
Long plane trees
Sergio Cabello !

Institute of Mathematics, Physics and Mechanics, Slovenia
Faculty of Mathematics and Physics, University of Ljubljana, Slovenia

Michael Hoffmann !

Department of Computer Science, ETH Zürich, Switzerland

Katharina Klost !

Institut für Informatik, Freie Universität Berlin, Germany

Wolfgang Mulzer !

Institut für Informatik, Freie Universität Berlin, Germany

Josef Tkadlec !

Department of Mathematics, Harvard University, USA

Abstract
In the longest plane spanning tree problem, we are given a finite planar point set P, and our task is
to find a plane (i.e., noncrossing) spanning tree TOPT for P with maximum total Euclidean edge
length |TOPT|. Despite more than two decades of research, it remains open if this problem is NP-hard.
Thus, previous efforts have focused on polynomial-time algorithms that produce plane trees whose
total edge length approximates |TOPT|. The approximate trees in these algorithms all have small
unweighted diameter, typically three or four. It is natural to ask whether this is a common feature
of longest plane spanning trees, or an artifact of the specific approximation algorithms.

We provide three results to elucidate the interplay between the approximation guarantee and the
unweighted diameter of the approximate trees. First, we describe a polynomial-time algorithm to
construct a plane tree TALG with diameter at most four and |TALG| ≥ 0.546 · |TOPT|. This constitutes
a substantial improvement over the state of the art. Second, we show that a longest plane tree
among those with diameter at most three can be found in polynomial time. Third, for any candidate
diameter d ≥ 3, we provide upper bounds on the approximation factor that can be achieved by a
longest plane tree with diameter at most d (compared to a longest plane tree without constraints).

2012 ACM Subject Classification Theory of computation → Routing and network design prob-
lems; Theory of computation → Approximation algorithms analysis; Theory of computation →
Computational geometry; Mathematics of computing → Trees

Keywords and phrases geometric network design, spanning trees, plane straight-line graphs, approx-
imation algorithms

Digital Object Identifier 10.4230/LIPIcs.SoCG.2022.23

Related Version Full Version: https://arxiv.org/abs/2101.00445 [11]

Funding Sergio Cabello: Supported by the Slovenian Research Agency (P1-0297, J1-9109, J1-8130,
J1-8155, J1-1693, J1-2452).
Michael Hoffmann: Supported by the Swiss National Science Foundation within the collaborative
DACH project Arrangements and Drawings as SNSF Project 200021E-171681.
Wolfgang Mulzer : Supported in part by ERC StG 757609.

1 Introduction

Geometric network design is a common and well-studied task in computational geometry
and combinatorial optimization [18, 21, 24, 25]. In this family of problems, we are given a set
P of points, and our task is to connect P into a (geometric) graph that has certain favorable
properties. Not surprisingly, this general question has captivated the attention of researchers

© Sergio Cabello, Michael Hoffmann, Katharina Klost, Wolfgang Mulzer and Josef Tkadlec;
licensed under Creative Commons License CC-BY 4.0

38th International Symposium on Computational Geometry (SoCG 2022).
Editors: Xavier Goaoc and Michael Kerber; Article No. 23; pp. 23:1–23:17

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:sergio.cabello@fmf.uni-lj.si
https://orcid.org/0000-0002-3183-4126
mailto:hoffmann@inf.ethz.ch
https://orcid.org/0000-0001-5307-7106
mailto:kathklost@inf.fu-berlin.de
mailto:mulzer@inf.fu-berlin.de
https://orcid.org/0000-0002-1948-5840
mailto:tkadlec@math.harvard.edu
https://orcid.org/0000-0002-1097-9684
https://doi.org/10.4230/LIPIcs.SoCG.2022.23
https://arxiv.org/abs/2101.00445
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

23:2 Long plane trees

for a long time, and we can find countless variants, depending on which restrictions we put on
the graph that connects P and which criteria of this graph we would like to optimize. Typical
graph classes of interest include matchings, paths, cycles, trees, or general plane (noncrossing)
graphs, i.e., graphs, whose straight-line embedding on P does not contain any edge crossings.
Typical quality criteria include the total edge length [3, 15, 23, 28], the maximum length
(bottleneck) edge [6,17], the maximum degree [4,12,19,31], the dilation [18,26,29], or the
stabbing number [27,33] of the graph. Many famous problems from computational geometry
fall into this general setting. For example, if our goal is to minimize the total edge length,
while restricting our considerations to paths, trees, or triangulations, respectively, we are
faced with the venerable problems of finding an optimum TSP tour [21], a Euclidean minimum
spanning tree [15], or a minimum weight triangulation [28] for P. These three examples
also illustrate the wide variety of complexity aspects that we may encounter in geometric
network design problems: the Euclidean TSP is known to be NP-hard [30], but it admits a
PTAS [3,23]. On the other hand, it is possible to find a Euclidean minimum spanning tree
for P in polynomial time [15] (even though, curiously, the associated decision problem is not
known to be solvable by a polynomial-time Turing machine, see, e.g., [9]). The minimum
weight triangulation problem is also known to be NP-hard [28], but the existence of a PTAS
is still open; however, a QPTAS is known [32].

In this work, we are interested in the interaction of two specific requirements for a
geometric network design problem, namely the two objectives of obtaining a plane graph
and of optimizing the total edge length. For the case that we want to minimize the total
edge length of the resulting graph, these two goals are often in perfect harmony: the shortest
Euclidean TSP tour and the shortest Euclidean minimum spanning tree are automatically
plane, as can be seen by a simple application of the triangle inequality. In contrast, if our
goal is to maximize the total edge length, while obtaining a plane graph, much less is known.

This family of problems was studied by Alon, Rajagopalan, and Suri [1], who considered
computing a longest plane matching, a longest plane Hamiltonian path, and a longest plane
spanning tree for a planar point set P in general position. They conjectured that all three
problems are NP-hard, but as far as we know, this is still open. The situation is similar
for the problem of finding a maximum weight triangulation for P: here, we have neither an
NP-hardness proof nor a polynomial time algorithm [13]. If we omit the planarity condition,
then the problem of finding a longest Hamiltonian path (the geometric maximum TSP
problem) is known to be NP-hard in dimension three and above, while the two-dimensional
case remains open [5]. On the other hand, we can find a longest (typically not plane) tree on
P in polynomial time, using classic greedy algorithms [14, Chapters 16.4, 23].

Longest plane spanning trees. We focus on the specific problem of finding a longest plane
(i.e. noncrossing) tree for a given set P of n ≥ 3 points in the plane in general position (i.e.,
no three points in P are collinear). Such a tree is necessarily spanning. The general position
assumption was also used in previous work [1, 16]; without it, one should specify whether
overlapping edges are allowed, an additional complication that we would like to avoid.

