
A Note on Predecessor Searching in the Pointer Machine Model I

Wolfgang Mulzer

Department of Computer Science, Princeton University, 35 Olden Street, Princeton, NJ 08540, USA

Abstract

Predecessor searching is a fundamental data structuring problem and at the core of countless algorithms: given a totally ordered
universe U with n elements, maintain a subset S ⊆ U such that for each element x ∈ U its predecessor in S can be found
efficiently. During the last thirty years the problem has been studied extensively and optimal algorithms in many classical models
of computation are known. In 1988, Mehlhorn, Näher, and Alt [1] showed an amortized lower bound of Ω(log log n) in the pointer
machine model. We give a different proof for this bound which sheds new light on the question of how much power the adversary
actually needs.

Key words: analysis of algorithms, data structures, predecessor searching, lower bound, pointer machine

1. Introduction

We consider the classic predecessor searching problem in
which we are given a totally ordered universe U = {1, . . . , n}
with n elements and where we need to maintain a set S ⊆ U
under the operations insert, delete, and pred. For x ∈ U,
insert(x) adds x to S , delete(x) removes x from S , and
pred(x) finds the largest element in S that is smaller than x.
This is one of the most fundamental data structuring problems
and has been studied extensively in the literature, so that nowa-
days optimal solutions for a wide variety of models are known.
We refer the reader to Beame and Fich [2] and Pǎtraşcu and
Thorup [3] for an overview and some recent results in this area.

We consider one of the most old-fashioned incarnations of
the problem, namely, we consider predecessor searching on a
pointer machine (this model is explained in detail in the next
section). In this setting, there is a classical solution based on
van-Emde-Boas trees [4] which achieves O(log log n) worst-
case time per operation, and this was shown to be optimal by
Mehlhorn, Näher, and Alt [1]. Mehlhorn et al describe an ad-
versary that locally analyses the data structure and in each step
performs the worst possible operation. Our note is motivated
by the following question: how much knowledge does the ad-
versary actually need? To answer this question, we provide
a different proof of the core lemma of Mehlhorn et al. Our
proof is based on a more global analysis of the data structure
and shows that the adversary does not need to be too clever
most of the time. Rather, it turns out that if things are set up
right, almost every possible predecessor query will be difficult.
Furthermore, we believe that our new, more global viewpoint
leads to a slightly simpler and more straightforward proof of
the lower bound.

IThis work was supported in part by NSF grant CCF-0634958 and NSF
CCF 0832797.

Email address: wmulzer@cs.princeton.edu (Wolfgang Mulzer)

2. The Model

As our model of computation we use the pointer machine,
which captures the list processing capabilities of a computer
[5, 6, 7, 8]. In this setting, the data structure is a directed
graph D in which every node has out-degree at most 2. The
data structure is dynamic and may change throughout the com-
putation. However, we assume that the vertex set V of D stays
the same. The data structure contains a set I = {i1, . . . , in} ⊆ V
of n distinguished input nodes and a set O = {o1, . . . , on} of n
distinguished output nodes with I ∩ O = ∅. They each corre-
spond to the elements of the universe. All the input nodes have
in-degree 0, and all the output nodes have out-degree 0. Every
output node can be marked or unmarked, indicating whether the
corresponding element is present in the subset S or not. For a
given data structure D, we call the set of marked output nodes
the elements stored in D, denoted by S (D). Let x ∈ U and
ix ∈ I be the corresponding input node, then predD(ix) denotes
the output node oy such that y is the predecessor of x in S (D).
Furthermore, for v, v′ ∈ V , we let dD(v, v′) denote the length of
a shortest path from v to v′, the distance of v′ from v.

We now describe how the operations are carried out. The al-
gorithm receives an input node ix and a data structure D. For an
insert or delete operation, the algorithm is required to re-
turn a data structure D′ such that S (D′) = S (D) ∪ {x} in case of
insertion and S (D′) = S (D)\ {x} in case of deletion. For a pred
query, the algorithm must return the output node predD(ix) and
a data structure D′ with S (D′) = S (D). The cost of an insert
or delete operation is given by |E(D′) \ E(D)|, the cost of a
pred query is given by |E(D′) \ E(D)| + dD(ix, predD(ix)). In
words, the cost of an operation is the number of edges the algo-
rithm changes in the data structure plus the length of a shortest
path from the input to its predecessor in case of a pred query.
Note that if D does not contain a path from the input to its pre-
decessor, the pred operation has infinite cost.

