The Number of Combinatorially Different Convex Hulls of Points in Lines*

Heuna Kim[†]

Wolfgang Mulzer[†]

Eunjin Oh[‡]

Abstract

Given a sequence \mathcal{R} of planar lines in general position, we can obtain a point set by picking exactly one point from each line in \mathcal{R} . We provide exponential upper and lower bounds on the number of combinatorially different convex hulls for point sets that are generated in this manner.

1 Introduction

Recently, geometric problems arising from data imprecision have been studied intensively (e.g., [5]). One popular model is as follows: given a sequence $\mathcal{R} = \langle R_1, \ldots, R_n \rangle$ of planar regions, we are promised that our eventual input P contains exactly one point from each R_i . The question is whether the knowledge of \mathcal{R} helps to speed up computations on P. There are many algorithmic results for this setting [1, 2, 4, 6]. Here, we are interested in the *combinatorial* question arising from this model: how much does the knowledge of \mathcal{R} restrict the combinatorial structure of P? We consider the case that (1) \mathcal{R} consists of planar lines, and (2) we measure "variance" by the number of combinatorially different convex hulls. It is known that this setting can be exploited algorithmically [3], and we provide exponential upper and lower bounds on the number of possible convex hulls.

Problem Statement. Let $P = \langle p_1, \ldots, p_n \rangle$ be a sequence of *n* points in the plane, and let $\operatorname{conv}(P)$ be the convex hull of *P*. Let $\langle p_{i_1}, p_{i_2}, \ldots, p_{i_k} \rangle$ be the vertices of $\operatorname{conv}(P)$ in clockwise order, such that $i_1 = \min\{i_1, \ldots, i_k\}$. We define the *hull signature* of *P* as $\sigma(P) = \langle i_1, \ldots, i_k \rangle$.

Consider a sequence $\mathcal{R} = \langle \ell_1, \ldots, \ell_n \rangle$ of n planar lines in general position, i.e., every two lines in \mathcal{R} intersect in exactly one point and no three lines in \mathcal{R} have a common intersection. A sequence $P = \langle p_1, \ldots, p_n \rangle$ of points in the plane is restricted to \mathcal{R} if $p_i \in \ell_i$, for $i = 1, \ldots, n$. Given \mathcal{R} , we would like to study the set $C(\mathcal{R}) = \{\sigma(P) \mid P \text{ is restricted to } \mathcal{R}\}$ of all hull signatures that can be generated by point

Figure 1: (left) A lower bound example with seven lines. The red lines illustrate the subdivision of the plane into $O(n^2)$ slabs. (right) Between the second and the third slab, ℓ_2 and ℓ_4 change position.

sequences restricted to \mathcal{R} . We also define $c(\mathcal{R}) = |C(\mathcal{R})|$ and $c(n) = \max_{\mathcal{R}} c(\mathcal{R})$, where \mathcal{R} ranges over all sequences of n planar lines in general position. We provide upper and lower bounds on c(n).

2 Lower Bound

Theorem 1 For any $n \ge 3$, there exists a sequence \mathcal{R} of n lines in the plane with $c(\mathcal{R}) = \Omega(n^2 3^n)$.

Proof. Let $\langle \ell_2, \ell_3, \ldots, \ell_{n-1} \rangle$ be a sequence of n-2planar lines in general position, and let $Q = \{\ell_i \cap \ell_j \mid 2 \leq i < j \leq n-1\}$ be their intersection points. Set m = |Q|. By general position, we have $m = \binom{n-2}{2}$. We endow the plane with a Cartesian coordinate system such that the points in Q have pairwise distinct x-coordinates. We pick two additional lines ℓ_1 and ℓ_n so that all points in Q lie below ℓ_1 and above ℓ_n along the y-axis, and we set $\mathcal{R} = \langle \ell_1, \ell_2 \ldots, \ell_{n-1}, \ell_n \rangle$; see Fig. 1. We will show that $c(\mathcal{R}) = \Omega(n^2 3^n)$.

For this, we subdivide the plane into vertical slabs as follows: let a_1, \ldots, a_m be the sorted sequence of xcoordinates of the points in Q. For $j = 1, \ldots, m-1$, we define the *j*th vertical slab $V_j = \{(x, y) \in \mathbb{R}^2 \mid a_j < x < a_{j+1}\}$. By general position, every vertical slab intersects all lines in \mathcal{R} , and by definition, no slab contains an intersection point from Q. Furthermore,

^{*}This work was partially supported by research grant AL 253/8-1 from Deutsche Forschungsgemeinschaft (German Science Association).

