
NP-Completeness of Max-Cut for Segment
Intersection Graphs
Oswin Aichholzer1, Wolfgang Mulzer2, Partick Schnider3, and
Birgit Vogtenhuber1

1 Institute of Software Technology, Graz University of Technology, Austria.
oaich@ist.tugraz.at, bvogt@ist.tugraz.at

2 Institut für Informatik, Freie Universität Berlin, Germany.
mulzer@inf.fu-berlin.de

3 Department of Computer Science, ETH Zürich, Switzerland.
patrick.schnider@inf.ethz.ch

Abstract
We consider the problem of finding a maximum cut in a graph G = (V,E), that is, a partition
V1∪̇V2 of V such that the number of edges between V1 and V2 is maximum. It is well known that
the decision problem whether G has a cut of at least a given size is in general NP-complete. We
show that this problem remains hard when restricting the input to segment intersection graphs.
These are graphs whose vertices can be drawn as straight-line segments, where two vertices share
an edge if and only if the corresponding segments intersect. We obtain our result by a reduction
from a variant of Planar Max-2-SAT that we introduce and also show to be NP-complete.

1 Introduction

For a graph G = (V,E), consider a partition V = V1∪̇V2 of V . The set E12 ⊆ E of edges
with one endpoint in V1 and one endpoint in V2 is called a cut (induced by V1 and V2), and
the cardinality |E12| is called the size of the cut. A maximum cut of G is a cut whose size is
as large as possible. The problem MaxCut is to find the size of a maximum cut in a given
graph G. MaxCut can also be cast as a vertex coloring problem: what is the maximum
number of bichromatic edges that can be obtained by coloring each vertex with one of two
possible colors? The decision version of MaxCut asks whether G contains a cut of size at
least k, for a given k ∈ N. It is NP-complete for general graphs [3]. Moreover, MaxCut is
hard to approximate [7, 8]. On the other hand, there exists a PTAS for MaxCut in dense
graphs [1]. For planar graphs, MaxCut can be solved in polynomial time [6], and the same
is true for several other graph classes [2].

A segment intersection graph is a graph whose vertices can be drawn as straight-line
segments (that pairwise intersect in at most one point, in their relative interiors), such
that two vertices share an edge if and only if the corresponding segments intersect. In a
(representation of a) segment intersection graph, a maximum cut corresponds to a 2-coloring
of the segments such that the number of bichromatic crossings, i.e., crossings of segments
with different colors, is maximum. So far, the complexity status of MaxCut on line segment
intersection graphs seems to be open [2]. We show that the decision version of MaxCut is
NP-complete even when the input is restricted to segment intersection graphs. We obtain
this result via a reduction from a variant of Planar Max-2-SAT, that we introduce and
show to be NP-complete as well in Section 2.

This project has been supported by the Austrian Science Fund (FWF) grant W1230 and
the European Union’s Horizon 2020 research and innovation programme under the Marie
Skłodowska-Curie grant agreement No 734922.

34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.

32:2 NP-Completeness of Max-Cut for Segment Intersection Graphs

In addition to the intrinsic interest of the problem, our study is motivated by the following
question that was posed by Ruy Fabila-Monroy at the workshop “Reunión de Optimización,
Matemáticas y Algoritmos” in the framework of the project CONNECT: let D be a straight-
line drawing of the complete graph Kn on n vertices. A k-edge-coloring χ of Kn assigns to
each edge of Kn a color from {1, . . . , k}. Let c̄rk(D,χ) be the number of monochromatic
edge crossings in D for the χ, that is, crossings of edges with the same color. What is the best
drawing D and the best k-edge-coloring χ of Kn in order to minimize c̄rk(D,χ)? During the
workshop, Francisco Javier Zaragoza Martínez observed the following relation to maximum
cuts: For a fixed drawing D, the total number of crossings is fixed. Thus, a k-edge-coloring χ
with the minimum number of monochromatic crossings maximizes the number of bichromatic
crossings. Further, any geometric graph can be interpreted as a segment intersection graph.
Hence finding a 2-edge coloring of Kn with the minimum number of monochromatic crossings
is equivalent to finding a maximum cut in the segment intersection graph D. We remark
that our construction does not show hardness of MaxCut for straight-line drawings of Kn.

