
EuroCG 2012, Assisi, Italy, March 19–21, 2012

Memory-Constrained Algorithms for Simple Polygons∗

Tetsuo Asano† Kevin Buchin‡ Maike Buchin‡ Matias Korman§ Wolfgang Mulzer¶

Günter Rote¶ André Schulz‖

Abstract

A constant-work-space algorithm has read-only access
to an input array and may use only O(1) additional
words of O(log n) bits, where n is the input size. We
show how to triangulate a plane straight-line graph
with n vertices in O(n2) time and constant work-
space. We also consider the problem of preprocess-
ing a simple n-gon P for shortest path queries, where
P given by the ordered sequence of its vertices. For
this, we relax the space constraint to allow s words of
work-space. After quadratic preprocessing, the short-
est path between any two points inside P can be found
in O(n2/s) time.

1 Introduction

In algorithm development and computer technology,
we observe two opposing trends: On the one hand,
there are vast amounts of computational resources at
our fingertips. On the other hand, more and more
specialized tiny devices with limited memory or power
supply become available. The first trend leads to soft-
ware that is written without regard to resources; with
this approach, today’s latest equipment, be it work-
stations or hand-held devices, will soon appear unac-
ceptably slow. It is the second trend on which we will
focus here: we want to process data with a limited
amount of memory. In particular, we consider the
setting where the input data is given in a read-only
data structure and we have only s words of memory
at our disposal, for a parameter s = o(n).

The input of our problem is a polygon P of n ver-
tices in a read-only data structure. We assume that
we can access the x- and y-coordinates of any poly-
gon vertex in constant time. We also assume that

∗This work was initiated at the Dagstuhl Workshop on
Memory-Constrained Algorithms and Applications, November
21–23, 2011. We are deeply grateful to the organizers as well as
the participants of the workshop for helpful discussions during
the meeting.
†JAIST, Japan, t-asano@jaist.ac.jp
‡TU Eindhoven, Netherlands, {k.a.buchin,m.e.buchin}

@tue.nl MB is supported by the Netherlands Organisation for
Scientific Research (NWO) under project no. 612.001.106.
§ULB Brussels, Belgium, mkormanc@ulb.ac.be
¶Freie Universität Berlin, Germany, {mulzer,rote}@inf.

fu-berlin.de
‖WWU Münster, Germany, andre.schulz@uni-muenster.

de

we can obtain the (clockwise and counterclockwise)
neighbor vertex in constant time. We count the stor-
age in terms of the additional number s of cells or
words that an algorithm uses. As usual, a word is
large enough to contain either an input item (such as
a point coordinate) or an index into the data (of log n
bits). We also assume that basic operations on the
input (such as determining if a point is above a given
line) take constant time.

Our Results. First, we show how to triangulate a
plane straight-line graph (and hence a simple poly-
gon) with constant work-space in O(n2) time (Sec-
tion 3). Then, in Section 4, we apply this result to the
construction of memory-adjustable data structures for
shortest path queries. That is, given a polygon P and
a parameter s, we construct a data structure of size
O(s) for P . We then use this structure to compute
the shortest path between any two points inside P in
O(n2/s) time using O(s) work-space.

Related Work. Given their many applications, a sig-
nificant amount of research has been dedicated to
memory-constrained algorithms, even as early as in
the 1980s [6]. A classic example with a geometric fla-
vor is the well-known gift-wrapping algorithm (also
known as Jarvis march [7]). It computes the con-
vex hull of a planar n-point set in O(nh) time and
O(1) work-space, where h is the number of convex hull
vertices. The systematic study of constrained mem-
ory in a geometric context was initiated by Asano
et al. [2]. Among other results, they describe how to
construct well-known geometric structures (such as
Delaunay triangulations, the Voronoi diagrams and
minimum spanning trees) with a constant number of
variables. Recently, Barba et al. [3] gave a constant-
work-space algorithm for computing the visibility re-
gion of a point inside a simple polygon.

Although we know of no algorithm that triangulates
a simple polygon with o(n) work-space, it is known
how to find an ear of a given simple polygon P in
linear time and with constantly many variables [5].
However, since the input cannot be modified, there
seems to be no easy way to extended this method in
order to obtain a complete triangulation of P . We
also note that there exists a method for triangulating
planar point sets [2]. The same paper also contains an



28th European Workshop on Computational Geometry, 2012

a1

a2

a3

ak

u′v′

uv

e = e′uv = e′

u′v′

e

Figure 1: The shortest path tree SPT from a1 to all
other vertices (in purple). Additional triangulation
edges generated in our algorithm are dotted. The fig-
ure illustrates a forward step (right shaded area) and
a backward step (middle area).

algorithm for finding the shortest path between any
two points inside a simple polygon. This algorithm
uses constant work-space and runs in quadratic time.