[†]Institut für Informatik, Freie Universität Berlin, Germany. heunak@mi.fu-berlin.de,mulzer@inf.fu-berlin.de

[‡]Dept. Computer Science and Engineering, Pohang University of Science and Technology jin9082@postech.ac.kr

in every vertical slab the line ℓ_1 lies above all other lines and the line ℓ_n lies below all other lines.

Now, we consider for each slab V_j the point sequences that are restricted to the line segments in V_j . More precisely, define $\mathcal{R}_j = \langle \ell_{1j}, \ldots, \ell_{nj} \rangle$ as the sequence of line segments $\ell_{ij} = \ell_i \cap V_j$, for $i = 1, \ldots n$. We have $C(\mathcal{R}_k) \subseteq C(\mathcal{R})$. Next, we will provide a lower bound on how many distinct hull signatures $C(\mathcal{R}_j)$ contributes to $C(\mathcal{R})$.

We begin with $C(\mathcal{R}_1)$. Fix two arbitrary points $p_1 \in \ell_{11}$ and $p_n \in \ell_{n1}$. The line segment p_1p_n lies inside V_1 and intersects all line segments ℓ_{i1} , for $i = 2, \ldots n-1$. By construction, p_1 and p_n always appear on conv(P), no matter how we pick p_2, \ldots, p_{n-1} restricted to $\ell_{21}, \ldots, \ell_{(n-1)1}$. For every other point p_i , we have three choices: we can pick $p_i \in \ell_{i1}$ such that (i) the index *i* does not occur in the hull signature $\sigma(P)$ (i.e., p_i is not on conv(P)); (ii) the index *i* occurs in $\sigma(P)$ before *n*; or (iii) the index *i* occurs in $\sigma(P)$ after *n*. The choice is not completely free: to avoid degeneracies, conv(P) must have at least three vertices, so at least one other point needs to appear in $\sigma(P)$. Thus, the number of distinct hull signatures for point sequences restricted to \mathcal{R}_1 is at least $3^{n-2} - 1$.

Now fix $j \in \{2, \ldots, m-1\}$ and consider $C(\mathcal{R}_j)$. We give a lower bound on $|C(\mathcal{R}_j) \setminus \bigcup_{k=1}^{j-1} C(\mathcal{R}_k)|$, the number of hull signatures generated by point sequences restricted to \mathcal{R}_j that are not generated by a point sequence restricted to a previous slab. By construction, the left boundary of $\overline{V_i}$ contains exactly one point $q \in Q$. Let q be the intersection of two lines $\ell_a, \ell_b \in \mathcal{R}$, such that ℓ_a is above ℓ_b to the left of q and ℓ_a is below ℓ_b to the right of q. We pick two arbitrary points $p_1 \in \ell_{1j}$ and $p_n \in \ell_{nj}$. As before, p_1 and p_n always appear on $\operatorname{conv}(P)$, the line segment p_1p_n is contained in V_j , and all other line segments ℓ_{ij} intersect p_1p_n , for $i = 2, \ldots, n-1$. Next, we take points $p_a \in \ell_{aj}$ and $p_b \in \ell_{bj}$ to the left of $p_1 p_n$. As long as p_a and p_b lie on conv(P), the signature $\sigma(P)$ cannot appear in $\bigcup_{k=1}^{j-1} C(\mathcal{R}_k)$, since in all previous slabs we have that if a and b both occur after n in $\sigma(P)$, then b must come before a. In $C(\mathcal{R}_k)$, however, a comes before b in this case, since ℓ_a and ℓ_b have switched. For all other points p_i , there are again three choices: the index i may appear before or after n in $\sigma(P)$, or it may be absent from $\sigma(P)$. Thus, the slab V_j contributes at least 3^{n-4} new signatures to $\bigcup_{k=1}^{j} C(\mathcal{R}_k)$. There are $\Omega(n^2)$ slabs, so $c(\mathcal{R}) = \Omega(n^2 3^n)$.