If P is in convex position, the longest plane tree for P can be found in polynomial time
on a real RAM, by adapting standard dynamic programming methods for plane structures
on convex point sets [20, 22]. On the other hand, for an arbitrary point set P, the problem
is conjectured—but not known—to be NP-hard [1]. Hence, past research has focused on
designing polynomial-time approximation algorithms. Typically, these algorithms construct
several “simple” spanning trees for P of small (unweighted) diameter, and one then argues
that at least one such tree is sufficiently long. In a seminal work, Alon et al. [1] showed that a

S. Cabello, M. Hoffmann, K. Klost, W. Mulzer, and J. Tkadlec 23:3

longest star (a plane tree with diameter two) on P yields a 0.5-approximation for the longest
(not necessarily plane) spanning tree of P . They further argued that this bound is essentially
tight for point sets that consist of two large clusters far away from each other. Dumitrescu
and Tóth [16] refined this algorithm by adding two additional families of candidate trees,
now with diameter four. They showed that at least one member of this extended set of
candidates provides a 0.502-approximation, which was further improved to 0.503 by Biniaz
et al. [8]. In all these results, the approximation factor is analyzed by comparing the output
of the algorithm with the length of a longest (not necessarily plane) spanning tree. Such a
tree may be longer by a factor of up to π/2 > 1.5 than a maximum-length plane tree [1], as
witnessed by, e.g., a large set of points spaced uniformly on a unit circle. While the ratio
between the lengths of the longest plane tree and the longest (possibly crossing) tree is an
interesting number in itself, the objective is to construct longest plane trees and thus it is
better to compare the length of the constructed plane trees against the true optimum, that
is, against the length of the longest plane tree. Considering certain trees of diameter at most
five, a superset of the authors of this paper managed to compare against the longest plane
tree and pushed the approximation factor to 0.512 [10]. This was subsequently improved
even further to 0.519 by Biniaz [7].

Our results. We provide a deeper study of the interplay between the approximation factor
and the diameter of the candidate trees. First, we give a polynomial-time algorithm to find
a tree of diameter at most four that guarantees an approximation factor of roughly 0.546, a
substantial improvement over the previous bounds.

I Theorem 1. For any finite point set P in general position (no three points collinear), we
can compute in polynomial time a plane tree of Euclidean length at least f · |TOPT|, where
|TOPT| denotes the length of a longest plane tree on P and f > 0.5467 is the fourth smallest
real root of the polynomial P (x) = −80 + 128x+ 504x2 − 768x3 − 845x4 + 1096x5 + 256x6.

The algorithm “guesses” a longest edge of TOPT and then constructs six trees: four stars
and two more trees of diameter at most four. We show that one of these trees is always
sufficiently long. The algorithm is very simple but its analysis uses several geometric insights.
The polynomial P (x) comes from optimizing the constants in the proof.

Second, we characterize longest plane trees for convex point sets. A caterpillar is a tree
T that contains a path S, the spine, so that every vertex of T \S is adjacent to a vertex in S.
A tree T that is straight-line embedded on a convex point set P is a zigzagging caterpillar if
its edges split the convex hull of P into faces that are all triangles.

I Theorem 2. If P is convex then every longest plane tree on P is a zigzagging caterpillar.

I Theorem 3. For any caterpillar C, there is a convex point set P such that the unique
longest tree for P is isomorphic to C.

In particular, the diameter of a (unique) longest plane tree is not bounded by any constant.
As a consequence, we obtain an upper bound on the approximation factor BoundDiam(d)
that can be achieved by a plane tree of diameter at most d.

I Theorem 4. For any d ≥ 2, there is a convex point set P so that every plane tree of
diameter at most d on P is at most

BoundDiam(d) ≤ 1− 6
(d+ 1)(d+ 2)(2d+ 3) = 1−Θ(1/d3)

times as long as the length |TOPT| of a longest (unconstrained) plane tree on P.

SoCG 2022

23:4 Long plane trees

For small values of d, we have better bounds. For example, it is easy to see that
BoundDiam(2) ≤ 1/2: put two groups of roughly half of the points sufficiently far from each
other. For d = 3, we can show BoundDiam(3) ≤ 5/6.
I Theorem 5. For any ε > 0, there is a convex point set P such that every longest plane
tree on P of diameter 3 is at most (5/6) + ε times as long as a longest (general) plane tree.

Third, we give polynomial-time algorithms for finding a longest plane tree among those
of diameter at most three and among a special class of trees of diameter at most four. Note
that in contrast to diameter two, the number of spanning trees of diameter at most three is
exponential in the number of points.
I Theorem 6. For any set P of n points in general position, a longest plane tree of diameter
at most three on P can be computed in O(n4) time.

I Theorem 7. For any set P of points in general position and any three specified points on
the boundary of the convex hull of P, we can compute in polynomial time a longest plane tree
such that each edge is incident to at least one of the three specified points.

The algorithms are based on dynamic programming. Even though the length |T 3
OPT| of

a longest plane tree of diameter at most three can be computed in polynomial time, we
do not know the corresponding approximation factor BoundDiam(3). The best bounds we
are aware of are 1/2 ≤ BoundDiam(3) ≤ 5/6. The lower bound follows from [1], the upper
bound is from Theorem 5. We conjecture that |T 3

OPT| actually gives a better approximation
factor than the tree constructed in Theorem 1—but we are unable to prove this.

Fourth, a natural way to design an algorithm for the longest plane spanning tree problem
is the following local search heuristic [34]: start with an arbitrary plane tree T , and while
it is possible, apply the following local improvement rule: if there are two edges e, f on P
such that (T \ {e})∪ {f} is a plane spanning tree for P that is longer than T , replace e by f .
Once no further local improvements are possible, output the current tree T . We show that
for some point sets, this algorithm fails to compute the optimum answer as it may “get stuck”
in a local optimum (see Lemma 17 in Section 5). This holds regardless of how the edges that
are swapped are chosen. This suggests that a natural local search approach does not yield
an optimal algorithm for the problem.

Preliminaries and Notation. Let P ⊂ R2 be a set of n points in the plane, so that no three
points in P are collinear. For any spanning tree T on P , we denote by |T | the total Euclidean
edge length of T . Let TOPT be a plane (i.e., noncrossing) spanning tree on P with maximum
Euclidean edge length. As the previous algorithms [1,7,8, 10,16], we make extensive use of
stars. The star Sp rooted at some point p ∈ P is the tree that connects p to all other points
of P.

We also need the notion of “flat” point sets. A point set P is flat if diam(P) ≥ 1 and
all y-coordinates in P are essentially negligible, that is, their absolute values are bounded
by an infinitesimal ε > 0. For flat point sets, we can approximate the length of an edge
by subtracting the x-coordinates of its endpoints: the error becomes arbitrarily small as
ε→ 0. Lastly, D(p, r) denotes a closed disk with center p and radius r, while ∂D(p, r) is its
boundary: a circle of radius r centered at p.

2 An Improved Approximation Algorithm

We present a polynomial-time algorithm that yields an f .= 0.5467-approximation of a longest
plane tree for general point sets and a (2/3)-approximation for flat point sets. We consider

S. Cabello, M. Hoffmann, K. Klost, W. Mulzer, and J. Tkadlec 23:5

a

Sa Ta,b

ba

Figure 1 A tree Sa and a tree Ta,b.

the following trees Ta,b, for a, b ∈ P (see Figure 1): let Pa be the points of P closer to a than
to b, and let Pb = P \ Pa. First, connect a to every point in Pb. Then, connect each point of
Pa \ {a} to some point of Pb without introducing crossings. This yields a tree of diameter at
most four. In general, Ta,b and Tb,a are different and neither is uniquely determined, but for
Pa = {a} both Ta,b and Tb,a coincide with the star Sa.

