, the input instance is 1-IN-3 satisfiable iff the min-
imum weight of a triangulation of S is W . Otherwise, the
weight of the shortest triangulation is at least W + 0.00017.
(The smallest penalty for not satisfying a clause or otherwise
violating one of the consistence conditions is the difference
between ε2 and ε1 in Table 2, see Lemma 6.)

The set S has O(n2) points (being a subset of an O(n) ×
O(n) grid), and hence the triangulation has O(n2) edges.
By calculating all edge lengths with an absolute error of
O(1/n2), the reduction algorithm can thus calculate, in poly-

nomial time, a threshold Ŵ such that the input formula is
satisfiable iff there is a triangulation of length at most Ŵ.

5. CONCLUSION
Several interesting open problems remain. First of all, it

is not known whether the MWT problem is in NP, since it
is not known how to compare sums of euclidean lengths in
polynomial time. To define a variant of MWT which is in
NP, one can take the weight of an edge e as the rounded value
d‖e‖2e. With appropriate scaling, our proof also establishes
NP-completeness for this variant.

Our result shows that it is NP-hard to approximate the
MWT with a relative approximation error which is better
than O(1/n2). This does not rule out the existence of a
PTAS. Until very recently, attempts to extend techniques
from geometric approximation algorithms to the MWT prob-
lem have only led to constant factor approximations (see [3]
for a survey). Remy and Steger [30] showed that it is possi-
ble to compute a (1+ε)-approximation of the MWT in time

nO(log8 n), providing strong evidence that a PTAS might ex-
ist.

Our current proof relies on (heavy) computations involv-
ing floating-point numbers. However, after the initial cal-
culation of edge lengths, the computations involve only ad-
ditions and comparisons of a few hundred positive values,
and thus the numerical error is well under control. Still, the
construction of the gadgets has required some delicate fine-
tuning. We are working towards more “localized” arguments
that would not need to consider a storage loop as a whole,
as well as on independent and more reliable verifications of
our constructions, using interval arithmetic.

By adding additional points, we hope to modify the gad-
gets in such a way that it is sufficient to use the β-skeleton
for proving that the walls of the wires and gadgets belong
to the MWT. This would provide a more directly accessi-
ble (even visual) correctness proof of the gadgets than the
LMT-skeleton, which requires a computer program.
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Stützpunkten. Allgemeine Vermessungsnachrichten 77
(1970), 423–426.

[14] M. R. Garey and D. S. Johnson. Computers and

Intractability: A Guide to the Theory of

NP-Completeness. W. H. Freeman, New York, New
York, 1979.

[15] P. D. Gilbert. New results in planar triangulations.
Report R-850, Coordinated Science Laboratory,
University of Illinois, Urbana, Illinois, 1979.

[16] R. Hainz, O. Aichholzer, and F. Aurenhammer. New
results on minimum weight triangulations and the
LMT-skeleton. Proceedings of the 13th European

Workshop on Computational Geometry, Würzburg,
Germany, pp. 4–6, 1997.

[17] M. Hoffmann and Y. Okamoto. The minimum weight
triangulation problem with few interior points.
Proceedings of the International Workshop on

Parameterized and Exact Computation, Bergen,
Norway, Springer Lecture Notes in Computer Science,
volume 3162, pp. 200–212, 2004.

[18] D. Johnson. The NP-completeness column. ACM

Trans. Algorithms 1 (2005), 160–176.

[19] J. M. Keil. Computing a subgraph of the minimum
weight triangulation. Computational Geometry:

Theory and Applications 4 (1994), 13–26.

[20] G. T. Klincsek. Minimal triangulations of polygonal
domains. Annals of Discrete Mathematics, volume 9,
1980, pp. 121–123.

[21] D. E. Knuth and A. Raghunathan. The problem of
compatible representatives. SIAM Journal on Discrete

Mathematics 5 (1992), 422–427.

[22] D. Lichtenstein. Planar formulae and their uses. SIAM

J. Computing 11 (1982), 329–343.

[23] D. G. Kirkpatrick. A note on Delaunay and optimal
triangulations. Information Processing Letters 10
(1980), 127–128.

[24] Y. Kyoda, K. Imai, F. Takeuchi, and A. Tajima. A
branch-and-cut approach for minimum weight
triangulation. Proceedings of the 8th International

Symposium on Algorithms and Computation,
Singapore. Springer Lecture Notes in Computer
Science, volume 1350, pp. 384–393, 1997.

[25] C. Levcopoulos. An Ω (
√

n) lower bound for the
nonoptimality of the greedy triangulation.
Information Processing Letters 25 (1987), 247–251.

[26] C. Levcopoulos and D. Krznaric. Quasi-greedy
triangulations approximating the minimum weight
triangulation. Proceedings of the 7th Annual

ACM-SIAM Symposium on Discrete Algorithms,
Atlanta, Georgia, 1996, pp. 392–401.

[27] E. L. Lloyd. On triangulations of a set of points in the
plane. Proceedings of the 18th Annual IEEE

Symposium on Foundations of Computer Science,
Providence, Rhode Island, pp. 228–240, 1977.

[28] G. K. Manacher and A. L. Zobrist. Neither the greedy
nor the the Delaunay triangulation approximates the
optimum. Information Processing Letters 9 (1979),
31–34.

[29] D. A. Plaisted and J. Hong. A heuristic triangulation
algorithm. Journal of Algorithms 8 (1987), 405–437.

[30] J. Remy and A Steger. A quasi-polynomial time
approximation scheme for minimum weight
triangulation. Proceedings of the 38th ACM

Symposium on Theory of Computing, Seattle,
Washington, 2006.

[31] O. Schwarzkopf. The extensible drawing editor Ipe.
Proceedings of the 11th Annual Symposium on

Computational Geometry, Vancouver, British
Columbia, pp. 410–411, 1995.

[32] M. I. Shamos and D. Hoey. Closest point problems.
Proceedings of the 16th Annual IEEE Symposium on

Foundations of Computer Science, Berkeley,
California, pp. 151–162, 1975.

[33] B. T. Yang, Y. F. Xu, and Z. Y. You. A chain
decomposition algorithm for the proof of a property on
minimum weight triangulations. Proceedings of the 5th

Annual International Symposium on Algorithms and

Computation, Beijing, China. Springer Lecture Notes
in Computer Science, volume 834, pp. 423–427, 1994.


