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ABSTRACT

A classic result asserts that many geometric structures can
be constructed optimally by successively inserting their con-
stituent parts in random order. These randomized incremen-
tal constructions (RICs) still work with imperfect random-
ness: the dynamic operations need only be “locally” random.
Much attention has been given recently to inputs generated
by Markov sources. These are particularly interesting to
study in the framework of RICs, because Markov chains pro-
vide highly nonlocal randomness, which incapacitates virtu-
ally all known RIC technology.

We generalize Mulmuley’s theory of ©-series and prove
that Markov incremental constructions with bounded spec-
tral gap are optimal within polylog factors for trapezoidal
maps, segment intersections, and convex hulls in any fixed
dimension. The main contribution of this work is threefold:
(i) extending the theory of abstract configuration spaces to
the Markov setting; (ii) proving Clarkson-Shor type bounds
for this new model; (iii) applying the results to classical geo-
metric problems. We hope that this work will pioneer a new
approach to average-case analysis in computational geome-
try.

Categories and Subject Descriptors

F.2.2 [Nonnumerical Algorithms and Problems]|: Ge-
ometrical problems and computations; G.3 [Probability
and Statistics]: Markov processes

General Terms
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1. INTRODUCTION

Randomized incremental constructions (RICs) are popu-
lar for three reasons: they are widely applicable; they are
as simple as one could hope; they are often optimal under
random input sequences [3-6,9,10,12-15,17,20,29,30,32—-34,
38-41,45]. But what if the sequences are not truly random?
In the worst case, the running time typically goes up by a
factor of n. Less obvious is the fact that perfect randomness
is not actually necessary. Mulmuley proved that O(1)-wise
independence was in fact sufficient [35]. On the other hand,
Amenta et al. showed that the entropy may slowly decay
during the RIC without penalty [1]; in other words, the in-
sertion sequence can afford to be less and less random as the
construction progresses. Devillers and Guigue introduced
the shuffling buffer, which randomly permutes contiguous
subsequences of the input sequence of a certain length k,
and they provide trade-offs between the length k and the
running time of the RIC [16].

What these results demonstrate is that standard RIC anal-
ysis still works as long as there is sufficient local randomness
early enough. Unfortunately these two features are precisely
what is lacking in Markov sources.

What are those? A Markov source is a probabilistic model
of input data that serializes the production of data over
time by means of a random walk in a graph. It is widely
used in queuing theory, speech recognition, gesture mod-
eling, protein homology, computer graphics, robotics, web
searching, etc. It captures the statistical correlations cre-
ated by time coherence. In speech, for example, the ran-
domness of the next utterance is heavily dependent on the
previous ones; hence the use of hidden Markov models. In
geometric applications, Markov sources have been used in
ray tracing [23,43], computer games [28], robotics [19], ter-
rain generation [44], etc. In computer science, one of the
main motivations has been locality of reference; in particu-
lar, there exists a vast body of research in online algorithms
for Markov sources [8, 22, 24-27, 36, 37, 42]. The work of
Amenta et al [1] on RICs is also motivated by the desire for
local access. The focus of much of modern computing has
shifted over to the “data” side (partly because of the need to
cope with massive data sets), and it is natural to ask what
happens to a general algorithmic paradigm (RIC) when one
assumes a Markov source—arguably the most widely used
probabilistic model in applied science today.

Formally, a Markov chain over a finite state space @ with n
states is an infinite sequence of random variables Xo, X1, ...
with the following properties: (i) X; € @ for allt > 0; (i) Xo
is drawn from a given initial probability distribution 7o over



Q; and (iii) there are numbers pqr, ¢, € @ such that for any
t > 0 we have Pr[Xi11 = ¢41/Xo = g0, X1 = q1,..., Xt =
qt] = Pgiqy,y, i€, the distribution of X;11 depends only on
X:. The variable X; is called the state of the Markov chain
at time t. The n X n matrix P formed by the pq, is called
the transition matriz of the Markov chain. Given a graph
G = (V, E) with n vertices and an initial probability distri-
bution mp on V', a random walk on G is a sequence of vertices
v, V1, - - ., where v is chosen according to mo and for every
t > 0 the vertex vi41 is determined by following a random
edge out of v;. Naturally, a random walk induces a Markov
chain on state space V.