3 Upper Bound

Let $\mathcal{R} = \langle \ell_1, \dots, \ell_n \rangle$ be a sequence of *n* planar lines in general position. We denote by $A(\mathcal{R})$ the *arrangement* of \mathcal{R} , i.e., the subdivision of the plane into *cells*, *edges* and *vertices* induced by the lines in \mathcal{R} : a *cell* is a maximal connected component of $\mathbb{R}^2 \setminus \bigcup_{\ell \in \mathcal{R}} \ell$; an *edge*

Figure 2: (top) A set \mathcal{R} of lines, a point set P restricted to \mathcal{R} , and conv(P). (bottom) The outer zone of conv(P). There are 11 outer regions, and the complexity of the outer zone is 39.

is a maximal component of a line in \mathcal{R} that does not belong to any other line in \mathcal{R} ; and a *vertex* is the intersection of two lines in \mathcal{R} .

Let $P = \langle p_1, \ldots, p_n \rangle$ be a sequence of n points restricted to \mathcal{R} . We may assume that no point in P coincides with a vertex of $A(\mathcal{R})$ (otherwise we can perturb *P* slightly). To distinguish them from edges of $A(\mathcal{R})$, we call the edges of $\operatorname{conv}(P)$ arcs. Let $\langle e_1, \ldots, e_k \rangle$ be the arcs of conv(P), in clockwise order, where e_1 comes after the leftmost point of $\operatorname{conv}(P)$ in clockwise order. For an arc e_i and a cell F of $A(\mathcal{R})$, we say that e_i properly crosses F if the relative interior of e_i has nonempty intersection with F and that e_i touches F if $e_i \cap \overline{F} = v$, where $v = \overline{e_i} \cap \overline{e_{i+1}}$. The arc e_i crosses F if e_i properly crosses F or touches F. Let $\mathcal{F} = \langle F_1, \ldots, F_a \rangle$ be the sequence of cells in $A(\mathcal{R})$ that are crossed by $\langle e_1, \ldots, e_k \rangle$, in clockwise order: first the cells crossed by e_1 , then the cells crossed by e_2 , etc. The same cell may occur several times in \mathcal{F} , but each occurrence is due to one crossing edge e_i .

Since the vertices of $\operatorname{conv}(P)$ lie on the edges of $A(\mathcal{R})$, each cell $F_j \in \mathcal{F}$ is divided into at most two parts by the corresponding crossing edge e_i . We define the *outer region* Z_j as the component of $F_j \setminus e_i$ whose interior does not intersect $\operatorname{conv}(P)$. If F_j is touched by e_i , we call Z_j a *touched outer region* and F_j a *touched cell*. In this case, we have $Z_j = F_j$. The sequence $\mathcal{Z} = \langle Z_1, \ldots, Z_a \rangle$ is called the *outer zone* of $\operatorname{conv}(P)$ in $A(\mathcal{R})$. Each outer region $Z \in \mathcal{Z}$ is a (possibly unbounded) convex polygon. For a non-touched outer region Z, exactly one edge of Z belongs to the boundary of $\operatorname{conv}(P)$. We call it the supporting arc of Z. All other edges of Z are (possibly unbounded) parts of edges of $A(\mathcal{R})$. For a touched outer region Z, no edge is part of the boundary of conv(P). Instead, exactly one edge e of Z is intersected by $\operatorname{conv}(P)$. We split e into two subedges, each being a maximal connected component of $e \setminus \operatorname{conv}(P)$. The edges of Z consist of the two subedges of e and the other edges of $A(\mathcal{R})$ incident to Z. We call $e \cap \operatorname{conv}(P)$ the supporting vertex of Z. A vertex of a (touched or nontouched) outer region Z is a vertex of $A(\mathcal{R})$ incident to Z. In particular, the supporting vertex or the endpoints of the supporting arc are not vertices of Z.

The *complexity* of an outer region Z is defined as the number of edges of Z_j other than the supporting arc. The *complexity of the outer zone* Z is the sum of the complexities of the outer regions, see Fig. 2.

Lemma 2 The outer zone complexity is at most 8n.

Proof. Let ℓ_i be a line in \mathcal{R} . By construction, conv(P) intersects ℓ_i , so $\ell_i \setminus \text{conv}(P)$ consists of exactly two unbounded connected components, the two rays corresponding to ℓ_i . We orient these rays towards infinity, and we denote by $R = \langle r_1, \ldots, r_{2n} \rangle$ the sequence of all rays that correspond to lines in \mathcal{R} .

Consider an outer region Z. Every edge e of Z other than the supporting arc is part of a single ray from R, and we orient e in the same direction as the underlying ray. Now every vertex of Z has either (i) two outgoing incident edges (*out-out* vertex); (ii) two incoming incident edges (*in-in* vertex); or (iii) one incoming and one outgoing incident edge (*in-out* vertex).

