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Abstract
Let P be a finite point set in the plane in general position. For any spanning tree T on P,
we denote by |T | the Euclidean length of T . Let TOPT be a plane (noncrossing) spanning tree
of maximum length for P. It is not known whether such a tree can be found in polynomial
time. Thus, past research has focused on designing polynomial-time approximation algorithms,
typically based on trees of small (unweighted) diameter. We extend this line of research and
show how to construct in polynomial time a plane tree TALG on P such that TALG has diameter at
most four and |TALG| > 0.546 · |TOPT|. This improves substantially over the currently best known
approximation factor. Furthermore, we consider the special case of a long plane spanning tree
with diameter at most three, and we show that it can be found in polynomial time.

Related Version: A full version is available at https://arxiv.org/abs/2101.00445.

1 Introduction

Geometric network design is a common and well-studied task in computational geometry
and combinatorial optimization [6–9]. In this family of problems, we are given a set P of
points in general position, and our task is to connect P into a (geometric) graph that has
certain favorable properties. There are many possible objective functions and many different
constraints that might be imposed on the resulting graph.

Here, we focus on graphs that achieve a large total edge length while at the same time
ensuring that the edges do not cross. In many cases, the objective of maximization and the
noncrossing constraint are in conflict. If the goal is to minimize the total edge length, like,
e.g., in Euclidean minimum spanning trees or the Euclidean TSP, the noncrossing property
is often implied by the triangle inequality. In contrast, when maximizing, say, the total edge
length of a spanning tree, the resulting graph will most likely contain many crossings. In this
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sense, balancing the noncrossing constraint and the maximization objective is an interesting
challenge.

We will consider long plane spanning trees: given a point set P in general position (i.e.,
no three points are on a common line), we want to find a longest spanning tree on P such
that no two edges cross. The precise complexity for this problem is unknown, but it is
conjectured to be NP-hard. This stands in contrast to the greedy polynomial time algorithms
for short (necessarily plane) spanning trees and long (possibly not plane) spanning trees.

As a polynomial-time algorithm for the long plane case has eluded researchers for many
years, the focus has shifted to approximation algorithms. The first such algorithm, giving a
0.5-approximation, is due to Alon et al. [1]. This approximation factor was then improved to
0.502 by Dumitrescu and Tóth [5]. This result led to a series of improvements from 0.503 [3]
over 0.512 [4] to the most recent result of a 0.519-approximation [2].

We substantially increase the approximation factor to a fixed f > 0.5467, and we give a
polynomial time algorithm for finding a longest tree of unweighted diameter at most 3.

2 Approximation Algorithm

We describe an algorithm to find a plane spanning tree on a given point set P , and we show
that the resulting tree is a good approximation for a longest plane spanning tree on P. The
algorithm considers two families of trees. The first family consists of stars: for a point a ∈ P ,
the star Sa rooted at a is the tree that connects all points p ∈ P \ {a} to a.

The second family of trees Ta,b is parameterized by two distinct points a, b ∈ P. The
trees Ta,b are defined as follows: let Pa be the points of P that are closer to a than to b,
and let Pb = P \ Pa. We connect a to every point in Pb, and then we connect each point of
Pa \ {a} to some point of Pb without introducing crossings. We will not go into the details
of the second step here, but it is possible to make these connections in a simple deterministic
way. See Figure 1 for an example.

a

Sa Ta,b

a b

Figure 1 A star Sa and a tree Ta,b.

The algorithm computes all stars Sa, for a ∈ P, and all trees Ta,b, for ordered pairs
(a, b) ∈ P2 with a 6= b. The algorithm returns a longest among all those trees. This process
can be implemented in polynomial time, and we call the resulting tree TALG.

I Theorem 2.1. For any finite planar point set P in general position, the tree TALG has
Euclidean length at least f · |TOPT|, where |TOPT| denotes the length of a longest plane tree on
P and f > 0.5467 is the fourth smallest real root of the polynomial

P (x) = −80 + 128x+ 504x2 − 768x3 − 845x4 + 1096x5 + 256x6.

Proof sketch. Particularly towards the end of this proof sketch, we omit some details due to
space constraints. The detailed calculations can be found in the full version.