Preprint submitted to Information Processing Letters March 20, 2009

3. The Lower Bound

Our proof follows the general strategy of Mehlhorn et al. We
fix σ := 1

3 log log n − 1 and τ := 2σ+1 = 3
√

log n. For a given
data structure D, we say that the input node ix is satisfied in D
if dD(ix, predD(ix)) ≤ σ, and unsatisfied in D otherwise. At the
heart of the argument is the following lemma:

Lemma 3.1. Let D0 be any data structure with S (D0) = ∅.
There exists a nonempty set S ⊆ U, such that in every data
structure D with S (D) = S and |E(D) \ E(D0)| ≤ σ|S | at least
(1 − 2/τ)n input nodes are unsatisfied.

We call a set S ⊆ U as in Lemma 3.1 a difficult set for D0.
Mehlhorn et al prove a similar lemma with a weaker guarantee.
While they show that there exists a difficult set such that at least
one input node is unsatisfied, we prove that almost all input
nodes are unsatisfied. Following Mehlhorn et al, it is now easy
to prove the lower bound:

Theorem 3.2. LetU = {1, . . . , n} be a totally ordered universe
of size n and D0 a data structure with S (D0) = ∅. Any algorithm
that solves the predecessor searching problem onU has amor-
tized complexity Ω(log log n) per operation. More precisely, for
every m ∈ N there exists a sequence O of at least m operations
such that the total cost of performing O with initial data struc-
ture D0 is at least σ|O|/3, where |O| denotes the length of O.

Proof. We describe how to construct the operation sequence O:
it consists of several rounds, each of which starts with an empty
data structure. A round is constructed as follows: let D0 be the
initial data structure, and let S 0 ⊆ U be a difficult set for D0
as in Lemma 3.1. There are 3|S 0| operations: in the first |S 0|

steps, all elements from S 0 are inserted into the data structure,
and in the last |S 0| steps, the elements from S 0 are deleted. The
remaining |S 0| operations are predecessor queries that are deter-
mined as follows: at any point, if an unsatisfied element exists,
query it. Otherwise, query an arbitrary element in the universe.
It now follows that the round has cost at least σ|S 0|: either,
we query |S 0| unsatisfied elements, or at some point all ele-
ments in the current data structure are satisfied, which means,
by Lemma 3.1, that the current data structure differs from D0
by at least σ|S 0| edges. We can now obtain a difficult operation
sequence of length more than m by adding new rounds until the
total number of operations exceeds m.

Note that the proof also goes through if in each round we
pick the predecessor queries uniformly at random, because by
Lemma 3.1 almost all input nodes are unsatisfied.

It remains to prove the lemma.

Proof of Lemma 3.1. Let v ∈ V . We define the group of v in
D0 as the set of input nodes in D0 that can reach v on a path of
length at most σ. It is called Av:

Av := {ix ∈ I | dD0 (ix, v) ≤ σ}.

Since D0 has out-degree at most 2, for each ix ∈ I there can be
at most τ groups Av with ix ∈ Av.

For 0 ≤ k ≤ τ2, let dk := nk/τ2
. We let Bk denote the set

of input nodes that are in a group whose size is in the interval
(dk−1, dk]:

Bk := {(ix, v) | v ∈ V, ix ∈ Av and dk−1 < |Av| ≤ dk}.

Claim 3.3. There exists an 1 ≤ β ≤ τ2 such that |Bβ| ≤ n/τ.

Proof. Since the Bk are disjoint, we have

τ2∑
k=1

|Bk | =

∣∣∣∣∣∣∣∣
τ2⋃

k=1

Bk

∣∣∣∣∣∣∣∣
≤ |{(ix, v) | v ∈ V, ix ∈ Av}|

=
∑
x∈U

|{v ∈ V | ix ∈ Av}| ≤ τn,

since each ix appears in at most τ groups Av. Therefore, there is
at least one Bβ of size at most n/τ.

