
A Time-Space Trade-off for Computing the k-Visibility

Region of a Point in a Polygon∗

Yeganeh Bahoo† Bahareh Banyassady‡ Prosenjit K. Bose§

Stephane Durocher† Wolfgang Mulzer‡

Abstract

Let P be a simple polygon with n vertices, and let q ∈ P be a point in P . Let
k ∈ {0, . . . , n− 1}. A point p ∈ P is k-visible from q if and only if the line segment
pq crosses the boundary of P at most k times. The k-visibility region of q in P is
the set of all points that are k-visible from q. We study the problem of computing
the k-visibility region in the limited workspace model, where the input resides in
a random-access read-only memory of O(n) words, each with Ω(log n) bits. The
algorithm can read and write O(s) additional words of workspace, where s ∈ N is a
parameter of the model. The output is written to a write-only stream.

Given a simple polygon P with n vertices and a point q ∈ P , we present
an algorithm that reports the k-visibility region of q in P in O(cn/s + c log s +
min{dk/sen, n log logs n}) expected time using O(s) words of workspace. Here,
c ∈ {1, . . . , n} is the number of critical vertices of P for q where the k-visibility
region of q may change. We generalize this result for polygons with holes and for
sets of non-crossing line segments.

Keywords: Limited workspace model, k-visibility region, Time-space trade-off

1 Introduction

Memory constraints on mobile devices and distributed sensors have led to an increasing
focus on algorithms that use their memory efficiently. One common approach to capture
this notion is the limited workspace model [3]. Here, the input is provided in a random-
access read-only array of O(n) words. Each word has Ω(log n) bits. Additionally, there
is a read/write memory with O(s) words, where s ∈ {1, . . . , n} is a parameter of the

∗A preliminary version appeared as Y. Bahoo, B. Banyassady, P. Bose, S. Durocher, and W. Mulzer.
Time-Space Trade-off for Finding the k-Visibility Region of a Point in a Polygon. Proc. 11th WALCOM,
2017. This work was partially supported by DFG project MU/3501-2, ERC StG 757609, and by the
Natural Sciences and Engineering Research Council of Canada (NSERC).
†Department of Computer Science, University of Manitoba, {bahoo, durocher}@cs.umanitoba.ca
‡Institut für Informatik, Freie Universität Berlin, {bahareh, mulzer}@inf.fu-berlin.de
§School of Computer Science, Carleton University, jit@scs.carleton.ca

1

model. This is called the workspace of the algorithm. The output is written to a write-
only stream.

Let P be a simple polygon with n vertices and n edges, and let q be a point in P .
Let k ∈ {0, . . . , n− 1}. A point p ∈ P is k-visible from q if and only if the line segment
pq has at most k proper intersections with the boundary ∂P of P (p and q do not count
toward the number of intersections).1 The set of k-visible points in P from q is called
the k-visibility region of q in P ; see Figure 1. We denote it by Vk(P, q). For k = 0, this
notion corresponds to classic visibility in polygons.

Visibility problems have played a major role in computational geometry since the
very beginning of the field. Thus, there is a rich history of previous results; see the
book by Ghosh [17] for an overview. The concept of 1-visibility first appeared in a work
by Dean et al. [12] as far back as 1988. In the related superman problem [20], we are
given two polygons P and G such that G ⊆ P , and a point p ∈ P \ G. The goal is
to find the minimum number of edges in P that need to be made opaque in order to
make G invisible from p. More general k-visibility, for k > 1, is more recent. Since
2009, this variant of visibility has been explored more widely due to its relevance in
wireless networks. In particular, it models the coverage areas of wireless devices whose
radio signals can penetrate up to k walls [2, 14]. This makes the problem particularly
interesting for the limited workspace model, since these wireless devices are typically
equipped with only a small amount of memory for computational tasks and may need
to determine their coverage region using the few resources at their disposal.

The notion of k-visibility has previously been considered in the context of art-gallery-
style questions [5,13,16,22] and in the definition of certain geometric graphs [11,15,18].
While the 0-visibility region is always connected, the k-visibility region may have several
components. Bajuelos et al. [4] present an algorithm for a slightly different notion of
k-visibility. It computes the region of the plane which is k-visible from q in the presence
of a simple polygon P with n vertices, using O(n2) time and O(n2) space. In this setting,
the k-visibility region is connected. We believe that our ideas are also applicable for this
notion and lead to an improvement of their result.2

Related work. The optimal classic algorithm for computing the 0-visibility region
needs O(n) time and O(n) space [19]. In the constant-workspace model (i.e., for s = 1),
the 0-visibility region of a point q ∈ P can be reported in O(nr̄) time, where r̄ is the
number of reflex vertices of P that occur in the output, as shown by Barba et al. [7]. This
algorithm scans the boundary ∂P in counterclockwise order, and it reports the maximal
subchains of ∂P that are 0-visible from q. More precisely, this works as follows: we find
a vertex vstart of P that is 0-visible from q. Walking from vstart, we then go until the
next reflex vertex vvis that is 0-visible from q, in counterclockwise direction. This takes

1For k = n− 1, the whole polygon is k-visible from q, so there is no reason to consider k > n− 1.
2The algorithm of Bajuelos et al. [4] essentially first computes a complete arrangement of quadratic

size that encodes the whole visibility information, and then extracts the k-visible region from this ar-
rangement. Our algorithms, on the other hand, use a plane sweep so that only the relevant parts of this
arrangement are considered. Thus, when O(n) words of workspace are available, we achieve a running
time of O(n logn).