For the purpose of this paper, our model consists of an
event graph G = (V, E) which is connected and undirected.
This means that the Markov chain it defines is irreducible
and reversible but not necessarily ergodic. Each node v is
associated with an item x, in a universe /. Requests are
specified by following a random walk, beginning at a random
start node of G and hopping from node to node, each time
choosing an adjacent node v uniformly at random. Upon
reaching v, item x, is inserted into the current structure.
The structure in question depends, of course, on the appli-
cation. In this work we consider convex hulls, trapezoidal
maps, and segment intersections. The structure is the cor-
responding conflict graph. Actually, we can use the influ-
ence graph [3-6,17,18] or history graph [34], which have
the advantage of supporting queries and allowing for online
(semi)dynamic algorithms. This means that we do not even
need to know the graph G ahead of time. Our analysis, in
fact, supports all known variants of RICs.

Our results and their significance.

The main contribution of this paper is to extend Mul-
muley’s theory of ©-series [34] to Markov chains. In the
course of doing so, we prove two results of independent in-
terest: one is a generalization of the classic Clarkson-Shor
counting technique for Markov sampling; the other is a new
bound on mean first passage times for Markov chains with
bounded spectral grap.

With the new tools we build, we are able to bound the ex-
pected complexity of RIC for convex hulls in d dimensions
by O(y~?nl?2) (log n)[%/21) for d > 3, and O(n(y~* logn)?)
for d < 3, where ~ is the spectral gap of the random walk—
note that v is a positive constant in the case of an ex-
pander. For trapezoidal maps of non-intersecting segments
and segment intersections, the complexity is respectively
O(n(y~* logn)*) and O((n + m)(y~* logn)®), where m is
the number of intersections.

The extra polylogs may come as a disappointment. They
should not. First, they cannot be removed entirely, as can
be shown by a simple cover time argument. Indeed, it is well
known that even with constant spectral gap, a random walk
requires Q(n logn) steps to visit every vertex of a graph with
n vertices [7]. So, one cannot hope to match the complex-
ity bounds of the static case. The exponents we achieve are
unlikely to be tight, however, and we suspect that further
progress hinges on a better understanding of short-term be-
havior of random walks, a topic that seems to have been
addressed only recently in the Markov chain literature [2].

A person familiar with the role of expanders in derandom-
izing BPP might expect that Markov sources should provide
more, not less, randomizing power than, say, bounded inde-
pendence. This intuition is wrong for very interesting rea-

sons that are important to understand. The standard analy-
sis for RICs require global randomness within local time win-
dows. Markov sources violate that essential feature in the
worst possible way. Even post-mixing, a short walk contains
virtually no global randomness. Note that all previous uses
of expanders for (de)randomization rely on their randomness
over global windows: in that regard, this paper pioneers a
local approach to Markov chains that is likely to find fur-
ther applications. In particular, our contribution includes
new results of general interest on first passage times.

That Markov RICs come within polylog and not, say, n°
of optimal is, in and of itself, a very intriguing result. In fact,
we do not know any simple argument that shows that the
expected RIC complexity beats that of the worst possible de-
terministic insertion sequence (even assuming bounded spec-
tral gap)! It is no exaggeration to say that Markov sources
shatter the foundation of RIC’s analysis at its core. We show
in this paper how the framework of ©-series can be partly
salvaged. It is doubtful whether backward analysis can be
similarly rescued, but this is a fascinating open question.

RICs provide essentially the simplest algorithms one can
hope for. The message of this paper is that a tiny amount of
local entropy (as provided by Markov sources) is sufficient to
bring about almost all (though not quite all) the benefits of
full randomization. What our work also shows is that there
is nothing obvious at all about such a statement.