We fix some assumptions on P. First, we assume that P has diameter exactly 2. Next,
fix some optimal tree TOPT on P and a longest edge ab of TOPT. Write the Euclidean length
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of ab as ‖ab‖ = 2d. Let D(a, 2) and D(b, 2) be the disks with radius 2 and centers a and b,
respectively. As P has diameter 2, all points lie inside the lens D(a, 2) ∩D(b, 2). Without
loss of generality, we assume that a = (−d, 0) and b = (d, 0).

From arguments established in earlier research [4, Lemma 2.1], we can conclude that if
2d ≤ 1/f , the result follows. Hence, from now on, we focus on the case 2d > 1/f .

Let s, s′ be the points on the y-axis with ‖sa‖ = ‖sb‖ = ‖s′a‖ = ‖s′b‖ = 2df , where s is
the one with the positive y-coordinate. Since 2df > 1, the circles ∂D(s, 2df) and ∂D(s′, 2df)
intersect the boundary of the lens. We call the region that is inside the lens but above or
below both circles the far region (shaded green in Figure 2), and the remaining part of the
lens is referred to as the truncated lens (shaded yellow in Figure 2).

d d

2df
s

ba

s′

Far region

Truncated lens

Figure 2 The lens is split into the far region (green) and the truncated lens (yellow).

Suppose that there is a point c ∈ P in the far region. Then, we argue that a longest
of the stars Sa, Sb, and Sc is a good approximation. Denote by R the circumradius of the
triangle 4abc, and let g be the center of mass of P \ {a, b, c}. Then, as 4abc is acute-angled,
there is one point q among a, b, c such that ‖gq‖ ≥ R. Having fixed q, the triangle inequality
gives

∑
p∈P\{a,b,c} ‖pq‖ ≥ (n − 3) · R. Together with ‖qa‖+ ‖qb‖+ ‖qc‖ ≥ 2R, this yields

|Sq| =
∑

p∈P ‖pq‖ ≥ (n− 1) ·R ≥ f · (n− 1) · 2d ≥ f · |TOPT|.
Hence, from now on, we can assume that 2d > 1/f and that the far region contains no

point from P . Consider the five trees Ta,b, Tb,a, Sa, Sb, and TOPT. They all contain the edge
ab. We conceptually direct the other edges towards ab and, given a point p ∈ P and a tree
T , denote the length of the outgoing edge from p in T by `T (p). Given a real parameter
β ∈ (0, 1/2) we define the weighted average of the lengths of the edges assigned to a point p
over the first four trees as:

avg(p, β) = (1/2− β) · `Sa
(p) + β · `Ta,b

(p) + β · `Tb,a
(p) + (1/2− β) · `Sb

(p)

Summing up over all p ∈ P \ {a, b} and adding the length of the edge ab yields the weighted
average of the length of all four trees. Note that a longest of the four trees is guaranteed to
be longer than the weighted average. This reduces our problem to that of finding β such
that for each point in P \ {a, b} we have:

avg(p, β) ≥ f · `TOPT(p). (1)

In the following we assume without loss of generality that p = (x, y) with x, y ≥ 0. Let
pa be the point with x-coordinate −(2− d) on the ray pa. Furthermore, if the x-coordinate
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of p is less than d, let pb be the point with x-coordinate 2 − d on the ray pb. When the
x-coordinate of p is at least d, then the ray pb does not intersect the vertical line with
x-coordinate 2− d and we set pb = b. Additionally, define pu to be the furthest point from p

on the portion of the boundary of the far region that is contained in the circle k = ∂D(s, 2df).
See Figure 3 for a visualization. We claim that

`TOPT(p) ≤ min{2d,max{‖ppa‖, ‖ppu‖}}. (2)

d d

c

2df

k

pa pb

pu

p = [x, y]

a b

s

vu

O
︸ ︷︷ ︸ ︸ ︷︷ ︸

Figure 3 The definition of the special points

To show (2), first note that if ‖ppa‖ ≥ 2d then we are done as the right-hand side becomes
2d and the left-hand side is at most 2d by assumption. Next, tedious algebra shows that
if ‖ppa‖ ≤ 2d then ‖ppb‖ ≤ ‖ppa‖. The rest follows by denoting by pf the point in the
truncated lens furthest from p and doing a case distinction over the quadrant containing pf :
1. If pf lies in the third or fourth quadrant then ‖ppa‖ is larger than ‖ppf‖.
2. If pf lies in the first quadrant, mirroring pf along the y-axis gives a point further away