2

O(n) time. The first intersection of the ray qvvis with ∂P is called the shadow of vvis.
Now, the end vertex of the maximal counterclockwise visible chain starting at vstart is
either vvis or its shadow. In each case, the next maximal visible chain starts at the other
of the two vertices (vvis or its shadow). Thus, we can find a maximal visible chain and
a new starting point in O(n) time. The number of iterations is r̄, the number of reflex
vertices that are 0-visible from q. This gives an algorithm with O(nr̄) running time and
O(1) workspace.

Now suppose that the number of reflex vertices in P with respect to q is r. If
the available workspace is O(s), for s ∈ {1, . . . , O(log r)}, Barba et al. [7] show how
to find the 0-visibility region of q in P in O(nr/2s + n log2 r) deterministic time or
O(nr/2s + n log r) expected time. Their method is recursive. It uses the previous
algorithm as the base, and in each step of the recursion, it splits a chain on ∂P into
two subchains that each contains roughly half of the visible reflex vertices of the original
chain. Since the 0-visibility region and the k-visibility region of q for k > 0 have different
properties, there seems to be no straightforward way to generalize this approach to our
setting. Later, Barba et al. [6] provided a general method for obtaining time-space trade-
offs for stack-based algorithms. This gives an alternative trade-off for computing the 0-
visibility region: there is an algorithm that runs in O(n2 log n/2s) time for s = o(log n)
and in n1+O(1/ log s) time for s ≥ log n.3 Again, this approach does not seem to be directly
applicable to our setting.

Abrahamsen [1] presents a constant workspace algorithm that computes the visible
part of one edge from another edge in a simple polygon P in O(n) time, where n is the
number of vertices in P . This gives an algorithm that needs O(mn) time and O(1) words
of workspace to compute the weak visibility region of one edge in P . The parameter m
denotes the size of the resulting weak visibility polygon.

Our Results. We look at the more general problem of computing the k-visibility
region of a simple polygon P for a given point q ∈ P . We give a constant workspace
algorithm for this problem, and we establish a time-space trade-off. Our first algorithm
runs in O(kn + cn) time using O(1) words of space, and our second algorithm requires
O(cn/s+c log s+min{dk/sen, n log logs n}) expected time and O(s) words of workspace.
Here, c ∈ {1, . . . , n} is the number of critical vertices of P for q, where the k-visibility
region of q may change. A precise definition is given later.

We generalize this result for polygons with holes and for sets of non-crossing line
segments. More precisely, we show that in a polygon P with h holes, we can re-
port the k-visibility region of a point q ∈ P in expected time O(cn/s + c log s +
min{dk/sen, n log logs n}) using O(s) words of workspace. In an arrangement of n pair-
wise non-crossing line segments, this takes O(n2/s+ n log s) deterministic time.

3The actual trade-off is more nuanced, but we simplified the bound to make it more digestible for the
casual reader.

3

v3

v1

v2

q

v4

v5v6

v7

v8

P

Figure 1: An example with k = 2. The hatched regions are not 2-visible for q. The
vertices v1, . . . , v8 are critical for q. More precisely, v1, v2, v3, v6 are start vertices, and
v4, v5, v7, v8 are end vertices. ∂P is partitioned into 8 disjoint chains, e.g, the counter-
clockwise chain v3v5.

2 Preliminaries and Definitions

Let s ∈ {1, . . . , n} be the amount of available workspace, measured in words. We assume
that the input polygon P is given as a sequence of n vertices in counterclockwise (CCW)
order along ∂P . The input also contains the query point q ∈ P and the visibility
parameter k ∈ {0, . . . , n − 1}. The aim is to report Vk(P, q), using O(s) words of
workspace. We require that the input is in weak general position, i.e., the query point q
does not lie on any line through two distinct vertices of P . Without loss of generality,
we assume that k is even: if k is odd, we can just compute Vk−1(P, q), which is the same
as Vk(P, q), by definition. The boundary ∂Vk(P, q) of Vk(P, q) consists of pieces of ∂P
and chords of P that connect two such pieces; see Figure 1.

We fix a coordinate system with origin q. For θ ∈ [0, 2π), we denote by rθ the ray that
emanates from q and has CCW-angle θ with the x-axis. An edge of P that intersects rθ
is called an intersecting edge of rθ. The edge list of rθ is defined as the list of intersecting
edges of rθ, sorted according to their intersection with rθ, in increasing distance from q.
The jth element of this list is denoted by eθ(j). We also say that eθ(j) has rank j in the
edge list of rθ, or simply on rθ.

The angle of a vertex v of P refers to the angle θ ∈ [0, 2π) at which rθ encounters
v. Suppose rθ stabs a vertex v of P . We call v a critical vertex if its incident edges lie
on the same side of rθ, and a non-critical vertex otherwise. We can check in constant
time whether a given vertex of P is critical. We use c to denote the number of critical
vertices in P . Let v be a critical vertex. We call v a start vertex if both incident edges lie
counterclockwise of rθ, and an end vertex otherwise; see Figure 1. A chain is a sequence
of edges of P (in CW or CCW order along ∂P) which starts at a start vertex and ends
at an end vertex and contains no other critical vertices. Note that every ray rθ intersects
each chain at most once. Thus, we will sometimes talk of chains that appear in the edge
list of a ray rθ.