2. o-SERIESFOR MARKOQOV SOURCES

For (notational) convenience, we assume that the random
walk takes place on a graph that is connected and r-regular,
for some constant r. The complexity of RIC is tightly cou-
pled to the spectral gap 7, which is the difference between
the first and second largest eigenvalues of the transition ma-
trix. We use the classical notion of configuration spaces [34]
and adapt it to the Markov model. This is done as fol-
lows: Fix a natural number d, the degree of the configu-
ration space. Each node v of GG is assigned an object x,
chosen from a geometric universe (eg, points, hyperplanes,
segments), and to each d-tuple u = (u1,...,uq) of distinct
u; € V we assign a (possibly empty) Su C V disjoint from
u. We denote by fi the number of u’s such that [Su| = k
and by f<i the prefix sum fo+---+ fr. We write fr(n) and
f<k(n) to refer to the maximum such values over all sub-
sets of the universe of size n. The coordinates of a d-tuple
u play the role of the triggers and the sets Sy that of the
stoppers. Naturally, fr counts the k-sets of the underlying
range space.

The apparent simplifications of our model do not, in fact,
restrict the generality of the results in any way. Indeed, our
framework can just as easily handle cases where u is not a
sequence but a multiset, where it maps to several stopper
sets, or where the degree d is not unique. Given a ran-
dom ordered u = (u1,...,uq), perform an infinite random
walk from a random node in G. If the walk first reaches
u1,...,uUq in that order before hitting any node in Sy, then
set ® = n?|Syl; else set ® = 0. Standard O-series theory
shows that the expectation of & determines the expected
amortized complexity of RIC [34]. We postpone the proof
of this result:?

'For convenience, we use the Vinogradov notation < and
> for O(-) and €(+), respectively.



Master Theorem If fo(n) = O(n®), for some constant
a > 0, then E[®] < v %n® (logn)?™® for a > 1 and
E[®] < v *n(logn)? for a < 1.

We apply the theorem to three problems: convex hulls
(and hence Voronoi diagrams); trapezoidal maps of disjoint
segments; and line segment intersections. The algorithms
themselves operate in standard incremental fashion by in-
serting objects online with the help of the influence graph.
The algorithms do not require knowledge of the Markov
chain (which is why we do not use conflict graphs).

e CONVEX HULLS IN R¢: The convex hull of n points in
R? has O(n!%/2)) faces, which implies that a = |d/2].
The algorithm runs in time O(y~%¢nl%/2) (log n)l4/21)
for d > 3, and O(n(y~ ' logn)?) for d < 3.

e TRAPEZOIDAL MAPS: At each node, the trapezoidal
map formed by a set of (nonintersecting) segments is
maintained. The relevant configuration space is made
of three subconfiguration spaces of respective degrees
2, 3, and 4. Hence, the time required by the algorithm
is O(n(y~* logn)*).

e SEGMENT INTERSECTIONS: The m intersections among
n segments are computed in O ((n+m)(y~ " logn)®)
steps. The proof depends on an extension of the Mas-
ter Theorem discussed in §3.

ProoOF OF THE MASTER THEOREM. Recall that the tran-
sition matriz of a Markov process with n states is the n x n
matrix P in which entry P;; is the probability of a transition
from state i to state j. The transition matrix of a random
walk on a graph G is its adjacency matrix, normalized such
that each row sums to one. Furthermore, it is easy to see
that for any initial probability distribution 7o, the distribu-
tion after ¢ step equals 72 P°.

For technical reasons, we assume a lazy walk with tran-
sition matrix P = 1(I + M/r), where M is the adjacency
matrix of G. This is only for analytical convenience and an
actual implementation could assume a random walk in the
original graph G. For the cost of a constant-factor slowdown,
the lazy walk brings with it well-known analytical benefits.
For example, P is positive semidefinite and the walk is er-
godic. Fix a node ug € V. Given any nonempty set S C V
and u € V' \ S, let Pr[ug - S] be the probability that an
infinite walk from wuo reaches u before any node in S, and
let to = [¢(1—X)"'logn| be an upper bound on the mixing
time, where X is the second largest eigenvalue of P and c is
a large enough constant [11]. Note that A = 1 — v/2 and
that A\’ < 1/n for appropriate c, since

A=1-—(1=-))<e 07V,

We begin with a technical result of independent interest.