Our algorithm AlgSimple(P) computes all stars Sa and the tree Ta,b, for each ordered
pair a, b ∈ P, and it returns a longest one. The algorithm runs in polynomial time, as there
are O(n2) relevant trees, each of which can be found in polynomial time.

Given multiple trees that all contain a common edge ab, we direct all other edges towards
ab and assign to each point in P \ {a, b} its unique outgoing edge. The edge ab remains
undirected. Denote the length of the edge assigned to p ∈ P \ {a, b} in such a tree T by
`T (p).

Theorem 1 states that for any P , we have |TALG| > 0.5467 · |TOPT|. As a warm-up for the
full proof, we first show a stronger result for the special case of flat point sets: if P is flat,
we have |TALG| ≥ (2/3) · |Tcr|, where Tcr is a longest (possibly crossing) tree. In fact, the
constant 2/3 is tight when comparing to Tcr:

I Observation 8. There is an infinite family of point sets P1,P2, . . . with |Pn| = 2n and

lim
n→∞

|TOPT|
|Tcr|

≤ 2
3 .

Proof. Let Pn = {p1, . . . , p2n} be a flat point set where the points pi are spaced evenly on
a convex arc with x-coordinates 1, . . . , 2n, see Figure 2. It can be shown inductively, that
the star Sp1 is a longest plane spanning tree and thus |TOPT| = |Sp1 | =

∑2n−1
i=1 i = 2n2 − n.

On the other hand, the right side in Figure 2 shows a crossing spanning tree of total length
(2n− 1) + 2

∑2n−2
i=n i = 3n2 − 3n+ 1 ≤ |Tcr|. J

TOPT Tcr

p1

p2

p2n

Figure 2 The point set Pn of 2n points with equally spaced x-coordinates 1, 2, . . . , 2n, with a
longest plane and the longest general spanning tree.

I Theorem 9. Suppose P is flat. Then,

|TALG| ≥
2
3 |Tcr| ≥

2
3 |TOPT|.

Proof. As |Tcr| ≥ |TOPT|, it suffices to show the first inequality. Denote the diameter of P
by ab (see Figure 3). Consider the four trees Sa, Ta,b, Tb,a, Sb. It suffices to show that there
exists a β ∈ (0, 1/2) such that

(1/2− β)|Sa|+ β|Ta,b|+ β|Tb,a|+ (1/2− β)|Sb| ≥
2
3 · |Tcr|.

SoCG 2022

23:6 Long plane trees

a b

p′ p

Figure 3 By triangle inequality and symmetry, we have ‖pp′‖+ ‖pb‖ ≥ ‖p′b‖ = ‖pa‖.

Here we fix β = 1
3 and equivalently show:

|Sa|+ 2|Ta,b|+ 2|Tb,a|+ |Sb|
6 ≥ 2

3 · |Tcr| (1)

which is enough, as

max{|Sa|, |Ta,b|, |Tb,a|, |Sb|} ≥
1
6(|Sa|+ 2|Ta,b|+ 2|Tb,a|+ |Sb|)

The trees Sa, Ta,b, Tb,a, Sb all contain the edge ab, and since that edge realizes the
diameter, we can assume that Tcr also contains ab. We fix a p ∈ P \ {a, b}, assume without
loss of generality that ‖pa‖ ≥ ‖pb‖, and denote by p′ the reflection of p at the perpendicular
bisector of ab (see Figure 3). Using the notation `T (p) from above,

1
6
(
`Sa

(p) + 2`Ta,b
(p) + 2`Tb,a

(p) + `Sb
(p)
)
≥ 1

6
(
‖pa‖+ 2‖pa‖+ ‖pp′‖+ ‖pb‖

)
≥ 1

6
(
3‖pa‖+ ‖p′b‖

)
= 2

3 · ‖pa‖ ≥
2
3 · `Tcr(p).

Here, we used in the first step that `Sa
(p) = `Ta,b

(p) = ‖pa‖, `Tb,a
(p) ≥ ‖p′p‖/2, and

`Sb
(p) = ‖pb‖. In the second and third step, we used the triangle inequality ‖pp′‖+ ‖pb‖ ≥

‖p′b‖ and the symmetry ‖p′b‖ = ‖pa‖. The final step follows since P is flat and hence
`Tcr(p) ≤ max{‖pa‖, ‖pb‖} = ‖pa‖. Now, (1) follows by summing over all p ∈ P \ {a, b}. J

I Theorem 1. For any finite point set P in general position (no three points collinear), we
can compute in polynomial time a plane tree of Euclidean length at least f · |TOPT|, where
|TOPT| denotes the length of a longest plane tree on P and f > 0.5467 is the fourth smallest
real root of the polynomial P (x) = −80 + 128x+ 504x2 − 768x3 − 845x4 + 1096x5 + 256x6.

Proof. We outline the proof strategy, referring to lemmas that will formally be stated later
in this section. Without loss of generality, suppose P has diameter 2. Consider a longest
edge ab of TOPT and denote its length by 2d (we have d ≤ 1).

Let u, v ∈ P be two points realizing the diameter of P. Note that in general the longest
edge of TOPT does not realize the diameter and thus a, b and u, v differ. If 2df ≤ 1, it follows
from previous work that one of Su or Sv is long enough (see [10, Lemma 2.1]). Thus, we
henceforth assume that 2df > 1. Note that P lies in the lens L = D(a, 2) ∩D(b, 2) and that
the points a and b are in L. Choose a coordinate system with a = (−d, 0) and b = (d, 0), and
let s, s′ be the two points on the y-axis with ‖sa‖ = ‖sb‖ = ‖s′a‖ = ‖s′b‖ = 2df , where s is
the point above the x-axis. Since 2df > 1, the circles k = ∂D(s, 2df) and k′ = ∂D(s′, 2df)
intersect the boundary of L. Let u, v and u′, v′ be the intersection points above and below
the x-axis respectively, so that u and u′ are to the left of the y-axis. The far region consists
of the points in L above the arc of k between u and v in clockwise direction and of the points
in L below the arc of k′ between u′ and v′ in counter-clockwise direction. The truncated lens
contains the remaining points, see Figure 4a.

S. Cabello, M. Hoffmann, K. Klost, W. Mulzer, and J. Tkadlec 23:7

d d

c

2df

kpu
u

︸ ︷︷ ︸
O
︸ ︷︷ ︸pa pb

a

s

v

p = [x, y]

O

b

(a) The lens is split into the far region (green) and
the truncated lens

s

a b
l

O

u

2df

d d

t

D
(l, 2d)

k

r

v

EN

S

pu

pa pb

(b) The truncated lens is further subdivided into
three regions E, N and S.

Figure 4 Subdivision of the lens.