Suppose we continuously increase θ from 0 to 2π. The edge list of rθ only changes

4

when rθ encounters a vertex v of P . This change only involves the two edges incident to
v. At a non-critical vertex v, the edge list is updated by replacing one incident edge of
v with the other. The other edges and their order in the edge list do not change. At a
critical vertex v, the edge list is updated by adding or removing both incident edges of
v, depending on whether v is a start vertex or an end vertex. The other edges and their
order in the edge list are not affected; see Figure 1. If rθ stabs a start vertex of P , we
define the edge list of rθ to be the edge list of rθ+ε, for a small enough ε > 0. If rθ stabs
an end vertex or a non-critical vertex of P , we define the edge list of rθ to be the edge
list of rθ−ε, for a small enough ε > 0.

For any θ ∈ [0, 2π), only the first k + 1 elements in the edge list of rθ are k-visible
from q in direction θ. While increasing θ, as long as rθ does not encounter a critical
vertex, the k-visible chains in direction θ do not change. However, if rθ encounters a
critical vertex v, then this may affect which chains are visible from q. This happens if at
least one of the incident edges to v is among the first k+1 elements in the edge list of rθ.
In other words, if v is k-visible from q, which means that v does not lie after eθ(k + 1)
on rθ. The next lemma shows that in this case a segment on rθ may occur on ∂Vk(P, q).

Lemma 2.1. Let θ ∈ [0, 2π) such that rθ stabs a k-visible end or start vertex v. Then,
the segment on rθ between eθ(k + 2) and eθ(k + 3) is an edge of Vk(P, q), provided that
these two edges exist.

Proof. Suppose that v is a k-visible end vertex. As mentioned above, right after rθ
encounters v, two consecutive edges are removed from the edge list of rθ. Since v is
k-visible, these edges are among the first k+ 2 entries in the edge list. Thus, right after
v, the k-visibility region of q extends to eθ(k + 3) (recall that the indices refer to the
situation just before v). Before v, the k-visibility region extends to eθ(k + 1). This
means that the segment between eθ(k + 2) and eθ(k + 3) on rθ belongs to ∂Vk(P, q). In
particular, this includes the case that eθ(k + 1) and eθ(k + 2) are incident to v. The
situation for a k-visible start vertex v is symmetric. Note that in this case, the indices
in the edge list refer to the situation just after v; see Figure 2.

Lemma 2.1 leads to the following definition: let θ ∈ [0, 2π) such that rθ stabs a
k-visible end or start vertex v. The segment on rθ between eθ(k + 2) and eθ(k + 3), if
these edges exist, is called the window of rθ; see Figure 2.

Observation 2.2. The k-visibility region Vk(P, q) has O(n) vertices.

Proof. The boundary ∂Vk(P, q) consists of subchains of ∂P and of windows. Thus, a
vertex of Vk(P, q) is either a vertex of P or an endpoint of a window. Since each critical
vertex causes at most one window, since each window has two endpoints, and since there
are at most n critical vertices, the total number of vertices of Vk(P, q) is O(n).

3 A Constant-Memory Algorithm

First, we assume that a constant amount of workspace is available. If the input polygon
P has no critical vertex, there is no window, and Vk(P, q) = P . This can be checked in

5

wq v rθ

w

q
v rθ

eθ(7)eθ(5)

eθ(5) eθ(7)(b)

(a)

Figure 2: An example with k = 4. The hatched regions are not 4-visible for q. (a) The
ray rθ encounters the end vertex v. The 4-visibility region of q right before v extends to
eθ(5) and right after v extends to eθ(7). (b) The ray rθ encounters the start vertex v.
The 4-visibility region of q right before v extends to eθ(7) and right after v extends to
eθ(5). The segment w in both figures is the window of rθ.

O(n) time by a simple scan through the input. Thus, we assume that P has at least one
critical vertex v0. Again, v0 can be found in O(n) time with a single scan. We choose
our coordinate system such that q is the origin and such that v0 lies on the positive
x-axis. We number the critical vertices of P as v0, v1, . . . , vc−1 in the order that the ray
rθ encounters them. Let θi be the angle for vi. We simplify our notation and write ri
instead of rθi , and we let ei(j) denote the jth entry in the edge list of the ray ri.

We start with the ray r0, and we find the edge e0(k + 1) in O(kn) time using O(1)
words of workspace. For this, we perform a simple selection subroutine as follows: we
scan the input k+1 times, and in each pass, we find the next intersecting edge of r0 until
e0(k + 1). If v0 is k-visible, i.e., if it is not after e0(k + 1) on r0, we report the window
of r0, as given by Lemma 2.1 (if it exists). Since the window is defined by e0(k+ 2) and
e0(k + 3), it can be found in two more scans over the input.

Next, we find v1 by a single scan of ∂P . Then, we determine e1(k + 1). This can
be done in O(n) time by using e0(k + 1) as a starting point: we know that if v0 is an
end vertex, the two incident chains of v0 disappear in the edge list of r1. If v1 is a start
vertex, the two incident chains of v1 appear in the edge list of r1. All other chains are
not affected, and they intersect r0 and r1 in the same order. Using this, we first find the
edge e′ that has rank k + 1 in the edge list of the ray rθ0+ε just after r0. Depending on
the type and position of v0, e

′ is either e0(k + 1) or e0(k + 3), and it can be found in
O(n) time. Then, by scanning ∂P starting from e′, we can find the edge e′′ on the chain
of e′ that intersects the ray rθ1−ε just before r1, again in O(n) time. Depending on the
type and position of v1, the edge e′′ is either e1(k + 1) or e1(k + 3). Thus, we can find
e1(k + 1) using e′′ in O(n) time; see Figure 3.