LEMMA 2.1. For any fizeduo € V, SCV,veV\S,

1

Priws = 8] < > (P + Typa7

0<t<3t

PRrROOF. Let @ be the matrix derived from P by zeroing
out any entry P, with either v or w (or both) in S U {u}.
(We index matrix elements and vector coordinates by their

corresponding nodes in G.) Being positive semidefinite, Q
has a (real) spectral decomposition Z@ uzzlle such that
w1 > -+ > pun = 0 and the z; constitute an orthonormal ba-
sis of eigenvectors. By the Perron-Frobenius theorem, 1 > A
and 1 > p1, and by the eigenvalue interlacing lemma [21],
A > p2. By Cauchy-Schwarz, for any v,w € V' \ S U {u}

(Qt)vw = ZlvRlw Mﬁ + Z Ziv Ziw N:

i>1

Comet VA A )

< 21071 il 4 AL i>1 i>1
where the last inequality follows from the orthonormality of
the z;. Since 1/4/n is the principal unit eigenvector of P for
the eigenvalue 1, an analogous calculation for P yields for
any v,w € V:

(P ow < = + A% (2)

1
n
To bound Prlup — S], we proceed as follows: First, we
distinguish between short paths (with less than 3to steps)
and long paths (with more than 3ty steps). The contribu-
tion of the short paths constitutes the first summand in the
bound of Lemma 2.1. To analyze the contribution of the
long paths, we break down every long path from wuo to u
into a pre-mixing part, a mixed portion, and the premixed
part of the reverse path. We then assess the contribution of
each piece. Let N, denote the set of nodes adjacent to u via
a nonloop edge.

Prluo 4 81 < 30 (Phugu 4+ 30 30 (Quge - (3)

t<3to t>3ty vENy,

We now break down the long paths. By (2), the last sum-
mand is bounded by

L Y S (P e @)enP e

VEN, t>tg a,beV

SIS

t>tg a,beV

<SS Y @,

t>tg a,beV

where the second inequality follows from the definition of
to. Since ||z1]]2 = 1 and since at least |S| + 1 of its coor-
dinates are zero (an easy consequence of being an eigenvec-
tor for @), Cauchy-Schwarz yields ||z1]|3 < n — |S| — 1. By
Perron-Frobenius, z; is nonnegative and so, Za,bEV Z1aZ1b =

H21”% <n-— |S| - L By (17374)7

u 4
Prlup 5 8] = D (Pugu < 5 D7 D (zraz it +A)

t<3to a,beV t>to
4 4\t
n(l—,ul)+1—)\' (%)

We need to bound 1 — p1. By an argument similar to one
given by Broder and Karlin [7], we can bound p1 away from
1: Since z1 is nonnegative, nz1 — ||z1]11 is normal to the



principal eigenvector of P and, by Courant-Fischer,

(nz1 = ||z1][11)" P(nz1 — ||z1]l1 1)
[nz1 — [lz1ll11[]3

A

nzi Pz — |21l
= nflzll3 = =i
np — ||z |3
n— |23

\Y]

It follows that nui < nA + (1 — A)||z1]|3. We just argued
that ||z1]|3 <n—|S|—1, and so u1 < 1—(1—A)(|S|+1)/n,
which, by (5), completes the proof. []

To bound the expectation of &, we need to understand
a certain stochastic process, which we proceed to describe.
A random thread refers either to a single node w; chosen
uniformly at random (thread size of 1) or to a sequence
w1, ..., wy (thread size of k > 1), where w1 is random and,
for each i > 0, w;+1 is the end node of a random walk from
w; of length t; > 0. The time sequence 6 = (t1,...,tk—1)
parameterizes the thread. Given 1 < p < d, a random p-
thread is a sequence of p threads whose sizes add up to d:
each thread is drawn independently and has its own size
and time sequence. Its time sequence 6 refers now to the
collection of its constituent threads’ time sequences. A p-
thread forms a d-tuple u and is therefore associated with a
stopper set Su. (We invalidate the cases where u has fewer
than d distinct nodes by setting |Su| = o0.) Let g]i“) be
the probability that a random p-thread (with a given time
sequence) produces u such that [Su| = k.

g = Pr[ p-thread — u : |Su| = k]. (6)

LEMMA 2.2. With respect to any valid time sequence, we
have g(“) < (k/n)* fo(n/k), for k> 0.

PROOF. We use a Clarkson-Shor type argument [13] tai-
lored for Markov chains. As usual, the idea is to use sam-
pling in order to bound g%, in terms of fy. More precisely,
we will sample a set R C V of size n/k. Then, for a con-
figuration u C R with |Su| < k, we will argue that with
high probability u is active in R, ie, Sy N R = (). Together
with a bound on the probability that a given configuration
u appears in R, this will yield the desired bound. We may
assume that k& < n/2d, since for larger k, the right hand side
of the bound becomes constant.