Lemma 3 Let Z be an outer region. Then Z contains no out-out vertex and at most one in-in vertex. If Z has an in-in vertex, then Z is bounded.

Proof. Suppose that Z contains an out-out vertex v, and let r_1 and r_2 be the two rays with $v = r_1 \cap r_2$. Since Z lies in a cell of $A(\mathcal{R})$, Z is completely contained in the wedge W bounded by the subrays of r_1 and r_2 beginning in v. However, $\operatorname{conv}(P)$ is incident to the start vertices of r_1 and r_2 , so W does not contain $\operatorname{conv}(P)$. It follows that Z cannot be part of the outer zone, a contradiction; see Fig. 3(top).

Next, suppose that Z contains two in-in vertices v_1 and v_2 . Suppose further that v_1 comes before v_2 in clockwise order along Z after the supporting arc. All edges between v_1 and v_2 (in clockwise order) are oriented, and both v_1 and v_2 are in-in, so there is at least one out-out vertex between v_1 and v_2 ; see Fig. 3 (middle). We have just seen that this is impossible.

Finally, suppose that Z contains an in-in vertex v, and let r_1 and r_2 be the two rays with $v = r_1 \cap r_2$.

Figure 3: (top) A wedge W bounded by an out-outvertex v does not contain conv(P). (middle) There cannot be two in-in vertices. (bottom) The outer region Z that contains an in-in vertex v is bounded.

Figure 4: (top) The ray r is charged twice. (bottom) There cannot be two in-out vertices whose outgoing edges lie on the same side of a ray r.

Then Z is completely contained in the region that is bounded by the subrays of r_1 and r_2 from their respective starting points to v, and the boundary of $\operatorname{conv}(P)$ between those starting points. It follows that Z is bounded; see Fig. 3(bottom).

Lemma 4 There are at most 4n in-out vertices.

Proof. Let v be an in-out vertex and let r be the ray that supports the incoming edge of v. We charge v

to r, and we claim that every ray is charged at most twice in this manner; see Fig. 4(top). Indeed, suppose there is a ray r that supports incoming edges for three in-out vertices. Then r contains two in-out vertices v_1 and v_2 such that the outgoing edges for v_1 and v_2 lie on the same side of r. Suppose that v_1 comes before v_2 along r, and let r_1 be the ray supporting the outgoing edge from v_1 . Since the rays are directed towards infinity, r and r_1 bound an infinite wedge W with apex v_1 . Furthermore, the interior of W is disjoint from $\operatorname{conv}(P)$ and thus does not contain any outer region. This contradicts the assumption that the outgoing edge from v_2 extends into W; see Fig. 4 (bottom). Since there are 2n rays, the bound on the number of in-out vertices follows.

Let Z be an outer region and let n_Z be the number of vertices on Z. If Z is bounded, the complexity of Z is $1 + n_Z$. If Z is unbounded, the complexity of Z is $2 + n_Z$. Hence, the total complexity of the outer zone $\mathcal{Z} = \langle Z_1, \ldots, Z_a \rangle$ is $a + n_{i-o} + n_{i-i} + n_{o-o} + a_u$, where n_{i-o} , n_{i-i} , and n_{o-o} denotes the number of in-out, in-in, and out-out vertices, and a_u is the number of unbounded outer regions. By Claim 3, $n_{i-i} + n_{o-o} + a_u \leq a$, and by Claim 4, $n_{i-o} \leq 4n$. Thus, the complexity of \mathcal{Z} is at most $2a + 4n \leq 8n$, since $\operatorname{conv}(P)$ intersects every line of \mathcal{R} as most twice, so $a \leq 2n$.

Theorem 5 Let $\mathcal{R} = \langle \ell_1, \ldots, \ell_n \rangle$ be sequence of n planar lines in general position. Then $c(\mathcal{R}) = O(n^2 137^n)$.

Proof. Let P be a sequence of points restricted to \mathcal{R} and let $\mathcal{Z} = \{Z_1, \ldots, Z_a\}$ be the outer zone of $\operatorname{conv}(P)$. To reconstruct the outer zone, it suffices to know (i) the edge e of Z_1 that follows Z_1 's supporting arc in clockwise order; and (ii) for j = 1, ..., a, the complexity z_j of Z_j . Indeed, using this information, we can reconstruct the outer zone and obtain a set \mathcal{C} of candidate locations for the convex hull vertices as follows: C is initialized as the empty set. Starting from e, we walk for $z_1 - 1$ steps in clockwise direction along the boundary of the corresponding cell in $A(\mathcal{R})$ (when taking a step on an unbounded edge of the cell, we proceed to the other unbounded of the cell). Then we add the current edge e' to \mathcal{C} , if $e' \notin \mathcal{C}$, and cross to the neighboring cell of $A(\mathcal{R})$. Next, we continue for $z_2 - 1$ steps in clockwise direction along the boundary of the current cell. After that, we add the current edge into \mathcal{C} if the edge is not contained in \mathcal{C} , and change cells in $A(\mathcal{R})$. We continue until we reach the vertex on e again.