Let a := 2β − 1. We subdivide the universe into n1−a/2τ2

intervals of size b := na/2τ2
: interval I1 consists of elements

1, . . . b, interval I2 consists of elements b+ 1, . . . , 2b, and so on.
Let I2l be an interval with even index and x ∈ I2l. The output
node ox is good, if |Ql ∩ Aox | ≤ τ

2, where Ql is the set of input
nodes corresponding to the elements in I2l ∪ I2l+1 ∪ I2l+2 (we
define I2l+1, I2l+2 = ∅, if necessary):

Ql := {ix | x ∈ I2l ∪ I2l+1 ∪ I2l+2}.

The output node ox is called bad otherwise. The reason for this
definition is that if we mark a good output node ox, at most τ2

input nodes in the relevant intervals have distance less than σ
from ox, so all but τ2 input nodes for the succeeding elements
in I2l ∪ I2l+1 ∪ I2l+2 will be unsatisfied. An element x ∈ U
is called good or bad depending on whether its corresponding
output node is good or bad.

Claim 3.4. Every interval I2l contains at least one good ele-
ment.

Proof. We have∑
x∈I2l

|Ql ∩ Aox | =
∑
iy∈Ql

∣∣∣{ox | x ∈ I2l, dD0 (iy, ox) ≤ σ}
∣∣∣

≤
∑
iy∈Ql

τ = τ|Ql| ≤ 3τb,

since |Ql| ≤ 3b. It follows that there can be at most 3b/τ ele-
ments x ∈ I2l with |Ql ∩ Aox | > τ

2. Since 3/τ < 1, the claim
follows.

Pick a good node from every interval I2l and call the resulting
set S . Let D′0 be the data structure derived from D0 by marking
exactly the output nodes ox with x ∈ S .

Claim 3.5. At most 2
3τ

2n1−1/2τ2
nodes in D′0 are satisfied.

2

Proof. At most 2b ≤ 1
6 n1−a/2τ2

input nodes are satisfied for el-
ements in I1, I2. By construction, for each x ∈ S there are at
most τ2 satisfied input nodes iy such that predD′ (iy) = ox. The
set S contains at most 1

2 n1−a/2τ2
elements, and since a ≥ 1, the

claim follows.

Let D be any data structure with S (D) = S and |E(D) \
E(D0)| ≤ σ|S |. Let ix ∈ I be an input node that is satisfied
in D, but in D0 we have dD0 (ix, predD(ix)) > σ. Let (v, v′) be
the first edge on a shortest path from ix to predD(ix) in D that
is not in E(D0). We say that v satisfies ix. Note that it follows
that dD0 (ix, v) ≤ σ.

Claim 3.6. Let v ∈ V. Then

|{predD(ix) | ix ∈ I is satisfied by v}| ≤ τ,

that is, the input nodes satisfied by v have at most τ different
predecessors.

Proof. Assume v satisfies ix. By definition, dD(v, predD(ix)) ≤
σ. Since D has out-degree 2 and since every element node is a
sink, there can be at most τ element nodes at distance at most
σ from v. The claim follows.

Call a node v ∈ V big, if |Av| > dβ, small, if |Av| ≤ dβ−1, and
medium, if dβ−1 < |Av| ≤ dβ. Let Isat be the set of satisfied input
nodes in D. Recall that for every node in Isat that is not satisfied
in D′, there exists a node v ∈ V that satisfies it. We have

Isat = Isat
initial ∪ Isat

big ∪ Isat
medium ∪ Isat

small, (1)

where Isat
initial denotes the input nodes that are already satisfied

in D′0, and Isat
big, I

sat
medium, I

sat
small denote the input nodes satisfied by

a big, medium, or small node, respectively. By Claim 3.5, we
have

∣∣∣Isat
initial

∣∣∣ ≤ 2τ2n1−1/2τ2
/3. Furthermore, by Claim 3.3, the

number of input nodes ix such that dD0 (ix, v) ≤ σ for a medium
node v is at most n/τ, and hence

∣∣∣Isat
medium

∣∣∣ ≤ n/τ.