All p-threads in this proof share a given, fixed time se-
quence 01, ...,0,. Let s < n be a constant to be determined
later. For each ¢ = 1,..., u, pick s random threads of type
0;, and define R as the set of u’s formed by taking all pos-
sible s# combinations of the resulting threads, one of each
type. Given a fixed (nonrandom) u € V¢, let p, denote the
probability that u is chosen by a random p-thread. Since
each starting node is chosen independently, py is of the form
H1<@< ==+, where pu,; is the probability of getting the i-th
thread to match with the relevant part of u, given that the
first node of the i-th thread equals the corresponding node
in u. Therefore, u ends up in R with probability at least
[Ticic,, (1= (1 =pui/n)®). Now, since pu,is/n < 1, we have

(1_Iﬂ)5§1_ S Puwi | ¥ (Iﬂ)zgl_pu,iss
n 1/ n 2 n 2n

hence,
Pr[u € R] > pus". (M)

Let RY be the collection of nodes appearing among the d-
tuples of R. Given a fixed u with |Su| < n/2d, conditioned
upon u € R, what is the probability that R” NSy = 0, ie,
that configuration u is active in R’? Being in R, u itself is
a p-thread formed by picking exactly one thread per type
out the s available ones in R. The d nodes of u lie outside
Su, so the only possibility for R” to intersect Sy is for any
of the (s — 1)u other threads to pass through Sy. Take one
of them: it is a random walk w; - - - wg. The starting node
wy is random, so its distribution forms an eigenvector for
the thread’s transition matrix with eigenvalue 1 (also true if
k =1). This means that each wj; lies in Sy with probability
|Su|/n. These events are not independent, so we use a union
bound to argue that the thread w; - - - wi remains outside Sy
with probability at least 1 — d|Su|/n. The (s — 1)u threads
that are candidates for passing through Sy are independent,
however, and thus refrain from doing so with probability at
least (1 — d|Sy|/n)® *. Since |Su| < n/2d, we have

lnl_dliu': zmﬂ'

.

| \/
3
g 8
R
SN
CQ
J

| \/

It follows that
Pr[R' N Su=0|ue R] > ¢ 2= DulSul/n,

If ry denotes the probability that both u € R and SyuNR’ =
() then, by (7), setting s = - yields

ra =Prlue R]xPr[R"NSy =0|ue R]

nAH —2p|Sul/k .
> (dk) Puce ’

therefore, since pu < d,

S e 5 (e

u: [Sy|<n/2d u: |Syl|<n/2d
n o\
> 3 (gp) e
u: |Su|<k
n\H* (
> (3)92
Since |R"| < ds, by definition, [{u € R: |Su N R’| = 0}| <
fo(ds); therefore,
> ra< foln/k).
u: [Sy|<n/2d
Note that this holds uniformly over all time sequences for
p. O
We now proceed with the proof of the Master Theorem.
The expectation of ® is given by

E [®]

n d' Z z 1S4 |HPr[7.LZ witl Sa U {uire, ... udl],

u uoEV



Figure 1: The index set L = {1,2,4,7,9,10} defines a
5-thread.

where > ranges over all ordered subsets of d distinct nodes:
obviously, we may restrict the sum to {u : |Sy| > 0}.

Note that to remove elements from S cannot decrease
Pr[uo = S]; therefore,

d—1
Au Ujt1
| DY) —|Su Priu; Sul,
] < 30 S8l [T Prlus ™ 5]
where, by Lemma 2.1,

Au =37 Priug 4 Sul

ugeV
1

< 2, e T

up€V \0<t<3tq
n

(1= A)[Sul

< n (1 +10gn)
1—A\|Sy| n

= 3to +

Thus, using Lemma 2.1 once more,

E ]

d—1 3tg—1

i X+ BLEN TS P
+EoE)

Writing (8) as E[®] < (1 —\)7' Y, (1 + |Su|(log n) /n) Bu
we begin with the sum )  Bu. Expanding the (d — 1)- fold
product By produces 2%~ terms of the form