2 Planar Max-2-SAT

We will use a reduction from a variant of Max2Sat. In Max2Sat, we are given a Boolean
formula φ in conjunctive normal form (CNF) with at most two literals per clause and an
integer k. We need to determine whether there is an assignment to the variables of φ that
satisfies at least k clauses. Max2Sat it NP-complete [4]. We will consider a variant of
Max2Sat where we require the 2-CNF formula φ to be planar and clause-tree-linked, two
notions that we will now define.

Given a CNF formula φ with clause set C and variable set V , the incidence graph
Gφ = (C ∪ V,E) is the graph that contains an edge between a variable and a clause if and
only if the variable or its negation appear as a literal in the clause. We say that φ is planar if
Gφ is a planar graph. The problems Planar 3-SAT and Planar Max-2-SAT are 3-SAT
and Max2Sat restricted to planar formulas. Planar 3-SAT is NP-complete [9]. To see
that Planar Max-2-SAT is NP-hard, it can be checked that the reduction from 3-SAT to
Max-2-SAT in [4] preserves planarity; see for example Theorem 2 in [5] and the proof of
Theorem 2.1 below.

For Planar 3-SAT, we can enforce even more conditions without making the problem
tractable: we say that a planar 3-CNF formula φ is clause-linked if there exists a path
P connecting the clauses in G(φ) such that G(φ) ∪ P is still a planar graph. Clause-
Linked Planar 3-SAT, which is 3-SAT restricted to clause-linked planar formulas, is still
NP-complete, see for example [10].

Similarly, we can add more conditions on Max-2-SAT: we say that a planar 2-CNF
formula φ is clause-tree-linked if there exists a spanning tree T of the clauses in G(φ) such
that G(φ)∪T is still a planar graph. We define Clause-Tree-Linked Planar Max-2-SAT
as Max-2-SAT restricted to clause-tree-linked planar formulas.

I Theorem 2.1. Clause-Tree-Linked Planar Max-2-SAT is NP-complete.

Proof. To show NP-completeness of Clause-Tree-Linked Planar Max-2-SAT, we need
to show its membership in NP and its NP-hardness. Membership in NP directly follows
from the fact that Clause-Tree-Linked Planar Max-2-SAT is a special case of the NP-
complete problem Max-2-SAT. We prove NP-hardness by reduction from Clause-Linked
Planar 3-SAT.

In Clause-Linked Planar 3-SAT, we have as input a 3-CNF formula φ with variable
set V and clause set C, together with a linear ordering o of the elements of C. Further,

O. Aichholzer, W. Mulzer, P. Schnider, and B. Vogtenhuber 32:3

the incidence graph G(φ) = (C ∪ V,E) together with the path P (o) = (C,EP) on C that
is induced by the linear ordering o is still planar. To transform this input to an input of
Clause-Tree-Linked Planar Max-2-SAT, we utilize the following reduction function of
the well known reduction from 3-SAT to Max-2-SAT [4]: Every clause c = (x, y, z) in φ is
replaced by a 2-CNF formula c′ of the form

c′ := x ∧ y ∧ z ∧ w ∧ (¬x ∨ ¬y) ∧ (¬x ∨ ¬z) ∧ (¬y ∨ ¬z) ∧ (x ∨ ¬w) ∧ (y ∨ ¬w) ∧ (z ∨ ¬w),

where w is an additional variable that is used exclusively used for one clause of φ. The
complete 2-CNF formula for the Max-2-SAT is then φ′ :=