Claim 3.7. We have
∣∣∣∣Isat

big

∣∣∣∣ ≤ 3τ2n1−1/2τ2
.

Proof. Let v be a big node. By Claim 3.6, |{predD(ix) | ix ∈

I is satisfied by v}| ≤ τ. Furthermore, by construction, for each
x ∈ S , the set of input nodes iy such that predD′ (iy) = ox has
cardinality at most 3na/2τ2

. Hence, v can satisfy at most 3τna/2τ2

nodes.
Since v is big, there exist more than dβ input nodes ix such

that dD0 (ix, v) ≤ σ. As for each input node there are at most
τ such nodes, there can be at most τn/dβ big nodes. Recalling
that dβ = nβ/τ

2
and that a = 2β − 1, it follows that

|Isat
big| ≤ 3τnβ/τ

2−1/2τ2
· τn1−β/τ2

= 3τ2n1−1/2τ2
.

Claim 3.8. We have
∣∣∣Isat

small

∣∣∣ ≤ 1
2σn1−1/2τ2

.

Proof. Let v be a small node and let ix be an input node such
that dD0 (ix, v) ≤ σ. Since v is small, there are at most dβ−1 =

n(β−1)/τ2
such nodes ix. Hence, v can satisfy at most n(β−1)/τ2

input nodes. If a small node v satisfies an input node in D, there
has to be an edge in E(D) \ E(D0) leaving v. By assumption,
there are at most σ|S | ≤ σ 1

2 n1−a/2τ2
such edges. Using a =

2β − 1, it follows that

|Isat
small| ≤ n(β−1)/τ2

·
1
2
σn1−(β−1)/τ2−1/2τ2

=
1
2
σn1−1/2τ2

.

By Claims 3.3, 3.5, 3.7, 3.8, we can conclude from (1) that

|Isat| ≤
2
3
τ2n1−1/2τ2

+ 3τ2n1−1/2τ2
+

n
τ
+

1
2
σn1−1/2τ2

≤
n
τ
+ 4τ2n1−1/2τ2

≤
2n
τ
,

since 4τ3 = 4 log n ≤ 2
1
2 log

1
3 n = n1/2τ2

for n large enough. This
finishes the proof.

Acknowledgments: I wish to thank Bernard Chazelle for many
useful discussions.

References

[1] K. Mehlhorn, S. Näher, H. Alt, A lower bound on the complexity of the
union-split-find problem, SIAM J. Comput. 17 (6) (1988) 1093–1102.

[2] P. Beame, F. E. Fich, Optimal bounds for the predecessor problem and
related problems, J. Comput. System Sci. 65 (1) (2002) 38–72, special
issue on STOC, 1999 (Atlanta, GA).

[3] M. Pǎtraşcu, M. Thorup, Time-space trade-offs for predecessor search, in:
Proc. 38th ACM Symposium on Theory of Computing (STOC), 2006, pp.
232–240, see also arXiv:0603043.

[4] P. van Emde Boas, R. Kaas, E. Zijlstra, Design and implementation of
an efficient priority queue, Math. Systems Theory 10 (2) (1976/77) 99–
127, sixteenth Annual Symposium on Foundations of Computer Science
(Berkeley, Calif., 1975), selected papers.

[5] D. E. Knuth, The Art of Computer Programming: Fundamental Algo-
rithms, 3rd Edition, Vol. 1, Addison Wesley, Reading, Massachusetts,
1997.

[6] A. N. Kolmogorov, On the notion of algorithm, Uspekhi Mat. Nauk. 8
(1953) 175–176.

[7] A. Schönhage, Storage modification machines, SIAM J. Comput 9 (3)
(1980) 490–508.

[8] R. E. Tarjan, A class of algorithms which require nonlinear time to main-
tain disjoint sets, Journal of Computer and System Sciences 18 (2) (1979)
110–127.

3