If v1 is k-visible, we report the window of r1 in O(n) time, as described above. Finally,
we report the subchains of ∂Vk(P, q) between r0 and r1 by scanning ∂P . More precisely,
we walk along ∂P in counterclockwise direction. Whenever we enter the counterclockwise
cone between r0 and r1, we check whether the intersection between ∂P and r0 or r1 occurs

6

q
e0(5)

e0(7)v0
q

e0(5)

e1(7)

v1

v1

v0

e1(5)
e1(5)

(a) (b)

r0

r1
r1

r0

Figure 3: Two cases for going from v0 to v1, with k = 4. (a) Both v0 and v1 are end
vertices. We use e0(5) to find e0(7) and follow the chain until e1(5). (b) Both v0 and v1
are start vertices. We follow the chain of e0(5) until e1(7), and then use it to find e1(5).
We report the window from e1(6) to e1(7).

at or before e0(k+ 1) or e1(k+ 1), respectively. If so, we report the subchain of ∂P until
we leave the cone again.

We repeat this procedure until all critical vertices have been processed; see Algo-
rithm 3.1. Here and in the following algorithms, if there are less than k+ 1 intersecting
edges on ri, we store the last intersecting edge together with its rank. We use this edge
instead of ei(k + 1), in the procedure above, to find ei+1(k + 1) or the last intersecting
edge of ri+1 and its rank. The number of critical vertices is c. For each of them, we
spend O(n) time. Additionally, the selection subroutine for v0 takes O(kn) time. This
leads to the following theorem:

Algorithm 3.1: The constant workspace algorithm for computing Vk(P, q)

input: Simple polygon P , point q ∈ P , k ∈ N
output: The boundary of the k-visibility region of q in P , ∂Vk(P, q)

1 if P has no critical vertex then
2 return ∂P
3 v0 ← a critical vertex of P
4 Find e0(k + 1) using selection
5 i← 0
6 repeat
7 if vi lies on or before ei(k + 1) on ri then
8 Report the window of ri (if it exists)
9 vi+1 ← the next counterclockwise critical vertex after vi

10 Find ei+1(k + 1) using ei(k + 1)
11 Report the part of ∂Vk(P, q) between ri and ri+1

12 i← i+ 1

13 until vi = v0

7

Theorem 3.1. Given a simple polygon P with n vertices, a point q ∈ P , and a parameter
k ∈ {0, . . . , n − 1}, we can report the k-visibility region of q in P in O(kn + cn) time
using O(1) words of workspace, where c is the number of critical vertices of P .

4 Time-Space Trade-Offs

In this section, we assume that we have O(s) words of workspace at our disposal, and we
show how to exploit this additional workspace to compute the k-visibility region faster.
We describe two algorithms. The first algorithm is simpler, and it is meant to illustrate
the main idea behind the trade-off. Our main contribution is in the second algorithm,
which is more complicated but achieves a better running time. In the first algorithm, we
process the vertices in angular order in contiguous batches of size s. In each iteration,
we find the next batch of s vertices, and using the edge list of the last processed vertex,
we construct a data structure that is used to output the windows of the batch. Using
the windows, we report ∂Vk(P, q) between the first and the last ray of the batch.4 In
the second algorithm, we improve the running time by skipping the non-critical vertices.
Specifically, in each iteration, we find the next batch of s adjacent critical vertices, and as
before, we construct a data structure for finding the windows. We need a more involved
approach in order to maintain this data structure. The next lemma shows how to obtain
the contiguous batches of vertices in angular order efficiently. The procedure is taken
from the work of Chan and Chen [9] (see the second paragraph in the proof of Theorem
2.1 in [9]).

Lemma 4.1. Suppose we are given a read-only array A with n pairwise distinct elements
from a totally ordered universe and an element x ∈ A. For any given parameter s ∈
{1, . . . , n}, there is an algorithm that runs in O(n) time and uses O(s) words of workspace
and that finds the set of the first s elements in A that follow x in the sorted order.

Proof. Let A>x be the subsequence of A that contains exactly the elements in A that are
larger than x. The algorithm makes a single pass over A>x and processes the elements
in batches. In the first step, we insert the first 2s elements of A>x into our workspace
(without sorting them). We select the median of these 2s elements using O(s) time and
space, and we remove the elements which are larger than the median. In the next step,
we insert the next batch of s elements from A>x into the workspace, and we again find
the median of the resulting 2s elements and remove those elements that are larger than
the median. We repeat the latter step until all the elements of A>x have been processed.
Clearly, at the end of each step, the s smallest elements of A>x that we have seen so far
reside in memory. Since the number of steps is O(n/s) and since each step needs O(s)
time, the running time of the algorithm is O(n). By construction, it uses O(s) words of
workspace.

4We emphasize that ∂Vk(P, q) is not necessarily reported in order, but we ensure that the union of
the reported line segments constitutes the boundary of the k-visibility region.

8

Lemma 4.2. Suppose we are given a read-only array A with n elements from a totally or-
dered universe and a number k ∈ {1, . . . , n−1}. For any given parameter s ∈ {1, . . . , n},
there is an algorithm that runs in O

(
dk/sen

)
time and uses O(s) words of workspace

and that finds the kth smallest element in A.