∧
c∈C c

′. The target value for the
number of clauses that should be satisfied in φ′ is k′ := 7|C|. The reduction from 3-SAT to
Max-2-SAT follows from the fact any variable assignment that does not satisfy a clause
c in φ satisfies at most six of the clauses in c′, while an assignment satisfying c satisfies
exactly seven clauses in c′. What remains to be proven is that the resulting incidence graph
G′(φ′) admits a tree T (o) = (C ′, ET) such that G′(φ′) together with T (o) is still a planar
graph. To this end, consider a plane embedding D of the graph G(φ) together with the
path P (o) = (C,P). We first construct a plane embedding1 of G′(φ′) from D. For a clause
c = (x ∨ y ∨ z) in φ, the sub graph in G(φ) induced by c and its variables x, y, and z is a
tree with center c and leaves x, y, and z; see Figure 1 (left). To obtain an embedding of
G(φ′), we start with the embedding of G(φ). For every clause c in φ replace the tree of c
(and its variables) by an embedding of the sub graph induced by c′ (and its variables) in
G′(φ′) as depicted in Figure 1 (right). Because the variable vertices x, y and z all lie in the
unbounded face of this drawing, the resulting embedding of G′(φ′) is again plane.

x

y z

(x ∨ y ∨ z)

x

y z

(¬x ∨ ¬y)

(¬x ∨ ¬z)

(¬y ∨ ¬z)

(x ∨ ¬w)

(y ∨ ¬w)

(z ∨ ¬w)

(x)

(y)

(z)

(w)

w

Figure 1 The subgraph of a clause c and its variables in φ (left), and the according subgraph
of the transformation c′ and its variables (right). Variable vertices are drawn as dots while clause
vertices are drawn shaded.

Further, in P (o), c is incident to one or two edges going to its neighbor(s) in the linear
order o on C. We extend the drawing of P (o) in D to a drawing of a tree through all clauses
of φ′ in D′ such that the total drawing remains plane. It is easy to see that the drawing
in Figure 1 (right) can be extended by a path P ′ through all the clauses that starts and
ends in the unbounded face. If c is an endpoint of P (o) and in D, the edge of P (o) at c is
between the ones to z and x or y, respectively, then we replace c in the drawing P (o) by
(x) or (y), respectively, and append P ′ to the drawing of P (o). If in D, the two path edges

1 It has been known that the reduction from 3-SAT to Max-2-SAT preserves planarity [5]. We reprove
the statement via a concrete embedding, which we then utilize to also show clause-tree-linkedness.

EuroCG’18

32:4 NP-Completeness of Max-Cut for Segment Intersection Graphs

at c are neighboring and between the ones to z and x or y, respectively, then we replace c
in the drawing P (o) by (x) or (y), respectively, and append P ′ as a branch to the drawing
of P (o). If in D, the path separates z from x and y in the order around c, then we replace
the vertex c in the drawing of P (o) by the path P ′. Finally, note that the drawing of c′ and
its variables is not symmetric, but c′ itself is. Hence, an appropriate permutation of x, y,
and z in the drawing always yields a drawing of c′ that fits one of the above cases. This
finishes the reduction. J

3 Max-Cut for Segment Intersection Graphs

I Theorem 3.1. The decision version of the Max-Cut problem is NP-complete even when
restricted to segment intersection graphs.

Proof. We prove NP-hardness by reduction from Clause-Tree-Linked Planar Max-2-
SAT. For any clause-tree-linked planar 2-SAT formula φ with m clauses we construct a line
segment arrangement S with the property that there is an assignment satisfying at least
m − k clauses of φ if and only if there is a 2-coloring of the segments of S with at most
m+ 2k monochromatic crossings.

Let φ be a clause-tree-linked planar 2-SAT formula and let G(φ) be its associated graph
and T the tree through its clauses. Consider a plane drawing of G(φ)∪T . We will mimic the
formula φ by constructing line segment configurations, called gadgets, that serve as variables,
wires, splits, negations and clauses, and concatenating them according to the drawing of the
graph G(φ). We will use wire gadgets and split gadgets to propagate the truth assignment of
a variable along the edges between the variable and the clauses containing it, while negation
gadgets will serve to invert the truth assignment of a variable (for negative literals).