() mpd 2@

i€ L t<3tg

U TR ) (9)

where L C [d—1] and j+|L| = d—1. The index set L specifies
the parameters of a u-thread (except for its time sequence).
Indeed, break [d] into = j+1 intervals by applying the rule
that ¢ + 1 is in the same interval as any ¢ € L. In Figure 1,
d=11,u=5,j=4, L ={1,2,4,7,9,10}, and the threads
are [1, 3], [4,5],[6],[7, 8],[9, 10, 11]. All we can say about the
time sequences is that the total number of elements t1, to, . . .
in all of them is exactly |L| = d — p. So, while summing (9)
over all u, let us first fix the parameters of the p-thread, with
the understanding that the upper bound we derive will be
off by at most a factor of (3ty)%™*. We use the superscripts

1, 6 in the sums to indicate a fixed p or a fixed time sequence
0 (or both).

1,0

Z 9) < ( ) z NG |J r[ u-thread = u]. (10)

Note the presence of the factor n* to make up for the fact
that (P")u,u,,, is a conditional probability. Assume that
j > 0. Using summation by parts, we get that the sum
Zﬁ'e |Su| ™ Pr[ pu-thread = u] is at most

n (1)
zgéﬂ)*z (u)( 1 )_|_g<"
= kI ki (k4 1) nJ
(r) ()
9<k 9<7
< Z ot (11)

1« fo(n/k)+ 1

kit+l—p nJ

)

where Lemma 2.2 is used for the last inequality. By (10)
and using the identity p = j + 1,

w0
>0 < (5
u

LY (Shem+L) a2
k=1
< () 2 (7)"

Multiplying by the corrective factor (3to)?™*,
" n
1 d—1 d— n\ o«
Ba< (=) (R 13
8 < (125)" osm™ 3(7 (13)
We can now easily cover all cases:

(I j>0and a < 1: Y, (n/k)* =
using p =35+ 1,

O(nlogn); hence,

"
ZB“ < (1=XN'"%n(logn)*771

< (1=N'"%n(logn)*2.
(A1) j>0and p>a>2: Y, (n/k)* < n®; hence
I
Z Bu < (1=X)'""%n% (logn)®™*
< (1=X)"%n" (logn)**
(II) a > por j = 0: by (10), %% (9) < (1 — \) ¥,

hence

m
> Bu < (1=N)'"n" (logn) .
If « > p, then > 0By = o(n®). If j = 0, then
S H By < (1=X)'""“n(logn)? .

Ignoring time sequences, the number of p-thread types de-
pends only on d and is bounded by a constant. We conclude
that

> Bu< (1-N)71

max { n(logn)?® ', n® (logn)®™ }



Going back to (8), recall that
E (0] < (1—A) " S (1 +[Sul(log n)/n) Bu.

u
To handle % > . BulSu|, we revisit the above calculation.

With the additional °%£7[S,| factor, Equation (9) now be-
comes

1 1 \J 1
Oin(l—)\) |Su|j*1 H Z (Pt)uiui+1'

icL t<3tg

We fist consider the case j > 1. Retracing our steps through
Equations (10,11,12), we get the analogue to (13):

n

S s = () et 35 (3)

k=1

If o <1, using p =75+ 1, we get
logn & _ —
%ZBU|SU| < (1=X""%logn)n

< (1=X)"""(logn)*""n,

and if o > 2, then clearly &% 3°* B,[Sy| = o(n®). Fi-
nally, if j = 0, then by M%Zﬁ BulSu| < lognd h By
and Case (III) above, it follows that l"% Yo BulSu| K
(1 — N 4n(logn)?.

Thus,

E[®] < (1 — ) 'max { n(logn)?, n® (logn)®~* }

This completes the proof of the Master Theorem. O

3. EXTENSIONS

The Master Theorem cannot be used for the trapezoidal
map of intersecting segments. The reason is that the com-
plexity of an arrangement of n segments depends on both
n and the number m of intersections. We show how to ex-
tend the Master Theorem to handle this case. The problem
can be described by a configuration space of degree 6 and
fo(n,m) = O(n +m). We need to strengthen Lemma 2.2:

LEmMA 3.1. Let g(<“]3 be as defined in (6); with respect to
any valid time sequence, for any k > 0,

92 < (k/n)"O ((n+m)/k).