In Lemma 10, we argue that if the far region contains a point c ∈ P , then one of the three
stars Sa, Sb, or Sc is long enough. Otherwise, if all of P lies in the truncated lens, we claim
that one of the trees Sa, Ta,b, Tb,a, or Sb is long enough. These four trees all contain the edge
ab. Thus, we can again use the notation `T (p) from above to define for any p ∈ P \ {a, b}
and for any β ∈ (0, 1/2), the weighted average

avg(p, β) = (1/2− β) · `Sa
(p) + β · `Ta,b

(p) + β · `Tb,a
(p) + (1/2− β) · `Sb

(p).

To finish the argument, we aim to find a β ∈ (0, 1/2) so that for any p ∈ P \ {a, b}, we
have avg(p, β) ≥ f · `TOPT(p) (note that `TOPT(p) is defined, since ab is an edge of TOPT). In
contrast to the proof for Theorem 9, this now requires much more work. After that, the
approximation guarantee follows by considering the sum

∑
p∈P\{a,b} avg(p, β), as before.

For proving avg(p, β) ≥ f · `TOPT(p), we can without loss of generality assume that
p = (x, y), with x, y ≥ 0. The following definitions are illustrated in Figure 4a. Let pa

be the point with x-coordinate −(2 − d) on the ray pa. If x < d, let pb be the point with
x-coordinate 2 − d on the ray pb. Otherwise, the ray pb does not intersect the vertical
line with x-coordinate 2− d, and we set pb = b. Additionally, define pu to be the furthest
point from p on the portion of the boundary of the far region that is contained in the circle
k = ∂D(s, 2df). The proof now proceeds in the following steps:
1. we show that `TOPT(p) ≤ min

{
2d, max{‖ppa‖, ‖ppb‖, ‖ppu‖}

}
(Lemma 11);

2. we show that the term ‖ppb‖ in this upper bound can be omitted (Lemma 12);
3. we establish a lower bound on avg(p, β) (Lemma 13); and
4. we use this lower bound to find constraints on β that ensure avg(p, β) ≥ f ·min{2d, ‖ppa‖}

and avg(p, β) ≥ f ·min{2d, ‖ppu‖}, respectively (Lemmas 14 and 15).
It then remains to show that there exists a β that satisfies both the constraints from Lemma 14
and from Lemma 15. It turns out that this holds for any β ∈ (0, 1/2) with

(2f − 1)/
(

2
√

5− 8f − 1
)
≤ β ≤ 1− f

√
4f2 − 1− 2f2. (2)

Our choice of f ensures that the two expressions in (2) have the same value (≈ 0.1604). Setting
β accordingly, we get the desired approximation (cf. the full version for the calculation). J

SoCG 2022

23:8 Long plane trees

It remains to prove Lemmas 10 to 15. Their statements rely on the notation introduced
in the proof outline of Theorem 1, so we recommend to first consult the paragraphs above.

I Lemma 10. Let ab (with ‖ab‖ = 2d) be the longest edge of TOPT. If P contains a point c
in the far region, then max{|Sa|, |Sb|, |Sc|} ≥ f · |TOPT|.

Proof. By the definition of the far region, the triangle abc is acute-angled and its circumradius
R satisfies R ≥ 2df . Let g = 1

|P0|
∑

p∈P0
p be the center of mass of the point set P0 ≡

P \ {a, b, c}, see Figure 5. Since the triangle abc is acute-angled, it has a vertex v with
‖vg‖ ≥ R. By definition of g, we have

∑
p∈P0

−→vp = |P0| · −→vg, and the triangle inequality

d da b

c

P0

g

Figure 5 Lemma 10. In the illustration, P0 consists of 6 points and we can take v = a. The
common point of the three black circles is the circumcenter of triangle abc.

gives
∑

p∈P0
‖vp‖ ≥ |P0| · ‖vg‖ ≥ (n − 3) · R. As ‖va‖ + ‖vb‖ + ‖vc‖ ≥ 2R holds in any

acute-angled triangle, we obtain |Sv| ≥ (n− 1) ·R ≥ (n− 1) · 2df ≥ f · |TOPT|. J

I Lemma 11. For every point p = (x, y) with x, y ≥ 0 in the truncated lens, we have
`TOPT(p) ≤ min{2d,max{‖ppa‖, ‖ppb‖, ‖ppu‖}}.

Proof Sketch. (Full proof in the full version) Let l = (d− 2, 0) and r = (2− d, 0) be the left–
and rightmost points of D(a, 2) ∩D(b, 2). We divide the truncated lens into further regions
(see Figure 4b): the region E lies inside the truncated lens but outside of D(l, 2d), and the
remainder of the truncated lens is divided into the part N above the line us and the part
S below us. If p ∈ E, then min{2d,max{‖ppa‖, ‖ppb‖, ‖ppu‖} = 2d, and we are done, since
`TOPT(p) ≤ 2d. Next, assume that p ∈ N ∪ S, and let pf be the furthest point from p in the
truncated lens. An exhaustive case distinction over the quadrant containing pf shows that
‖ppf‖ ≤ max{‖ppa‖, ‖ppb‖, ‖ppu‖}, which proves the lemma. J

This bound can be simplified by using the following lemma:

I Lemma 12. For every point p = (x, y) with x, y ≥ 0 in the truncated lens, if ‖ppa‖ ≤ 2d,
then ‖ppb‖ ≤ ‖ppa‖.

The algebraic proof can be found in the full version.
Now we give a general lower bound on avg(p, β) that we will use in Lemmas 14 and 15.

S. Cabello, M. Hoffmann, K. Klost, W. Mulzer, and J. Tkadlec 23:9

I Lemma 13. Let p = (x, y) ∈ R2 be a point with x, y ≥ 0, and let β ∈ (0, 1/2). Then,

avg(p, β) ≥ d · (1− β) + x · 2β
d+ x

· ‖pa‖.

Proof Sketch. (Full proof in the full version) We expand the definition and replace the `T (p)-
terms by ‖pa‖, ‖pb‖, and x, respectively. By similar geometric arguments as in Theorem 9,

avg(p, β) ≥ (1/2) · ‖pa‖+ (β/2) · ‖pa‖+ ((1/2)− (3/2)β) · ‖pb‖.

Using ‖pb‖ ≥ d−x
d+x · ‖pa‖, we get the desired

avg(p, β) ≥ (1 + β)(d+ x) + (1− 3β)(d− x)
2(d+ x) · ‖pa‖ = (1− β) · d+ 2β · x

d+ x
· ‖pa‖. J

I Lemma 14. Let p = (x, y) be any point in the truncated lens with x, y ≥ 0. Then, if
2f−1
5−8f ≤ β ≤

1
2 · f , we have avg(p, β) ≥ f ·min{2d, ‖ppa‖}.