As variable gadget, we just take a single line segment. Each line segment will be colored
with one of two colors, without loss of generality red and blue, one of them representing the
true state, the other one the false state. For a wire gadget, we draw two segments a and b
that do not cross each other and 2m + 1 other segments, each of which crosses a and b

but no other segment. See Figure 2 (left) for an illustration. It follows that if a and b

get the same color, we can color the gadget without monochromatic crossings, whereas
if a and b get different colors, any coloring of the remaining edges yields exactly 2m + 1
monochromatic crossings. To build a split gadget, we repeat the construction of the wire
gadget twice; see Figure 2 (middle). For the negation gadget, we again draw two segments
a and b that do not cross each other. Further, we draw two families C and D of 2m + 1
pairwise non-crossing segments each, such that each segment of C crosses a, each segment of
D crosses b, and each segment of C crosses each segment of D; see Figure 2 (right). Note
that for the negation gadget we have at least 2m+ 1 monochromatic crossings if a and b have
the same color. However, if a and b have different colors, this gadget can again be colored
without monochromatic crossings.

a

b

a

b

b′

a bC D

Figure 2 A wire gadget (left), a split gadget (middle) and a negation gadget (right).

O. Aichholzer, W. Mulzer, P. Schnider, and B. Vogtenhuber 32:5

It remains to construct the clause gadgets. For any two literals that form a clause, draw
two corresponding segments a and b and a segment t, called tree segment, such that both
a and b cross t. Further, we draw two additional segments c and d, where c crosses only
a and d and d crosses only b and c. See Figure 3 for an illustration. Assume that t is colored
red. If both a and b are blue, coloring c and d without obtaining a monochromatic crossing
is impossible, but we can color c and d such that we have only one monochromatic crossing.
The same holds if both a and b are red, but in this case there are also two monochromatic
crossings between t, a, and b. If a is red and b is blue or vice versa, we have a monochromatic
crossing between a or b and t, but we can color c and d such that they are not involved in any
monochromatic crossing. So, to summarize, every clause requires at least one monochromatic
crossing and we have a coloring with exactly one such crossing unless a and b have the
same color as t, in which case the clause requires at least three monochromatic crossings.
In our construction, the colors of the tree segments will represent the false state. Hence,
any satisfied clause can be drawn with only one monochromatic crossing, while unsatisfied
clauses require at least three monochromatic crossings.

a b

c d

t

Figure 3 A clause gadget and some possible colorings of it. Monochromatic crossings are marked
with small circles.

Using these gadgets, we construct a line segment arrangement that goes essentially along
the edges of the given drawing of G(φ). To enforce that the tree segments have the same
color, we connect them using wire gadgets according to the drawing of T . Let S be the line
segment arrangement obtained by this construction. See Figure 4 for a small example.

(x ∨ ¬w)

(y ∨ ¬z)

(x ∨ y)

(w ∨ z)

x

w y

z

w

x

y

z

T

T

Figure 4 A drawing of G(φ) for the 2-SAT formula φ = (x ∨ ¬w) ∧ (x ∨ y) ∧ (w ∨ z) ∧ (y ∨ ¬z),
with a tree T connecting the clauses (left) and the segment arrangement derived from this drawing
(right). Dashed edges correspond to sets of 2m+ 1 line segments.

Next we show that there is an assignment satisfying at leastm−k out of them clauses of φ
if and only if there is a 2-coloring of the segments of S with at most m+ 2k monochromatic
crossings, for any 0 ≤ k ≤ m.