For space reasons, we can only give a sketchy idea
of the algorithms here. A more complete description
is available in the full version [1].

2 Triangulating a Mountain

A monotone mountain (or mountain for short) is a
polygon H whose vertices a1, a2, . . . , ak have increas-
ing x-coordinates. The edge a1ak is called the base of
H. In this section, we describe how to triangulate an
explicitly given mountain, while using only one scan
over the boundary of H. This will allow us to extend
the algorithm in the next section in order to triangu-
late a mountain that is provided implicitly as part of
a decomposition of a plane straight-line graph.

For the algorithm, we need the shortest-path tree
SPT from a1 to all other vertices of H. We make the
following observations, see Figure 1.

Proposition 1 SPT has the following properties:
(i) SPT makes only upward bends.
(ii) Each face f of SPT is bounded by the shortest
paths from a1 to two consecutive vertices ai and ai+1.
(This holds in any simple polygon.)
(iii) Each face f of SPT is a pseudotriangle, bounded
from below by an SPT edge uai+1, from the right by
an edge aiai+1 of H, and from above by a concave
chain of SPT edges (as seen from inside).
(iv) The face f can be triangulated uniquely by con-
necting the rightmost vertex ai+1 with the reflex ver-
tices on the upper boundary.

The algorithm traverses SPT in depth-first order,
visiting the children of each vertex in counterclock-
wise order. Since there is no space for a stack, this
must be done in a “stateless” manner. As in an Euler
tour, we visit each non-leaf edge twice, once in forward
and once in backward direction. However, a backward
step immediately followed by a forward step is con-
sidered as a single sideways step (this corresponds to

the case where the tour moves from a node to its sib-
ling in SPT). We call a vertex finished if it has been
visited by the traversal and will not be visited again.
Otherwise, the vertex is unfinished. In an Eulerian
traversal of SPT, the vertices of H become finished in
order from right to left.

Our algorithm maintains two edges: (i) the cur-
rent edge of the tour uv, with v lying to the right
of u; and (ii) the edge e = aiai+1 of H such that
{ai+1, ai+2 . . . , ak} are the finished vertices of the
tour. In each step we distinguish three different cases,
and we accordingly perform a step as follows.

Case 1: v is not incident to e. We perform a
forward step into the subtree rooted at v.

Case 2: v = ai, but uv is a chord of H. We per-
form a sideways step to the next child of u that follows
v in counterclockwise order.
Case 3: v = ai, and uv is an edge ai−1ai of H.

We do a backward step and return to the parent of u.
We start the algorithm with a sideways step from

uv := e := a1ak (as an exception to the above rules).
The algorithm continues until all vertices are finished
and it tries to make a backward step from e = a1a2.
The implementation of the three steps is straightfor-
ward. The only information about H that is required
by the algorithm is one sequential scan of the se-
quence of vertices a1, ak, ak−1, . . . , a2, a1. Thus, the
algorithm can also be applied if H is given implicitly
and if it takes O(n) time to advance from one edge to
the next, as in the next section.

Theorem 2 Let H be a mountain with k vertices
given as part of a larger plane straight-line graph with
n vertices. Then we can output the triangles of a
triangulation of H in time O(nk) and with constant
work-space.

For an explicitly given mountain of k vertices, we get
a running time of O(k2) as a special case.

3 Triangulating a Plane Straight-Line Graph

Let G be a plane straight-line graph. In order to ap-
ply Theorem 2 to the problem at hand, we decom-
pose the convex hull of G into mountains by com-
puting the vertical decomposition (or trapezoidation)
of G and by inserting a chord between any two non-
adjacent vertices of G contained in the same trapezoid
(cf. Chazelle and Incerpi [4]). These edges partition
the convex hull into mountains: Since every vertex
(except for the left- and the rightmost ones) has at
least one incident edge to either side, the faces must
be monotone polygons f . By definition of the de-
composition, if there were a face f with vertices on
both the upper and the lower boundary, there would
be a trapezoid with a vertex at the upper and at the
lower boundary. In this case, however, we would have
inserted a diagonal.



EuroCG 2012, Assisi, Italy, March 19–21, 2012

An edge e of G or of the convex hull is a lower base
of a mountain if and only if it is incident to more
than one trapezoid above it. This can be checked in
linear time. (An inserted chord is never the base of
a mountain.) Once the base of a mountain H is at
hand, we can visit the edges of H in counterclockwise
order by enumerating the trapezoids incident to each
vertex of H. This takes linear time per trapezoid.
Now, in order to triangulate G, we consider each edge
of G and each convex hull edge and determine whether
it is a base of a mountain H. If so, we triangulate
H using Theorem 2. The convex hull edges can be
found in linear time per edge through Jarvis march [7].
Thus, our algorithm needs O(n2) time plus the time
for triangulating the mountains. Since the total size
of all mountains is O(n), we get the following result.