Proof. We again process the elements of A in batches. In the first step, we apply
Lemma 4.1 to find the first batch with the s smallest elements in A and to put it into
our workspace. This needs O(n) time and O(s) words of workspace. If k ≤ s, we select
the kth smallest element in the workspace in O(s) time; otherwise, we find the largest
element x in the workspace, and we apply Lemma 4.1 to find the set of s elements
following x. In step i, we apply Lemma 4.1 to find the ith batch of s elements in the
sorted order of A and to insert this set of elements into the workspace. If k ≤ i · s, we
select the (k− (i− 1)s)th smallest element in the workspace in O(s) time and we output
it; otherwise, we find the largest element in the workspace and we continue. The element
being sought is in the dk/seth batch. Therefore, we can find it in O

(
dk/sen

)
time using

O(s) words of workspace.

In addition to the simple algorithm in Lemma 4.2, there are several other results
on selection in the read-only model; see Table 1 of [10]. In particular, there is a
O(n log logs n) expected time randomized algorithms for selection using O(s) words of
workspace in the limited workspace model [8, 21]. Depending on k, s, and n, we will
choose one of the latter algorithms or the algorithm that we presented in Lemma 4.2.
In conclusion, the running time of selection in the limited workspace model using O(s)
words of workspace, denoted by Tselection, is O(min{dk/sen, n log logs n}) expected time.

4.1 First Algorithm: Processing All the Vertices

Let v0 be some vertex of P . We choose our coordinate system such that q is the origin
and such that v0 lies on the positive x-axis. We apply Lemma 4.1 to find the batch of s
vertices with the smallest positive angles, and we sort them in workspace in O(s log s)
time. Let v1, . . . , vs denote these vertices in sorted order. We use the selection subroutine
(with O(s) words of workspace) to find e0(k + 1) on r0, and if v0 is a k-visible vertex,
i.e., if it does not occur after e0(k + 1) on r0, we report its window (if it exists). Recall
that if there are less than k + 1 intersecting edges on r0, we store the last intersecting
edge together with its rank.

Then, we apply Lemma 4.1 four times in order to find the at most 4s+1 intersecting
edges with ranks in {k−2s+1, . . . , k+2s+1} on r0 (Lemma 4.1 can be applied, because
we have e0(k + 1) at hand). We insert these edges into a balanced binary search tree
T , sorted according to their ranks on r0. The edges in T are candidates for having rank
k + 1 on the next s rays r1, . . . , rs. This is because, as we explained in Section 3, if
ei(k + 1) belongs to the edge list of ri−1, there is at most one edge between ei−1(k + 1)
and ei(k + 1) in the edge list of ri−1. Therefore, if ei(k + 1) appears in the edge list of
r0, there are at most 2i− 1 edges between e0(k + 1) and ei(k + 1) in the edge list of r0.

Now the algorithm proceeds as follows: we go to the next vertex v1, and we update
T depending on the types of v0 and v1: if v0 is a non-critical vertex, we may need to

9

q

v1

v2

. . .

vs

v0

e1(3)

v3
e3(3)

e2(3)

e0(3)

r0

r1

r2

r3rs

Figure 4: The first batch v0, v1, . . . , vs of s vertices in angular order. The edge e1(3) is the
second neighbor to the right of e0(3) on r0, because v0 is an end vertex. The edge e2(3)
is the second neighbor to the left of e1(3) which is inserted in T before processing v2.
The edge e2(3) is exchanged with e3(3), after processing v3, because v3 is a non-critical
vertex.

exchange one incident edge of v0 with another in T ; if v0 is an end vertex, we may need
to remove its incident edges from T ; and if v1 is a start vertex, we may need to insert
its incident edges into T . In all other case, no action is necessary. The insertion and/or
deletion is performed only for the edges whose ranks are between the smallest and the
largest rank in T (with respect to r1). The update of T takes O(log s) time. Afterwards,
we can find e1(k+ 1) and the window of r1 (if it exists) in O(1) time, using the position
of e0(k+1) or its neighbors in T , as explained in Section 3. See Figure 4 for an example.

We repeat this procedure for v2, . . . , vs. We use, for i = 2, . . . , s, the binary search
tree T and the previous edge ei−1(k + 1) in order to determine the next edge ei(k + 1)
and the window of ri. This takes O(s log s) total time. Whenever we find and report a
window, we insert its endpoints into a balanced binary search tree W . This takes O(log s)
time per window. The endpoints in W are sorted according to their counterclockwise
order along ∂P . For reporting the part of ∂Vk(P, q) between r0 and rs, we use W and
the sequence E = e0(k + 1), e1(k + 1), . . . , es(k + 1) of edges of rank k + 1.

For an edge e of P , the 0s-segment of e is the subsegment of e that lies between
r0 and rs. If a 0s-segment does not contain an endpoint of a window, then it is either
completely k-visible or completely not k-visible. Thus, we can walk along ∂P and,
simultaneously, along the window endpoints in W . For each edge e of P , we can check
if the endpoints of the 0s-segment of e are k-visible or not. We can do this in O(1) time
using E. With the help of the parallel traversal of W , we can also check if there is a
window endpoint on e. This takes O(|we|) time, where |we| is the number of window
endpoints on e. With this information, we can report the k-visible subsegments of the
0s-segment of e. Since there are O(n) window endpoints by Observation 2.2, and since
we check each window endpoint once, it follows that we need O(n) time to report the
k-visible part of ∂P between r0 and rs.