from p than pf .
3. If pf lies in the second quadrant then it lies on the boundary of the truncated lens. Let t

be the topmost point in the truncated lens and let u be the to higher intersection point
of ∂D(s, 2df) and ∂D(b, 2), see Figure 4 for an illustration. If pf lies on the arc tu and
p ∈ N we are done, as pu = u. If p ∈ S we are done by triangle inequality. Finally if pf

lies on the arc ul we have ‖ppf‖ ≤ max{‖pl‖, ‖pu‖} and are again done, as ‖pl‖ ≤ ‖ppa‖
and ‖pu‖ ≤ ‖ppu‖.

Combining (1) and (2), it suffices to find β ∈ [0, 1/2] such that both avg(p, β) ≥
f ·min{2d, ‖ppa‖} and avg(p, β) ≥ f ·min{2d, ‖ppu‖}. To find such β, our main technical
insight is the following lower bound on avg(p, β) that holds for any β ∈ [0, 1/2]:

avg(p, β) ≥ d · (1− β) + x · 2β
d+ x

. (3)

To prove (3), we start with unpacking the definition:

avg(p, β) ≥ (1/2− β) · ‖pa‖+ β · ‖pa‖+ β · x+ (1/2− β) · ‖pb‖.
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Figure 4 For p ∈ E we have `TOPT (p) ≤ 2d, for p ∈ N we have `TOPT (p) ≤ max{‖ppa‖, ‖pu‖}
and for p ∈ S we have `TOPT (p) ≤ max{‖ppa‖, ‖ppu‖}.

Let p′ = (−x, y) be the reflection of p about the y axis (see Figure 5). Triangle inequality
‖p′p‖+ ‖pb‖ ≥ ‖p′b‖ = ‖pa‖ yields β · x = 1

2β · ‖p
′p‖ ≥ 1

2β · (‖pa‖ − ‖pb‖) and we get

avg(p, β) ≥ 1
2 · ‖pa‖+ 1

2β · ‖pa‖+
(

1
2 −

3
2β
)
· ‖pb‖.

O

`

d d− xx

p = (x, y)

a b

p′

Figure 5 Mirroring p along the y-axis.

Next we claim that ‖pb‖ ≥ d−x
d+x · ‖pa‖: Indeed, upon squaring, using the Pythagorean

theorem and clearing the denominators this becomes y2 · 4dx ≥ 0 which is true. Using this
bound on the term containing ‖pb‖, the inequality (3) is proved as follows:

avg(p, β) ≥ (1 + β)(d+ x) + (1− 3β)(d− x)
2(d+ x) · ‖pa‖ = (1− β) · d+ 2β · x

d+ x
· ‖pa‖.

Using (3) and some elementary geometric considerations (briefly sketched below) we can
prove the following claims for any point p = (x, y) with x, y ≥ 0:
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1. We have avg(p, β) ≥ f ·min{2d, ‖ppa‖}, provided that

2f − 1
5− 8f ≤ β ≤

1
2 · f. (4)

2. We have avg(p, β) ≥ f ·min{2d, ‖ppu‖}, provided that β < 151
304 · f and 1

2 ≤ f ≤
19
32 and

2f − 1
2
√

5− 8f − 1
≤ β ≤ 1− f

√
4f2 − 1− 2f2. (5)

To prove 1., we distinguish the cases x ≥ 3d− 2 and x < 3d− 2 and show avg(p, β) ≥ f · 2d
and avg(p, β) ≥ f‖ppa‖, respectively. To prove 2., we distinguish the cases y ≤ y(u) and
y > y(u). In the first case we use that the left-hand side of (3) is increasing in y, while ‖ppu‖
is decreasing. The second case essentially follows from basic algebra and the Pythagorean
theorem.