Proof Sketch. (Full proof in the full version) We show that if x ≥ 3d− 2, then avg(p, β) ≥
f · 2d, and if x ≤ 3d− 2, then avg(p, β) ≥ f · ‖ppa‖. Using Lemma 13, both cases reduce to
the following inequality, which holds by the assumption on β:

β · (5d− 4) ≥ β · (5d− 8df) ≥ 2f − 1
5− 8f · d · (5− 8f) = d(2f − 1). J

I Lemma 15. Let p = (x, y) be any point in the truncated lens with x, y ≥ 0. Suppose that
β < 151

304 · f and that 1
2 ≤ f ≤

19
32 , then avg(p, β) ≥ f ·min{2d, ‖ppu‖}, if

2f − 1
2
√

5− 8f − 1
≤ β ≤ 1− f

√
4f2 − 1− 2f2.

Proof Sketch. (Full proof in the full version) By Lemma 13, it suffices to show that

λ = d · (1− β) + x · 2β
d+ x

· ‖pa‖ ≥ f ·min{2d, ‖ppu‖}. (3)

Case 1: y ≤ y(u). λ is an increasing function in y and ‖ppu‖ is a decreasing function
in y, for y ≤ y(u). Thus, it suffices to show (3) for y = 0. In this case, λ becomes
λ0 = d · (1− β) + x · 2β, which is positive. Let q = (qx, 0), qx ≥ 0, be the point on the
x-axis with ‖qs‖ = 2d(1− f). For p = q, we have ‖ppu‖ ≤ ‖ps‖+ ‖spu‖ = 2d.
Case 1a: 0 ≤ x ≤ qx. The Pythagorean theorem and the bounds on β yield λ0 ≥ f ·‖ppu‖.
Case 1b: qx < x. It suffices to show λ0 ≥ f · 2d, for x = qx. This follows from Case 1a.

Case 2: y > y(u) Now, ‖ppu‖ = ‖pu‖ ≤ ‖uv‖. Also, we have x(u) ≥ −d and x ≤ d, which
gives min{2d, ‖ppu‖} = ‖ppu‖. Thus, (3) becomes λ ≥ f · ‖ppu‖. From y > y(u), we get
‖pa‖ ≥ ‖ppu‖, so we need λ/‖pa‖ ≥ f . This follows by straightforward algebra. J

3 Convex and flat convex point sets

We present two results for convex point sets: (i) if P is convex, any longest plane tree is a
caterpillar, and any caterpillar appears as the unique longest plane tree of a convex point set;
and (ii) by looking at suitable flat convex sets, we prove upper bounds on the approximation
factor achieved by the longest plane tree among those with diameter at most d.

SoCG 2022

23:10 Long plane trees

Convex sets and caterpillars. A tree C is called caterpillar if it contains a path P such
that every node in C \ P is adjacent to a node on P . We consider trees that span a given
convex point set P. We call (a drawing of) such a tree T a zigzagging caterpillar if T is a
caterpillar and the dual graph T ? of T is a path, where T ? is defined as follows: consider a
smooth closed curve through all points of P. The curve bounds a convex region that is split
by the n− 1 edges of T into n subregions. Then T ? has a node for each such subregion and
two nodes are connected if their subregions share an edge of T (see Figure 6).

T2

T ?
2

T1 T3

T ?
3

Figure 6 T1 is spanning P but it is not a caterpillar. T2 is a caterpillar but it is not zigzagging.
T3 is a zigzagging caterpillar, since the dual tree T ?

3 is a path.

I Theorem 2. If P is convex then every longest plane tree on P is a zigzagging caterpillar.

Proof. Let TOPT be a longest plane tree. We prove that T ?
OPT is a path. Suppose not, and

consider a node in T ?
OPT of degree at least 3. Let ab, bc, cd be three corresponding edges of

TOPT. As abcd is a convex quadrilateral, the triangle inequality gives ‖ab‖+‖cd‖ < ‖ac‖+‖bd‖,
so ‖ab‖ < ‖ac‖ or ‖cd‖ < ‖bd‖ (or both). Now, T1 = TOPT ∪ ac \ ab and T2 = TOPT ∪ bd \ cd
are plane trees, and at least one of them is longer than TOPT, a contradiction. J

Note that as P is assumed to be convex in this context, an optimal caterpillar can be
found by applying the dynamic programming approach for the convex case described in
Section 4.

Conversely, for every caterpillar C we construct a convex set PC whose longest plane tree
is isomorphic to C. In fact, PC will be a flat arc: a flat convex point set {ai = (xi, yi)}m+1

i=1 ,
where xi < xj , for i < j. The sequenceG(PC) = {gi}m

i=1 = {|xi+1−xi|}m
i=1 is the gap sequence

of PC . Given a spanning tree T for PC , we define its cover sequence Cov(T) = {ci}m
i=1 where

ci denotes the number of times gap gi is “covered”, see Figure 7. Then, |T | =
∑m

i=1 ci · gi.

T

Cov(T): 1 2 5 6 4 3

G(P) 1 2 2 3 2 1

a1 am+1

Figure 7 A tree with its gap and cover sequence.

S. Cabello, M. Hoffmann, K. Klost, W. Mulzer, and J. Tkadlec 23:11

I Lemma 16. Consider a flat arc {a1, . . . , am+1} and a zigzagging caterpillar T containing
the edge a1am+1. Then the sequence Cov(T) is a unimodal permutation of {1, 2, . . . ,m}.

Proof. We show this lemma by induction on m. The case m = 1 is clear. Fix m ≥ 2. By
the definition of a zigzagging caterpillar, the dual graph T ? of T is a path. Since, by the
assumption of the lemma, a1am+1 is an edge of T , either a1am or a2am+1 is an edge of T too.
Without loss of generality assume a1am is an edge of T . Then T \ {a1am+1} is a zigzagging
caterpillar on m points a1, . . . , am containing the edge a1am, hence by induction its cover
sequence is a unimodal permutation of {1, 2, . . . ,m− 1}. Adding the omitted edge a1am+1
adds 1 to each of the m− 1 elements and appends a 1 to the list, giving rise to a unimodal
permutation of {1, 2, . . . ,m}. This completes the proof. J

I Theorem 3. For any caterpillar C, there is a convex point set P such that the unique
longest tree for P is isomorphic to C.

Proof. Consider a flat arc P = {a1, . . . , am+1}, with a yet unspecified gap sequence {gi}m
i=1,

and let T be a drawing of C onto P that contains the edge a1am+1 and is zigzagging (such a
drawing always exists). By Lemma 16, the cover sequence Cov(T) = {ci}m

i=1 is a unimodal
permutation of {1, 2, . . . ,m}. The total length of T can be expressed as |T | =

∑m
i=1 ci · gi.

Now we specify the gap sequence: for i = 1, . . . ,m, set gi = ci. It remains to show that
T constitutes the longest plane tree TOPT of P.