Theorem 3 Given a plane straight-line graphG with
n vertices, we can output all triangles in a triangula-
tion of G in O(n2) time with constant work-space.

4 Memory-Adjustable Data Structures

Generally, the purpose of a data structure D for some
set S of n objects is to answer certain types of queries
on the set S efficiently. For this, D stores some useful
information about S. In the best case, D has linear
size, and the query algorithm searches within D with
only O(1) work-space (more precisely, a work-space
of O(log n) bits). In the classical setting, the whole
input data is contained in the data structure, so the
storage must be at least as large as the input.

Here, we take a different approach: recall that our
input is read-only and cannot be modified. Thus, our
approach is to preprocess the data and to store some
additional information in a data structure of size s (for
some parameter s = o(n)). The objective is to design
an algorithm that uses this additional information in
a way that allows for efficient query processing.

In the following, we use this model for computing
the shortest path between two points inside a simple
polygon P . In our allotted space, we store a par-
tition of P with O(s) chords into O(s) subpolygons
with Θ(n/s) vertices each. The boundary of each
subpolygon is given by subsequences of the original
polygon boundary and some chords (hereafter called
cut edges) associated with it. Additionally, we store
the adjacencies between the subpolygons across the
cut edges. The total space to represent these sub-
polygons is O(s).

Theorem 4 Let P be an n-gon, and let s ∈
{1, . . . , n}. There are O(s) pairwise non-intersecting
chords that partition P into O(s) subpolygons, each
having Θ(n/s) vertices. The chords can be found in
O(n2) time using constant work-space.

We now describe the query algorithm. Given two
points p, q ∈ P , we would like to compute the geodesic
πpq between them—putting to use the precomputed
polygon decomposition. The general idea is to apply
the constant work-space method of Asano et al. [2]
and to concatenate the resulting paths. Let us thus
first give a quick overview of this method.

The algorithm of [2] uses the following invariant: we
have partially reported the shortest path from p up to
an intermediate point v (where either v = p or v is a
reflex vertex of P ). Furthermore, we store a visibility
cone (i.e., a search direction) in which we know that
πpq must go. The visibility cone is represented by a
wedge emanating from v. The algorithm then shoots
a ray inside the wedge that partitions the polygon into
two parts. Depending on which part point q is in, we
might obtain a new intermediate point, or a portion
of the polygon will be discarded.

Our algorithm uses a similar strategy, but it re-
stricts itself to a subpolygon whenever possible. We
start by locating the subpolygons Pp, Pq containing p
and q. If Pp = Pq, we apply the constant work-space
method within that subpolygon. Otherwise, consider
the tree associated with the polygon partition and
find the path between Pp and Pq. Every edge on that
path corresponds to a polygon chord that πpq must
cross, in the same order. On the other hand, edges of
the tree that were not on the path will not be crossed
by πpq, so the corresponding cut edges are treated as
obstacles.

We first introduce some notation: let Pcurr be the
polygon containing the current vertex v. For any sub-
polygon Pi that is traversed by πpq, we define the en-
trance as the cut edge that πpq must cross to enter
Pi. Analogously, we define the exit of Pi.

In the standard situation, everything is confined
within one subpolygon Pcurr. In this case, we can
apply the search strategy of the constant-work-space
algorithm almost without change: pick a search direc-
tion, according to the same rules as in [2], and shoot
a ray R′ partitioning the subpolygon into two.1 We
use the exit chord of Pcurr to determine which half
contains the target. The only problem arises when R′

hits the boundary in the exit chord.

In this case, we switch to the long-jump situation.
We must first complete the ray shooting operation:
we continue the ray R′ into the adjacent subpolygon.
If R′ again hits the exit chord of this subpolygon, we
continue into the third subpolygon, and so on, until R′

hits a point p′ on the boundary of P . The ray R′ splits
the wedge into two parts, and we update the wedge to
the part that contains the target. The running time
is O(n/s) times the number of subpolygons visited.

1We treat the case that v is outside Pcurr and the two rays
bounding the visibility cone hit the boundary of P in Pcurr as
in the standard situation. This extension does not affect the
algorithm.