After processing v0, . . . , vs, we apply Lemma 4.1 to find the next batch of s vertices
following vs in angular order. We sort them in O(s log s) time, using O(s) words of

10

workspace. The search tree T for the previous batch is not useful anymore, because
it does not necessarily contain any right or left neighbor of es(k + 1) on rs. Applying
Lemma 4.1 four times as before, we find the at most 4s+1 intersecting edges with ranks
in {k − 2s + 1, . . . , k + 2s + 1} on rs, and we insert them into T . Then, as before, for
each s < i ≤ 2s, we find ei(k + 1) and its corresponding window while maintaining T ,
W , and E. After that, we report the k-visible part of ∂P between rs and r2s, where r2s
is the ray for the last vertex in the batch, in sorted order. If n is not divisible by s, the
last batch wraps around, taking the indices modulo n, but we report only the part of
∂Vk(P, q) before rn = r0; see Algorithm 4.1.

Algorithm 4.1: Computing ∂Vk(P, q) using O(s) words of workspace

input: Simple polygon P , point q ∈ P , k ∈ N, 1 ≤ s ≤ n
output: The boundary of k-visibility region of q in P , ∂Vk(P, q)

1 v0 ← a vertex of P
2 E ← 〈e0(k + 1)〉 (using the selection subroutine with O(s) workspace)
3 T , W ← an empty balanced binary search tree
4 i← 0
5 repeat
6 vi+1, . . . , vi+s ← sorted list of s vertices following vi in angular order
7 T ← at most 4s+ 1 edges with rank in {k − 2s+ 1, . . . , k + 2s+ 1} on ri
8 for j = i to i+ s− 1 do
9 if vj lies on or before ej(k + 1) on rj then

10 Report the window of rj (if it exists)
11 Insert the endpoints of the window into W (according to their position

on ∂P)

12 Update T according to the types of vj and vj+1

13 E.append(ej+1(k + 1)) (find it using ej(k + 1) and T)

14 Report the part of ∂Vk(P, q) between ri and rmin{i+s,n} (using W and E)

15 i← i+ s

16 until i ≥ n

Overall, we need O(n+s log s) time for a batch. We repeat this procedure for O(n/s)
iterations, until all vertices are processed. Moreover, we run the selection subroutine in
the first batch. Thus, the running time of the algorithm is O(n/s(n+s log s))+Tselection.
Since Tselection is dominated by the other terms, we obtain the following theorem.

Theorem 4.3. Let s ∈ {1, . . . , n}. Given a simple polygon P with n vertices in a
read-only array, a point q ∈ P and a parameter k ∈ {0, . . . , n − 1}, we can report the
k-visibility region of q in P in O(n2/s+ n log s) time using O(s) words of workspace.

4.2 Second Algorithm: Processing only the Critical Vertices

As in Section 4.1, we process the vertices in batches, but now we focus only on the
critical vertices. The new algorithm is similar to the algorithm in Section 4.1, but it

11

q

v1

. . .

vs

v0

v2

e0(4)e0(1) r0

r1

r2rs

Figure 5: The first batch v0, v1, . . . , vs of s critical vertices in angular order. The non-
critical endpoint of e0(1) is between r1 and r2, so e0(1) will be replaced in T right before
processing v2. The non-critical endpoint of e0(4) is between r0 and r1, so e0(4) will be
replaced in T right before processing v1.

handles the data structure for the intersecting edges differently. In each iteration, we
find the next batch of s critical vertices, and we sort them in O(s log s) time using O(s)
words of workspace. As in the previous algorithm, we construct a data structure T that
contains the possible candidates for the edges of rank k+ 1 on the rays for the s critical
vertices of the batch. In each step, we process the next critical vertex. We use T to
find the corresponding window, and we update T . To update T efficiently, we use an
auxiliary data structure Taux; see below. After finding all the windows of the batch, we
report the k-visible part of ∂P between the first and the last ray of the batch.

As in Section 3, if P has no critical vertex, then Vk(P, q) = P . This can be checked
in O(n) time by a simple scan through the input. Thus, we let v0 be some critical vertex,
and we choose our coordinate system such that q is the origin and such that v0 lies on
the positive x-axis. In the first iteration, we compute v1, . . . , vs, the list of s critical
vertices after v0, sorted in angular order. Using Lemma 4.1 and a traditional sorting
algorithm, this takes O(n+s log s) time and O(s) words of workspace. We find e0(k+1)
using our selection subroutine, and the at most 4s + 1 intersecting edges with rank in
{k− 2s+ 1, . . . , k+ 2s+ 1} on r0. We insert them into a balanced binary search tree T ,
ordered according to their rank on r0. This takes Tselection +O(n+ s log s) time. Then,
for each edge e in T , we determine whether it has a non-critical endpoint between r0
and rs. We insert all these non-critical endpoints into a balanced binary search tree
Taux, sorted according to their angle. The vertices in Taux have cross-pointers to their
corresponding edges in T . We can construct Taux in O(s log s) time using O(s) words of
workspace. We use Taux to determine which edges in T need to be updated between two
critical vertices; see Figure 5.