Finally, it is straightforward (although again tedious) to check that for our definition of f
the left-hand side and the right-hand side of the constraint (5) are equal. To be precise, after
setting the left-hand side and the right-hand site equal and applying some algebra, which
includes two times the squaring of both sites, yields the polynomial given in the statement of
the theorem. Our choice of f is not only a solution to the origin polynomial but also yields a
value value β? .= 0.1604 such that setting β = β? satisfies also (4) and the other constraints
in 2. Note that for any f ′ > f , the two constraints on β from (5) are contradictory, except
for f ′ = 5

8 when they reduce to − 1
4 ≤ β ≤ −

1
4 which is not a permissible value of β. J

3 Polynomial-time algorithm for diameter 3

In this section we describe a polynomial time algorithm for finding a longest plane spanning
tree of diameter at most 3 for a given set of points in general position. Note that all trees of
diameter at most 3 have a cut edge ab whose removal decomposes the tree into at most 2
stars, one rooted at a and one rooted at b. We also call such trees bistars rooted at a and b.

I Theorem 3.1. We can find a longest bistar on a point set P in polynomial time.

Proof. We argue how to find the best bistar with fixed roots a, b in polynomial time. The
statement of the theorem then follows by iterating over all possible pairs of roots.

Without loss of generality we assume that ab is a horizontal edge and that all points lie
above ab. We use dynamic programming. We call a pair p, q ∈ P a valid pair, if ap and bq
do not cross. Let Q(p, q) be the quadrilateral defined by ab, ap, bq and the horizontal line
through min{y(p), y(q)} as shown in Figure 6.

a b

Q(p, q)

a b

p

q

Q(p, q)

p

q

Figure 6 Two examples of valid pairs p, q with their quadrilaterals Q(p, q) shaded.
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We denote by Z(p, q) the length of the best bistar rooted at a and b on the points in
the interior of Q(p, q). Let kp,q be the highest point in Q(p, q) and let Lp,q and Rp,q be the
regions in Q(p, q) to the left of akp,q and to the right of bkp,q, respectively (see Figure 7).

a b a

qq

kp,q

p p

b

Lp,q Lp,q
Rp,q Rp,qkp,q

Figure 7 Fixing kp,k gives two possible triangular regions where edges are fixed.

As we aim to compute a bistar, kp,q is either connected to a or to b. In the first case,
all points in Lp,q have to be connected to a in order to prevent crossings. The points in
Q(kp,q, q) can now be connected to either a or b, so the best bistar can be found recursively
in this region. A symmetric argument holds if kp,q is connected to b. The resulting tree is a
bistar rooted at a and b by induction. Formally, for each valid pair p, q we have the following
recurrence:

Z(p, q) =


0 if no point of P is in Q(p, q),

max
{
Z(kp,q, q) + ‖akp,q‖+

∑
l∈Lp,q

‖al‖
Z(p, kp,q) + ‖bkp,q‖+

∑
r∈Rp,q

‖br‖
otherwise.

Let p, q be a valid pair, let Lp be all points to the left of the line through ap and let Rq

be all points to the right of the line through bq. Then all values of the form∑
l∈Lp

‖al‖

+

∑
r∈Rq

‖br‖

+ ‖ap‖+ ‖bq‖+ ‖ab‖+ Z(p, q), (6)

describe the length of a plane, not necessarily spanning, bistar rooted at a and b.
Now assume that a is connected to the point with maximum y-coordinate. Furthermore

let q∗ be the highest point connected to b and p∗ be the point with smallest angle at a above
q∗. Then p∗, q∗ is a valid pair and the length of the optimal bistar is obtained by plugging
p∗ and q∗ into (6). Now by taking the maximum of (6) for all valid pairs, together with the
maximum of Sa and Sb, we obtain a longest bistar rooted at a and b.

The recurrence can be implemented in polynomial time using a standard dynamic
programming approach. J

In the full version of the paper, we give details on the implementation and show that the
dynamic program can be implemented in O(n2) time.

4 Conclusion

We showed an f ≥ 0.5467-approximation algorithm for the longest plane spanning tree
problem. Furthermore we gave a polynomial time algorithm to solve the problem for fixed
diameter at most 3.
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There are some related open questions. First, is the factor f we obtained tight for our
algorithm? While all the steps in the analysis are tight, the overall analysis might not
be. Second, how well does the optimal tree of diameter 3 approximate the optimal tree of
arbitrary diameter? This is especially interesting, as we know of point sets with longest trees
of diameter Θ(n). Finally, there are the broader questions of finding a PTAS and settling
the complexity.
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