By Theorem 2, TOPT is a zigzagging caterpillar. Also, a1am+1 is an edge of TOPT: suppose
not. Since a1am+1 does not cross any other edge, adding it to TOPT produces a plane graph
with a single cycle C. All edges of TOPT are shorter than a1am+1, so omitting any other edge
from C yields a longer plane tree, a contradiction. We can thus apply Lemma 16 to see that
Cov(TOPT) is a unimodal permutation π of {1, 2, . . . ,m} and that |TOPT| =

∑m
i=1 πi · gi. As

ci and gi match and as c, g, and π are permuations, the Cauchy-Schwarz inequality gives

|TOPT| =
m∑

i=1
πi ·gi ≤

√√√√ m∑
i=1

π2
i ·

m∑
i=1

g2
i =

m∑
i=1

c2
i = |T |,with equality iff πi = ci, for all i. (4)

Therefore TOPT is unique and TOPT = T as desired. J

Upper bounds on BoundDiam(d). The algorithms for approximating |TOPT| often produce
trees with small diameter. Given d ≥ 2 and a point set P, let T d

OPT(P) be a longest plane
tree on P among those with diameter at most d. We ask what is the approximation ratio

BoundDiam(d) = inf
P

|T d
OPT(P)|
|TOPT(P)| .

For d = 2, this question concerns the performance of stars. A result of Alon, Rajagopalan,
and Suri [1, Theorem 4.1] can be restated as BoundDiam(2) = 1/2. We show a crude upper
bound on BoundDiam(d) for general d and a specific upper bound for the case d = 3. (Note
that Theorem 6 shows that for any fixed P we can compute |T 3

OPT(P)| in polynomial time.)
Our proofs use the notions of flat arc, gap sequence, and cover sequence defined above.

I Theorem 4. For any d ≥ 2, there is a convex point set P so that every plane tree of
diameter at most d on P is at most

BoundDiam(d) ≤ 1− 6
(d+ 1)(d+ 2)(2d+ 3) = 1−Θ(1/d3)

times as long as the length |TOPT| of a longest (unconstrained) plane tree on P.

SoCG 2022

23:12 Long plane trees

Proof. Let P be a flat arc on d+2 points with gap sequence G = (1, 3, 5, . . . , d+1, . . . , 6, 4, 2).
Since G is unimodal, we can argue as in the proof of Theorem 3 to see that TOPT is the
zigzagging caterpillar whose cover sequence is G, i.e., a path with d+ 1 edges (and diameter
d+ 1). Moreover, this path is the only optimal plane tree spanning the flat arc because of
Theorem 2 and the Cauchy-Schwarz inequality; see the argument leading to (4). Therefore,
any other plane spanning tree T 6= TOPT, zigzagging caterpillar or not, has an integer length
less than |TOPT|. Using |TOPT| =

∑d+1
i=1 i

2 = 1
6 (d+ 1)(d+ 2)(2d+ 3) = 1

3d
3 + o(d3), we obtain

BoundDiam(d) ≤ |TOPT| − 1
|TOPT|

= 1− 6
(d+ 1)(d+ 2)(2d+ 3) = 1−Θ(1/d3). J

For d = 3, Theorem 4 gives BoundDiam(3) ≤ 29/30. By tailoring the point set size, the
gap sequence {gi}m

i=1, and by considering non-arcs, we improve this to BoundDiam(3) ≤ 5/6.

I Theorem 5. For any ε > 0, there is a convex point set P such that every longest plane
tree on P of diameter 3 is at most (5/6) + ε times as long as a longest (general) plane tree.

Proof (Sketch). (Full proof in the full version) Let P4k+2 consist of two flat arcs, symmetric
with respect to a horizontal line, each with a gap sequence 1, . . . , 1︸ ︷︷ ︸

k×

, 2k + 1, 1, . . . , 1︸ ︷︷ ︸
k×

). In

other words, P4k+2 consists of two diametrically opposing points, four unit-spaced arcs of k
points each, and a large central gap of length 2k + 1 (see Figure 8).

P4k+2

1 1 1 1 1 12k + 1

TL

1 1 1 1 1 12k + 1

TS

Figure 8 An illustration of the point set P4k+2 when k = 3, with trees TL (red) and TS (green).

On the one hand, straightforward counting gives |TOPT| ≥ |TL| = 12k2 + 6k + 1, where
TL is the tree depicted in Figure 8. On the other hand, any tree with diameter at most 3 is
either a star or it contains an edge ab such that each other point of P is connected either to
a or to b. For a star T , simple computation gives |T | ≤ 8k2 + 6k+ 1. For the other case, one
can show that the longest tree is obtained when points a, b lie on the opposite sides of the
large central gap and at least one of them lies on the boundary of this gap, as is the case for
instance for the tree TS depicted in Figure 8. We have |TS | = 10k2 + 6k + 1, thus

BoundDiam(3) ≤ 10k2 + 6k + 1
12k2 + 6k + 1 ,

which tends to 5/6 as k →∞. J

4 Polynomial time algorithms for small diameter

We show how to compute a longest tree of diameter at most three in polynomial time,
using dynamic programming. The main challenge is to devise an appropriate partition into
independent subproblems. Our approach bears some resemblance to the polynomial time

S. Cabello, M. Hoffmann, K. Klost, W. Mulzer, and J. Tkadlec 23:13

a b a

qq

kp,q

p p

b

Lp,q Lp,q
Rp,q Rp,qkp,q

Figure 9 Fixing kp,q gives two possible triangular regions where edges are forced.

plane matching algorithm of Aloupis et al. [2]. The main challenge in our case is the efficient
implementation of the dynamic program.

Our approach extends to a certain class of diameter-four trees, see the full version of this
paper. Every tree of diameter two or three is a bistar, that is, it contains two vertices a and
b so that every edge is incident to at least one of a or b. To prove Theorem 6, we note that
there are Θ(n2) choices for a and b, and we show how to compute a longest bistar rooted at
a fixed pair a, b in O(n2) time.

Without loss of generality, we can assume that the points a and b lie on a horizontal line
with a to the left of b. As no edge will cross this line, we can also assume that all points lie
above this line.

The subproblems for the dynamic program are indexed by ordered pairs p, q of distinct
points from P, so that the line segments ap and bq do not cross. A pair that satisfies this
condition is a valid pair. For each valid pair p, q, the segments ap, pq, qb, and ba form
a simple (possibly non-convex) quadrilateral. Let Q(p, q) be the (convex) portion of this
quadrilateral below the horizontal line y = min{y(p), y(q)}. We define the value Z(p, q) as
the length of the longest plane bistar rooted at a and b on the points in the interior of Q(p, q),
without counting ‖ab‖. If there are no points of P within the quadrilateral Q(p, q), we set
Z(p, q) = 0.

If the quadrilateral Q(p, q) contains some points from P , we let kp,q be the highest point
of P inside of Q(p, q). If we connect kp,q to a, we force all points in the triangle Lp,q defined
by the edges ap and akp,q and the line y = y(kp,q) to be connected to a. Similarly, when
connecting kp,q to b, we force the triangle Rp,q defined by bq, bkp,q and the line y = y(kp,q);
see Figure 9. In the former case, we are left with the subproblem defined by the valid pair
kp,q, q, while in the latter case we are left with the subproblem defined by the valid pair
p, kp,q. This yields the following recurrence for each valid pair p, q:

Z(p, q) =

0, if no point of P is in Q(p, q),

max
{
Z(kp,q, q) + ‖akp,q‖+

∑
l∈Lp,q

‖al‖
Z(p, kp,q) + ‖bkp,q‖+

∑
r∈Rp,q

‖br‖
, otherwise.