PROOF. We use the same notation as in Lemma 2.2. We
only need a better upper bound on ) 7y, the expected com-
plexity of the trapezoidal decomposition of the sample R".
To do this, we bound the expected number of intersections
among the line segments in R”. Let I be an intersection
and let x be one of its defining segments: I can only be
present in the trapezoidal decomposition of R” if x € R".
This happens with probability 1—(1—d/n)® = ©(1/k), since
ds/n < 1. By linearity of expectation, it follows that the ex-
pected number of intersections in R” is O(m/k) and we get
the desired upper bound of O((n+m)/k) on the complexity
of the trapezoidal decomposition of R”. Together with the
lower bound from the proof of Lemma 2.2, this completes
the proof. [

The desired result follows now by repeating the proof of
the Master Theorem with the bound g(;k) < (n+m)/k

in (11). To summarize, the m intersections among n seg-
ments are computed in time O ((n +m)(y~ ' logn)®), as we
claimed earlier. O

Reuvisiting the Clarkson-Shor bound.

While proving the Master Theorem, we obtained a variant
of the Clarkson-Shor bound suited for our Markov model
(Lemma 2.2). We believe that this lemma is of independent
interest and could lead to new bounds on the number of k-
sets when certain restrictions on the defining elements are
imposed. Here is a toy example: Let P be a set of n points
in R3. Let H be the set of planes in R® spanned by triplets
of the form (z,y,nn(z)) for z,y € P, where nn(z) denotes
the nearest neighbor of z in P. A plane h € H conflicts with
a point p € P if p lies below h. Let f<; denote the number
of planes in H that conflict with at most k points.

COROLLARY 3.2.  f<i = O(nk).
Compare this with the well-known Clarkson-Shor bound of
O(nk?) for the unrestricted case.

PRrROOF. We define an event graph G by choosing the near-
est neighbor graph of P, ie, the undirected graph whose
vertices are the points in P and in which there is an edge
between p, g € P if p is the nearest neighbor of g in P or vice
versa. It is well known that G has bounded degree (eg, [31]).

We choose d = 3 and p = 2. The first thread has size
two with time sequence (1), the second thread has size one,
where the first node of each thread is sampled according
to the stationary distribution of GG. In other words, the
sampling is defined as follows: Let r be the maximum de-
gree of G, and let m be the number of edges in G. Pick
a random node in G, where node v is chosen with proba-
bility deg(v)/2m and take one random step, and then pick
another random node, again choosing node v with proba-
bility deg(v)/2m. This yields a triplet of points that de-
fines a plane in H, and each triplet appears with probability
©(1/n?). By Lemma 2.2, it now follows that the probability
that we sample a plane that conflicts with at most k points
is O((n/k)(k/n)?), as fo(n) = O(n), which proves the claim.

Technically, Lemma 2.2 applies only to regular graphs,
while G has bounded, but possibly varying, degree. But
as we said earlier, our discussion easily generalizes to the
nonregular case—at a loss of only a constant factor. Indeed,
consider the proof of Lemma 2.2. Firstly, note that the proof
does not need G to be connected. Furthermore, we may
assume that k < n/2dr. Set s = n/dkr. Then Equation (7)
still holds, since for a given u € V? the probability pu.
that u is chosen by a random p-thread is now of the form

[Ticic, dizpn‘i’i7 where d; is the degree of the first node of u
that corresponds to the i-th thread, and by our definition of
s we have dipu,is/2m < rpu,is/2n < 1.

Next, we need to bound the probability that u with |Su| <
n/2dr is active, given that it is present in R. Since we
sample according to the stationary distribution, each node
of a p-thread lies in Sy with probability at most r|Sul|/n.

Proceeding as before, we now get

Pr[R' NSy =0|ue R] > ¢ 24— 1priSul/n,

and

nAH —2d|Sul/k
Tu > (drk:) Pue '



Thus, as before,

and

by our assumption that fo(n) = n®. This finishes the ex-

%
S e (1)l

u: [Sy|<n/2dr

> ra < folds) = fo(n/rk) < fo(n/k),

u: [Su|<n/2dr

tension of Lemma 2.2 to the bounded degree case. [
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