EuroCG’18

32:6 NP-Completeness of Max-Cut for Segment Intersection Graphs

First assume that there is a 2-coloring of the segments of S with at most 2k +m ≤ 3m
monochromatic crossings. As each of the m clause gadgets needs at least one monochromatic
crossing, at most k clause gadgets can have three (or more) monochromatic crossings.
Furthermore, in each wire gadget, the segments corresponding to a and b in the illustration in
Figure 2 (left) must have the same color. Otherwise the gadget alone would already contain
at least 2m+ 1 monochromatic crossings and hence the whole drawing would contain at least
2m+ 1 +m ≥ 3m+ 1 monochromatic crossings, a contradiction. For the same reason, all tree
segments have the same color and furthermore the segments corresponding to a, b, and b′ in
a split gadget share the same color; and in any negation gadget, the segments corresponding
to a and b must have different colors. Hence, interpreting the color of the tree segments as
representing the false state and assigning the truth states to the variables in φ according to
the color of their respective variable gadgets, we obtain a variable assignment for φ with at
most k unsatisfied clauses.

For the other direction, assume that there is an assignment satisfying at least m − k
clauses of φ. Color the variable gadgets blue if the corresponding variable is assigned the
true state, and red otherwise. Color the tree segments in red and all the gadgets, except the
clause gadgets, without monochromatic crossings. Then the only monochromatic crossings
occur in the clause gadgets. Each of them induces one monochromatic crossing, and two
more if and only if the corresponding clause is unsatisfied. As there are at most k unsatisfied
clauses the coloring has at most 2k +m monochromatic crossings.

It is not hard to see that the line segment arrangement S can be constructed in polynomial
time, which concludes the NP-hardness part. Furthermore, the problem is clearly in NP as it
is a restricted version of the NP-complete problem Max-Cut, which finishes the proof. J

References
1 S. Arora, D. R. Karger, and M. Karpinski. Polynomial time approximation schemes for

dense instances of NP-hard problems. J. Comput. Syst. Sci., 58(1):193–210, 1999.
2 H. N. de Ridder et al. Information system on graph classes and their inclusions.

www.graphclasses.org, 2016.
3 M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. W. H. Freeman, 1979.
4 M. R. Garey, D. S. Johnson, and L. Stockmeyer. Some simplified NP-complete graph

problems. Theoretical Computer Science, 1(3):237 – 267, 1976. URL: http://www.
sciencedirect.com/science/article/pii/0304397576900591, doi:https://doi.org/
10.1016/0304-3975(76)90059-1.

5 L. J. Guibas, J. Hershberger, J. S. B. Mitchell, and J. Snoeyink. Approximating polygons
and subdivisions with minimum link paths. In Proceedings of the 2nd International Sym-
posium on Algorithms, ISA ’91, pages 151–162, London, UK, UK, 1991. Springer-Verlag.
URL: http://dl.acm.org/citation.cfm?id=648003.743125.

6 F. Hadlock. Finding a maximum cut of a planar graph in polynomial time. SIAM Journal
on Computing, 4(3):221–225, 1975. doi:10.1137/0204019.

7 J. Håstad. Some optimal inapproximability results. J. ACM, 48(4):798–859, 2001.
8 S. Khot, G. Kindler, E. Mossel, and R. O’Donnell. Optimal inapproximability results for

MAX-CUT and other 2-variable CSPs? SIAM J. Comput., 37(1):319–357, 2007.
9 D. Lichtenstein. Planar formulae and their uses. SIAM Journal on Computing, 11(2):329–

343, 1982. doi:10.1137/0211025.
10 A. Pilz. Planar 3-SAT with a clause/variable cycle. CoRR, abs/1710.07476, 2017. URL:

http://arxiv.org/abs/1710.07476, arXiv:1710.07476.

http://www.sciencedirect.com/science/article/pii/0304397576900591
http://www.sciencedirect.com/science/article/pii/0304397576900591
http://dx.doi.org/https://doi.org/10.1016/0304-3975(76)90059-1
http://dx.doi.org/https://doi.org/10.1016/0304-3975(76)90059-1
http://dl.acm.org/citation.cfm?id=648003.743125
http://dx.doi.org/10.1137/0204019
http://dx.doi.org/10.1137/0211025
http://arxiv.org/abs/1710.07476
http://arxiv.org/abs/1710.07476

	Introduction
	Planar Max-2-SAT
	Max-Cut for Segment Intersection Graphs