To reconstruct $\operatorname{conv}(P)$ from the candidate set, we need the information about the vertices of $\operatorname{conv}(P)$. Let $\mathcal{C}_{\ell} = \{e \in \mathcal{C} \mid e \subset \ell\}$, for $\ell = \mathcal{R}$. Since each line $\ell \in \mathcal{R}$ intersects the boundary of $\operatorname{conv}(P)$ at most twice, $|\mathcal{C}_{\ell}| \leq 2$. Let e_1 and e_2 be elements of \mathcal{C}_i . For $\ell \in \mathcal{R}$, an indicator $b_{\ell} \in \{1, 2, 3\}$ represents whether (1) $\operatorname{conv}(P)$ has a vertex in e_1 ; (2) $\operatorname{conv}(P)$ has a vertex in e_2 ; or (3) $\operatorname{conv}(P)$ has no vertex in ℓ .

Thus, for fixed a, the total number of combinatorially different convex hulls can be estimated as

 $2e_{\mathcal{R}}\cdot 3^n\cdot C_{\mathcal{Z}},$

where $e_{\mathcal{R}}$ denotes the number of edges of $A(\mathcal{R})$, the second term counts the number of indicator vectors (b_{ℓ}) , and $C_{\mathcal{Z}}$ denotes the number of *complexity vectors* $\langle c_1, \ldots, c_a \rangle$. We have $e_{\mathcal{R}} = O(n^2)$. Furthermore, by Lemma 2, the number of complexity vectors is bounded by the number of vectors (z_1, \ldots, z_a) with $z_i \in \{2, \ldots, n\}$ and $\sum_{i=1}^{a} z_i \leq 8n$, which is at most $\binom{8n-a-1}{a-1}$. Thus, for fixed a, the number of combinatorially different convex hulls is at most

$$O\left(n^2 3^n \binom{8n-a}{a}\right).$$

Since this expression grows exponentially with a for $a \in \{1, ..., 2n\}$, the total number of combinatorially different convex hulls is asymptotically dominated by the term for a = 2n, and it is at most

$$O\left(n^{2}3^{n}\binom{6n}{2n}\right) = O\left(n^{2}3^{n}2^{\frac{6n}{3}\log 3 + \frac{2\cdot 6n}{3}\log \frac{3}{2}}\right)$$
$$= O\left(n^{2}3^{n}3^{2n}(3/2)^{4n}\right) = O\left(n^{2}137^{n}\right).$$

Acknowledgments. This work was begun at the 17th Korean Workshop on Computational Geometry. We would like to thank the organizers and participants for creating a pleasant and productive research environment. W.Mulzer partially supported by DFG grant MU 3501/1. H.Kim supported by the Deutsche Forschungsgemeinschaft within the research training group 'Methods for Discrete Structures' (GRK 1408).

References

- K. Buchin, M. Löffler, P. Morin, and W. Mulzer. Preprocessing imprecise points for Delaunay triangulation: Simplified and extended. *Algorithmica*, 61(3):674–693, 2011.
- [2] O. Devillers. Delaunay triangulation of imprecise points, preprocess and actually get a fast query time. J. Comput. Geom. (JoCG), 2(1):30–45, 2011.
- [3] E. Ezra and W. Mulzer. Convex hull of points lying on lines in o(n log n) time after preprocessing. Comput. Geom. Theory Appl., 46(4):417–434, 2013.
- [4] M. van Kreveld, M. Löffler, and J. S. Mitchell. Preprocessing imprecise points and splitting triangulations. *SIAM Journal on Computing*, 39(7):2990–3000, 2010.
- [5] M. Löffler. Data imprecision in computational geometry. PhD thesis, 2009.
- [6] M. Löffler and J. Snoeyink. Delaunay triangulation of imprecise points in linear time after preprocessing. *Comput. Geom. Theory Appl.*, 43(3):234–242, 2010.