Using the values Z(p, q), for all valid p, q, together with a specialized approach to solve
the relevant range searching problems, we can show that a longest plane bistar for a fixed
pair a, b of vertices can be computed in O(n2) time; for details see the full version.

SoCG 2022

23:14 Long plane trees

5 Local improvements fail

One could hope that the longest plane spanning tree problem could perhaps be solved by
either a greedy approach or by a local search approach [34]. It is easy to find point sets on
as few as 5 points where the obvious greedy algorithm fails to find the longest plane tree. In
this section, we show that the following natural local search algorithm AlgLocal(P) fails
too:
Algorithm AlgLocal(P):
1. Construct an arbitrary plane spanning tree T on P.
2. While there exists a pair of points a, b such that T ∪ {ab} contains an edge cd with
|cd| < |ab| and T ∪ {ab} \ {cd} is a plane spanning tree:
a. Set T → T ∪ {ab} \ {cd}. // tree T ∪ {ab} \ {cd} is longer than T

3. Output T .

p

r s
q

t

(a) A tree which cannot be locally improved. (b) A tree where each pair of edges in the same color
is at least as long as the matching pair in Figure 10a.

Figure 10 The algorithm AlgLocal(P) can get stuck.

I Lemma 17. There are point sets P for which the algorithm AlgLocal(P) fails to compute
the longest plane tree.

Proof. We construct a point set P consisting of 9 points to show the claim. The points are
placed on three concentric equilateral which are slightly rotated, see Figure 10.

Now consider the tree on this point set depicted by the solid edges in Figure 10a. Note
that the green, blue and yellow edges are rotational symmetric. A simple case distinction,
using the dashed edges as prototype for different non-edges shows that AlgLocal(P) stops
at this tree. On the other hand, in the tree depicted in Figure 10b each pair of the same
colored edges is longer than its counterpart in Figure 10a. Therefore AlgLocal(P) does not
yield a correct result. J

We remark that point sets with the same property exist on any number n ≥ 9 of points: it
suffices to (repeatedly) duplicate the edge qt and perturb its endpoint t.

6 Conclusions

We leave several open questions:

S. Cabello, M. Hoffmann, K. Klost, W. Mulzer, and J. Tkadlec 23:15

1. What is the correct approximation factor of the algorithm AlgSimple(P) presented in
Section 2? While each single lemma in Section 2 is tight for some case, it is hard to
believe that the whole analysis, leading to the approximation factor f .= 0.5467, is tight.
We conjecture that the algorithm has a better approximation guarantee.

2. What is the approximation factor BoundDiam(3) achieved by the polynomial time
algorithm that outputs the longest plane tree with diameter 3? By Theorem 5 it is at
most 5/6 (and by [1] it is at least 1/2).

3. For a fixed d ≥ 4, is there a polynomial-time algorithm that outputs the longest plane
tree with diameter at most d? By Theorem 6 we know the answer is yes when d = 3. And
Theorem 7 gives a positive answer for special classes of trees with diameter 4. Note that
a hypothetical polynomial-time approximation scheme (PTAS) has to consider trees of
unbounded diameter because of Theorem 4. It is compatible with our current knowledge
that computing an optimal plane tree of diameter, say, O(1/ε) would give a PTAS.

4. Is the general problem of finding the longest plane tree in P? A similar question can be
asked for several other plane objects, such as paths, cycles, matchings, perfect matchings,
or triangulations. The computational complexity in all cases is open.

References
1 Noga Alon, Sridhar Rajagopalan, and Subhash Suri. Long non-crossing configurations in the

plane. Fundam. Inform., 22(4):385–394, 1995. doi:10.3233/FI-1995-2245.
2 Greg Aloupis, Jean Cardinal, Sébastien Collette, Erik D. Demaine, Martin L. Demaine,

Muriel Dulieu, Ruy Fabila-Monroy, Vi Hart, Ferran Hurtado, Stefan Langerman, Maria
Saumell, Carlos Seara, and Perouz Taslakian. Matching points with things. In Ale-
jandro López-Ortiz, editor, LATIN 2010: Theoretical Informatics, volume 6034, pages
456–467, 2010. URL: http://link.springer.com/10.1007/978-3-642-12200-2_40, doi:
10.1007/978-3-642-12200-2_40.

3 Sanjeev Arora. Polynomial time approximation schemes for Euclidean traveling salesman and
other geometric problems. J. ACM, 45(5):753–782, 1998. doi:10.1145/290179.290180.

4 Sanjeev Arora and Kevin L. Chang. Approximation schemes for degree-restricted MST
and red-blue separation problems. Algorithmica, 40(3):189–210, 2004. doi:10.1007/
s00453-004-1103-4.

5 Alexander I. Barvinok, Sándor P. Fekete, David S. Johnson, Arie Tamir, Gerhard J. Woeginger,
and Russell Woodroofe. The geometric maximum traveling salesman problem. J. ACM,
50(5):641–664, 2003. doi:10.1145/876638.876640.

6 Ahmad Biniaz. Euclidean bottleneck bounded-degree spanning tree ratios. In Proc. 31st
Annu. ACM-SIAM Sympos. Discrete Algorithms (SODA), pages 826–836, 2020. doi:10.1137/
1.9781611975994.50.

7 Ahmad Biniaz. Improved approximation ratios for two Euclidean maximum spanning tree
problems. arXiv:2010.03870, 2020.

8 Ahmad Biniaz, Prosenjit Bose, Kimberly Crosbie, Jean-Lou De Carufel, David Eppstein,
Anil Maheshwari, and Michiel Smid. Maximum plane trees in multipartite geometric
graphs. Algorithmica, 81(4):1512–1534, 2019. URL: http://link.springer.com/10.1007/
s00453-018-0482-x, doi:10.1007/s00453-018-0482-x.

9 Johannes Blömer. Computing sums of radicals in polynomial time. In Proc. 32nd Annu. IEEE
Sympos. Found. Comput. Sci. (FOCS), pages 670–677, 1991. doi:10.1109/SFCS.1991.185434.

10 Sergio Cabello, Aruni Choudhary, Michael Hoffmann, Katharina Klost, Meghana M Reddy,
Wolfgang Mulzer, Felix Schröder, and Josef Tkadlec. A better approximation for longest
noncrossing spanning trees. In 36th European Workshop on Computational Geometry (EuroCG),
2020.

SoCG 2022

https://doi.org/10.3233/FI-1995-2245
http://link.springer.com/10.1007/978-3-642-12200-2_40
https://doi.org/10.1007/978-3-642-12200-2_40
https://doi.org/10.1007/978-3-642-12200-2_40
https://doi.org/10.1145/290179.290180
https://doi.org/10.1007/s00453-004-1103-4
https://doi.org/10.1007/s00453-004-1103-4
https://doi.org/10.1145/876638.876640
https://doi.org/10.1137/1.9781611975994.50
https://doi.org/10.1137/1.9781611975994.50
http://link.springer.com/10.1007/s00453-018-0482-x
http://link.springer.com/10.1007/s00453-018-0482-x
https://doi.org/10.1007/s00453-018-0482-x
https://doi.org/10.1109/SFCS.1991.185434

23:16 Long plane trees

11 Sergio Cabello, Michael Hoffmann, Katharina Klost, Wolfgang Mulzer, and Josef Tkadlec.
Long plane trees. arXiv preprint arXiv:2101.00445, 2021.