28th European Workshop on Computational Geometry, 2012

In the general long-jump situation we have a cur-
rent start vertex v and two shortest paths SP+ from v
to a point p+ and SP− from v to a point p−, forming
a funnel with apex v. As an invariant, we know that
the target lies between p+ and p−, and so the shortest
path must go into the funnel. Note that p+ and p−

may lie in different subpolygons P+ and P−. In this
case, w.l.o.g., we assume that P+ is more advanced
than P−. Then, our first goal is to incrementally ex-
tend the shortest path SP− to the lower endpoint of
entrance gate of P+ (Procedure Catch-up). Whenever
P− = P+, we shoot a ray R′ and extend one of the
SP edges (Procedure Extend), and proceed depending
on which side of the ray R′ the exit of P+ lies. From
the funnel boundaries SP+ and SP−, we only store
the O(s) SP edges that cross some cut edge. We now
give the details of the two procedures.

Procedure Catch-up. Since our goal is to proceed
towards the exit of P−, we make an angular clock-
wise sweep inside P− from the endpoint p− of the
current path SP−, starting from the direction oppo-
site to the last edge of SP− and only considering the
O(n/s) points of P− on the lower boundary between
the entrance and the exit cut. After determining the
first point that is hit, we may remove some of the last
vertices from SP− (possibly also from the beginning
of SP+). Finally, we add a new edge to SP−.

Since we do not explicitly store SP− and SP+, we
may have to look for the predecessor or successor edge
by a counter-clockwise angular sweep, as in the back-
ward step of Section 2. These operations are only
needed if the point that we look for lies in the same
subpolygon, hence we will need at most O(n/s) time
(which we charge to the removed vertex). The short-
est path SP− will eventually reach the lower endpoint
of the exit gate of P−. Then we advance to the next
subpolygon, and iterate until we reach P+.

Procedure Extend. Assume that one of the two fun-
nel boundaries, say SP−, has more than one edge. We
take the last-but-one edge of SP− and extend it into
P−. If this ray R′ does not hit the exit cut of P+, we
determine, in O(n/s) time, on which side of R′ the
target lies. If it lies above R′ we pop the last edge of
the funnel, as in Procedure Catch-Up, and proceed. If
it lies below R′ we can throw away everything above
R′. The ray R′ and the last SP edge start at the same
vertex and end in P+, forming a new funnel. We can
thus consider P+ with these two extra edges as our
current polygon Pcurr, and proceed.

There is also the situation that R′ exits through the
exit gate. In this case, we extend R′ until it hits the
boundary of P , in some subpolygon P ′. Again, we
determine on which side the target lies. If the target
lies above R′, R′ forms the new last edge of SP−,
P− is advanced to P ′. If the target lies below R′, we

have a simple funnel consisting only of R′ and the last
edge of SP−. We advance P+ to P ′. In either case
we continue with procedure catch-up.

Theorem 5 Let P be an n-gon, and 1 ≤ s ≤ n.
We can build a data structure of size O(s) in by
O(n2) time and O(1) variables such that shortest path
queries in P can be computed in O(n2/s) time using
O(s) variables.

5 Open Problems

Obvious topics for future research are improvements
of the results. For example, it would be interesting
to construct a memory-adjustable data structure for
triangulating a plane straight-line graph. Also, The-
orem 4 describes how to find a good cut edge for a
simple polygon by essentially triangulating the whole
polygon and giving the most balanced cut. A natural
question is if we can obtain a balanced cut in sub-
quadratic time. Moreover, the cut would not neces-
sarily have to be a diagonal connecting two vertices.

References

[1] T. Asano, K. Buchin, M. Buchin, M. Kor-
man, W. Mulzer, G. Rote, and A. Schulz.
Memory-constrained algorithms for simple poly-
gons. CoRR, abs/1112.5904, December 2011.

[2] T. Asano, W. Mulzer, G. Rote, and Y. Wang.
Constant-work-space algorithms for geometric
problems. J. Computat. Geometry, 2(1):46–68,
2011.

[3] L. Barba, M. Korman, S. Langerman, and R. Sil-
veira. Computing the visibility polygon using few
variables. In Proc. 22nd International Symposium
on Algorithms and Computation (ISAAC’11), vol-
ume 7074 of Lecture Notes in Computer Science,
pages 80–89. Springer-Verlag, 2011.

[4] B. Chazelle and J. Incerpi. Triangulation and
shape-complexity. ACM Trans. Graph., 3:135–
152, 1984.

[5] H. ElGindy, H. Everett, and G. Toussaint. Slicing
an ear using prune-and-search. Pattern Recogn.
Lett., 14:719–722, September 1993.

[6] J. Munro and M. Paterson. Selection and sort-
ing with limited storage. Theor. Comput. Sci.,
12:315–323, 1980.

[7] R. Seidel. Convex hull computations. In Handbook
of Discrete and Computational Geometry, chap-
ter 22, pages 495–512. CRC Press, Inc., 2nd edi-
tion, 2004.


	Introduction
	Triangulating a Mountain
	Triangulating a Plane Straight-Line Graph
	Memory-Adjustable Data Structures
	Open Problems