Now, to find e1(k + 1), we update T so that it contains the edge list of r1. This is
done as follows: for each non-critical vertex v in Taux that lies between r0 and r1, we
walk along the chain C containing v to find the edge e of C that intersects r1. The edge
e exists, since there is no critical vertex between r0 and r1 that could be the endpoint

12

of the chain C. If the endpoint of e that lies after r1 is non-critical, we insert it into
Taux. Furthermore, we replace the corresponding edge of v in T with e. This takes
O(s log s+ n1) time, where n1 is the number of non-critical vertices between r0 and r1.
Then, we update T and Taux according to the types of v0 and v1, as in the previous
algorithm: if v0 is an end vertex, we remove the two incident edges from T , and if v1
is a start vertex, we insert the two incident edges of v1 into T . This can be done in
O(log s) time. Now, T contains at most 4s+ 1 intersecting edges of r1, and we can find
e1(k + 1) using the chain of e0(k + 1) and its neighbors in T in O(1) time. We repeat
this procedure for all critical vertices in the batch. In total, processing the changes in
T that are caused by critical and non-critical vertices of the batch takes O(s log s+ n′)
time, where n′ is the number of non-critical vertices that lie between r0 and rs.

While processing the batch, we insert all ei(k+1), 0 ≤ i ≤ s, into E. Also, whenever
we find and report a window, we insert its endpoints, sorted according to their counter-
clockwise order along ∂P , into a balanced binary search tree W , in O(log s) time. After
processing all the vertices of the batch, we use W and E to report the part of ∂Vk(P, q)
between r0 and rs, as in Section 4.1. The only difference is that now we keep track of the
visibility of the whole chains between r0 and rs instead of individual edges. As before,
this takes O(n) time.

In the subsequent iteration, we repeat the same procedure for the next batch of s
critical vertices. We repeat until all critical vertices are processed; see Algorithm 4.2.
By construction, each non-critical vertex is handled in exactly one iteration. Since there
are O(c/s) iterations, updating T takes O(c log s+n) time in total. All together, we get
a total running time of O(cn/s+ c log s), in addition to Tselection in the first batch. This
leads to the following theorem:

Theorem 4.4. Let s ∈ {1, . . . , n}. Given a simple polygon P with n vertices in a
read-only array, a point q ∈ P and a parameter k ∈ {0, . . . , n − 1}, we can report the
k-visibility region of q in P in O(cn/s+c log s+min{dk/sen, n log logs n}) expected time
using O(s) words of workspace, where c is the number of critical vertices of P for q.

5 Variants and Extensions

Our results can be extended in several ways; for example, computing the k-visibility
region of a point q inside a polygon P , where P may have holes, or computing the k-
visibility region of a point q in a planar arrangement of n non-crossing segments inside a
bounding box (the bounding box is only for bounding the k-visibility region). Concerning
the first extension, all the properties we showed to hold for the algorithms for simple
polygons also hold for the case with holes. The only noteworthy issue is the use of ∂P to
report the k-visible segments of ∂P . In the case of polygons with holes, after walking on
the outer part of ∂P , we walk on the boundaries of the holes one by one and we apply
the same procedures for them. If there is no window on the boundary of a hole, then it
is either completely k-visible or completely non-k-visible. For such a hole, we check if it
is k-visible and, if so, we report it completely. This leads to the following corollary:

13

Algorithm 4.2: Computing ∂Vk(P, q) using O(s) words of workspace

input: Simple polygon P , point q ∈ P , k ∈ N, 1 ≤ s ≤ n
output: The boundary of k-visibility region of q in P , ∂Vk(P, q)

1 v0 ← a critical vertex of P
2 E ← 〈e0(k + 1)〉 (using the selection subroutine with O(s) workspace)
3 T , Taux, W ← an empty balanced binary search tree
4 i← 0
5 repeat
6 vi+1, . . . , vi+s ← sorted list of s critical vertices following vi in angular order
7 T ← at most 4s+ 1 edges with rank in {k − 2s+ 1, . . . , k + 2s+ 1} on ri
8 Taux ← for each edge in T , its non-critical endpoint between ri and ri+s (if it

exists)
9 for j = i to i+ s− 1 do

10 if vj lies on or before ej(k + 1) on rj then
11 Report the window of rj (if it exists)
12 Insert the endpoints of the window into W (according to their position

on ∂P)

13 for any v ∈ Taux between rj and rj+1 do
14 Find the edge e on v’s chain that intersects rj+1

15 Exchange the corresponding edge of v in T with e
16 If e has a non-critical endpoint between rj+1 and ri+s, insert it into

Taux
17 Update T according to the types of vj and vj+1

18 E.append(ej+1(k + 1)) (find it using ej(k + 1) and T)

19 Report the part of ∂Vk(P, q) between ri and rmin{i+s,n} (using W and E)

20 i← i+ s

21 until i ≥ n

14

Corollary 5.1. Let s ∈ {1, . . . , n}. Given a polygon P with h ≥ 0 holes and n vertices
in a read-only array, a point q ∈ P and a parameter k ∈ {0, . . . , n − 1}, we can report
the k-visibility region of q in P in O(cn/s+ c log s+ min{dk/sen, n log logs n}) expected
time using O(s) words of workspace. Here, c is the number of critical vertices of P for
the point q.

Concerning the second problem, for a planar arrangement of n non-crossing segments
inside a bounding box, the output consists of the k-visible parts of the segments. All
the segments endpoints are critical vertices and should be processed. In the parts of the
algorithm where a walk on the boundary is needed, a sequential scan of the input leads
to similar results. Similarly, there may be some segments with no window endpoints.
For these, we only need to check visibility of an endpoint to decide whether they are
completely k-visible or completely non-k-visible. This leads to the following corollary:

Corollary 5.2. Let s ∈ {1, . . . , n}. Given a set S of n non-crossing planar segments
in a read-only array that lie in a bounding box B, a point q ∈ B and a parameter
k ∈ {0, . . . , n− 1}, there is an algorithm that reports the k-visible subsets of segments in
S from q in O(n2/s+ n log s) time using O(s) words of workspace.