12 Timothy M. Chan. Euclidean bounded-degree spanning tree ratios. Discrete Com-
put. Geom., 32(2):177–194, 2004. URL: http://www.springerlink.com/index/10.1007/
s00454-004-1117-3.

13 Francis Y. L. Chin, Jianbo Qian, and Cao AnWang. Progress on maximum weight triangulation.
In Proc. 10th Annu. Int. Conf. Computing and Combinatorics (COCOON), pages 53–61, 2004.
doi:10.1007/978-3-540-27798-9_8.

14 Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein. Introduc-
tion to Algorithms. MIT Press, 3rd edition, 2009. URL: http://mitpress.mit.edu/books/
introduction-algorithms.

15 Mark de Berg, Otfried Cheong, Marc van Kreveld, and Mark Overmars. Computational
geometry. Algorithms and applications. Springer-Verlag, Berlin, third edition, 2008. doi:
10.1007/978-3-540-77974-2.

16 Adrian Dumitrescu and Csaba D. Tóth. Long non-crossing configurations in the plane. Discrete
Comput. Geom., 44(4):727–752, 2010. doi:10.1007/s00454-010-9277-9.

17 Alon Efrat, Alon Itai, and Matthew J. Katz. Geometry helps in bottleneck matching and
related problems. Algorithmica, 31(1):1–28, 2001. doi:10.1007/s00453-001-0016-8.

18 David Eppstein. Spanning trees and spanners. In Jörg-Rüdiger Sack and Jorge Urrutia,
editors, Handbook of Computational Geometry, pages 425–461. North Holland / Elsevier, 2000.
doi:10.1016/b978-044482537-7/50010-3.

19 Andrea Francke and Michael Hoffmann. The Euclidean degree-4 minimum spanning tree
problem is NP-hard. In Proceedings of the 25th ACM Symposium on Computational Geometry,
pages 179–188. ACM, 2009. doi:10.1145/1542362.1542399.

20 P. D. Gilbert. New results in planar triangulations. Technical Report R–850, Univ. Illinois
Coordinated Science Lab, 1979.

21 Sariel Har-Peled. Geometric approximation algorithms, volume 173 ofMathematical Surveys and
Monographs. American Mathematical Society, Providence, RI, 2011. doi:10.1090/surv/173.

22 Gheza Tom Klincsek. Minimal triangulations of polygonal domains. Ann. Discrete Math.,
9:121–123, 1980.

23 Joseph S. B. Mitchell. Guillotine subdivisions approximate polygonal subdivisions: A simple
polynomial-time approximation scheme for geometric TSP, k-MST, and related problems.
SIAM J. Comput., 28(4):1298–1309, 1999. doi:10.1137/S0097539796309764.

24 Joseph S. B. Mitchell. Shortest paths and networks. In Jacob E. Goodman and Joseph O’Rourke,
editors, Handbook of Discrete and Computational Geometry, pages 607–641. Chapman and
Hall/CRC, 2nd edition, 2004. doi:10.1201/9781420035315.ch27.

25 Joseph S. B. Mitchell and Wolfgang Mulzer. Proximity algorithms. In Jacob E. Goodman,
Joseph O’Rourke, and Csaba D. Tóth, editors, Handbook of Discrete and Computational
Geometry, chapter 32, pages 849–874. CRC Press, Boca Raton, 3rd edition, 2017. doi:
10.1201/9781315119601.

26 Wolfgang Mulzer. Minimum dilation triangulations for the regular n-gon. Master’s thesis,
Freie Universität Berlin, Germany, 2004.

27 Wolfgang Mulzer and Johannes Obenaus. The tree stabbing number is not monotone. In
Proceedings of the 36th European Workshop on Computational Geometry (EWCG), pages
78:1–78:8, 2020.

28 Wolfgang Mulzer and Günter Rote. Minimum-weight triangulation is NP-hard. J. ACM,
55(2):11:1–11:29, 2008. doi:10.1145/1346330.1346336.

29 Giri Narasimhan and Michiel Smid. Geometric spanner networks. Cambridge University Press,
Cambridge, 2007. doi:10.1017/CBO9780511546884.

30 Christos H. Papadimitriou. The Euclidean traveling salesman problem is NP-complete. Theor.
Comput. Sci., 4(3):237–244, 1977. doi:10.1016/0304-3975(77)90012-3.

http://www.springerlink.com/index/10.1007/s00454-004-1117-3
http://www.springerlink.com/index/10.1007/s00454-004-1117-3
https://doi.org/10.1007/978-3-540-27798-9_8
http://mitpress.mit.edu/books/introduction-algorithms
http://mitpress.mit.edu/books/introduction-algorithms
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/978-3-540-77974-2
https://doi.org/10.1007/s00454-010-9277-9
https://doi.org/10.1007/s00453-001-0016-8
https://doi.org/10.1016/b978-044482537-7/50010-3
https://doi.org/10.1145/1542362.1542399
https://doi.org/10.1090/surv/173
https://doi.org/10.1137/S0097539796309764
https://doi.org/10.1201/9781420035315.ch27
https://doi.org/10.1201/9781315119601
https://doi.org/10.1201/9781315119601
https://doi.org/10.1145/1346330.1346336
https://doi.org/10.1017/CBO9780511546884
https://doi.org/10.1016/0304-3975(77)90012-3

S. Cabello, M. Hoffmann, K. Klost, W. Mulzer, and J. Tkadlec 23:17

31 Christos H. Papadimitriou and Umesh V. Vazirani. On two geometric problems related to the
traveling salesman problem. J. Algorithms, 5(2):231–246, 1984. doi:10.1016/0196-6774(84)
90029-4.

32 Jan Remy and Angelika Steger. A quasi-polynomial time approximation scheme for minimum
weight triangulation. J. ACM, 56(3):15:1–15:47, 2009. doi:10.1145/1516512.1516517.

33 Emo Welzl. On spanning trees with low crossing numbers. In Data structures and efficient
algorithms, volume 594 of Lecture Notes in Comput. Sci., pages 233–249. Springer, Berlin,
1992. doi:10.1007/3-540-55488-2_30.

34 David P. Williamson and David B. Shmoys. The Design of Approximation Algorithms.
Cambridge University Press, 2011. doi:10.1017/CBO9780511921735.

SoCG 2022

https://doi.org/10.1016/0196-6774(84)90029-4
https://doi.org/10.1016/0196-6774(84)90029-4
https://doi.org/10.1145/1516512.1516517
https://doi.org/10.1007/3-540-55488-2_30
https://doi.org/10.1017/CBO9780511921735

	1 Introduction
	2 An Improved Approximation Algorithm
	3 Convex and flat convex point sets
	4 Polynomial time algorithms for small diameter
	5 Local improvements fail
	6 Conclusions