6 Conclusion

We have proposed algorithms for a class of k-visibility problems in the limited workspace
model, and we have provided time-space trade-offs for these problems. We leave it as
an open question whether the presented algorithms are optimal. Also, it would be
interesting to see whether there exists an output sensitive algorithm whose running time
depends on the number of windows in the k-visibility region, instead of the critical
vertices in the input polygon.

Finally, our ideas are also applicable to the slightly different definition of k-visibility
used by Bajuelos et al. [4]. Thus, our techniques can be used to improve their result,
achieving O(n log n) running time if O(n) words of workspace are available.

References

[1] M. Abrahamsen. An optimal algorithm computing edge-to-edge visibility in a simple
polygon. In Proc. 25th Canad. Conf. Comput. Geom. (CCCG), 2013.

[2] O. Aichholzer, R. Fabila Monroy, D. Flores Peñaloza, T. Hackl, C. Huemer, J. Ur-
rutia Galicia, and B. Vogtenhuber. Modem illumination of monotone polygons. In
Proc. 25th European Workshop Comput. Geom. (EWCG), pages 167–170, 2009.

[3] T. Asano, K. Buchin, M. Buchin, M. Korman, W. Mulzer, G. Rote, and A. Schulz.
Memory-constrained algorithms for simple polygons. Comput. Geom. Theory Appl.,
46(8):959–969, 2013.

15

[4] A. L. Bajuelos, S. Canales, G. Hernández-Peñalver, and A. M. Martins. A hy-
brid metaheuristic strategy for covering with wireless devices. Journal of Universal
Computer Science, 18(14):1906–1932, 2012.

[5] B. Ballinger, N. Benbernou, P. Bose, M. Damian, E. D. Demaine, V. Dujmovic,
R. Y. Flatland, F. Hurtado, J. Iacono, A. Lubiw, P. Morin, V. Sacristán Adinolfi,
D. L. Souvaine, and R. Uehara. Coverage with k-transmitters in the presence of
obstacles. Journal of Combinatorial Optimization, 25(2):208–233, 2013.

[6] L. Barba, M. Korman, S. Langerman, K. Sadakane, and R. I. Silveira. Space-time
trade-offs for stack-based algorithms. Algorithmica, 72(4):1097–1129, 2015.

[7] L. Barba, M. Korman, S. Langerman, and R. I. Silveira. Computing a visibility
polygon using few variables. Comput. Geom. Theory Appl., 47(9):918–926, 2014.

[8] T. M. Chan. Comparison-based time-space lower bounds for selection. ACM Trans-
actions on Algorithms, 6(2):26, 2010.

[9] T. M. Chan and E. Y. Chen. Multi-pass geometric algorithms. Discrete Comput.
Geom., 37(1):79–102, 2007.

[10] T. M. Chan, J. I. Munro, and V. Raman. Selection and sorting in the restore
model. In Proc. 25th Annu. ACM-SIAM Sympos. Discrete Algorithms (SODA),
pages 995–1004, 2014.

[11] A. M. Dean, W. Evans, E. Gethner, J. D. Laison, M. A. Safari, and W. T. Trotter.
Bar k-visibility graphs: Bounds on the number of edges, chromatic number, and
thickness. In Proc. 13th Int. Symp. Graph Drawing (GD), pages 73–82, 2005.

[12] J. A. Dean, A. Lingas, and J.-R. Sack. Recognizing polygons, or how to spy. The
Visual Computer, 3(6):344–355, 1988.

[13] D. Eppstein, M. T. Goodrich, and N. Sitchinava. Guard placement for efficient
point-in-polygon proofs. In Proc. 23rd Annu. Sympos. Comput. Geom. (SoCG),
pages 27–36, 2007.

[14] R. Fabila-Monroy, A. R. Vargas, and J. Urrutia. On modem illumination problems.
In Proc. 13th Encuentros de Geometŕıa Computacional (EGC), 2009.

[15] S. Felsner and M. Massow. Parameters of bar k-visibility graphs. J. Graph. Alg.
Appl., 12(1):5–27, 2008.

[16] R. Fulek, A. F. Holmsen, and J. Pach. Intersecting convex sets by rays. Discrete
Comput. Geom., 42(3):343–358, 2009.

[17] S. K. Ghosh. Visibility algorithms in the plane. Cambridge University Press, 2007.

[18] S. G. Hartke, J. Vandenbussche, and P. Wenger. Further results on bar k-visibility
graphs. SIAM J. on Discrete Mathematics, 21(2):523–531, 2007.

16

[19] B. Joe and R. B. Simpson. Corrections to Lee’s visibility polygon algorithm. BIT
Numerical Mathematics, 27(4):458–473, 1987.

[20] N. Mouawad and T. C. Shermer. The superman problem. The Visual Computer,
10(8):459–473, 1994.

[21] J. I. Munro and V. Raman. Selection from read-only memory and sorting with
minimum data movement. Theoret. Comput. Sci., 165(2):311–323, 1996.

[22] J. O’Rourke. Computational geometry column 52. ACM SIGACT News, 43(1):82–
85, 2012.

17

