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Abstract. Suppose we want to compute the Delaunay triangulation of a
set P whose points are restricted to a collectionR of input regions known
in advance. Building on recent work by Löffler and Snoeyink [21], we show
how to leverage our knowledge of R for faster Delaunay computation.
Our approach needs no fancy machinery and optimally handles a wide
variety of inputs, eg, overlapping disks of different sizes and fat regions.

1 Introduction

Data imprecision is a fact of life that is often ignored in the design of geometric
algorithms. The input for a typical computational geometry problem is a finite
point set P in R2, or more generally Rd. Traditionally, one assumes that P is
known exactly, and indeed, in the 1980s and 1990s this was often justified, as
much of the input data was hand-constructed for computer graphics or simu-
lations. Nowadays, however, the input is often sensed from the real world, and
thus inherently imprecise. This leads to a growing need to deal with imprecision.

An early model for imprecise geometric data, motivated by finite precision of
coordinates, is ε-geometry [17]. Here, the input is a traditional point set P and
a parameter ε. The true point set is unknown, but each point is guaranteed to
lie in a disk of radius ε. Even though this model has proven fruitful and remains
popular due to its simplicity [2, 18], it may often be too restrictive: imprecision
regions could be more complicated than disks, and their shapes and sizes may
even differ from point to point, eg, to model imprecision from different sources
or independent imprecision in different input dimensions. The extra freedom in
modeling leads to more involved algorithms, but still many results are available.

1.1 Preprocessing

The above results assume that the imprecise input is given once and simply has
to be dealt with. While this holds in many applications, it is also often possible to



get (more) precise estimates of the points, but they will only become available
later, or they come at a higher cost. For example, in the update complexity
model [16, 6], each data point is given imprecisely at the beginning but can
always be found precisely at a certain price.

One model that has received attention lately is that of preprocessing an
imprecise point set so that some structure can be computed faster when the
exact points become available later. Here, we consider triangulations: let R be
a collection of n planar regions, and suppose we know that the input has ex-
actly one point from each region. The question is whether we can exploit our
knowledge of R to quickly triangulate the exact input, once it is known. More
precisely, we want to preprocess R into a data structure for imprecise triangula-
tion queries: given a point pi from each region Ri ∈ R, compute a triangulation
of {p1, . . . , pn}. There are many parameters to consider; not only do we want
preprocessing time, space usage, and query time to be small, but we would also
like to support general classes of input regions and obtain “nice” (ie, Delaunay)
triangulations. In the latter case, we speak of imprecise Delaunay queries.

Held and Mitchell [19] show that if R consists of n disjoint unit disks, it
can be preprocessed in O(n log n) time into a linear-space data structure that
can answer imprecise triangulation queries in linear time. This is improved by
Löffler and Snoeyink [21] who can handle imprecise Delaunay queries with the
same parameters. Both results generalize to regions with limited overlap and
limited difference in shape and size—as long as these parameters are bounded,
the same results hold. However, no attempt is made to optimize the dependence
on the parameters.

Contrarily, van Kreveld, Löffler and Mitchell [23] study imprecise triangula-
tion queries when R consists of n disjoint polygons with a total of m vertices,
and they obtain an O(m)-space data structure with O(m) query and O(m logm)
preprocessing time. There is no restriction on the shapes and sizes of the individ-
ual regions (they do not even strictly have to be polygonal), only on the overlap.
As these works already mention, a similar result for imprecise Delaunay queries
is impossible. Djidjev and Lingas [15] show that if the points are sorted in any
one direction, it still takes Ω(n log n) time to compute their Delaunay triangu-
lation. If R consists of vertical lines, the only information we could precompute
is exactly this order (and the distances, but they can be found from the order
in linear time anyway). All the algorithms above are deterministic.

1.2 Contribution

Our main concern will be imprecise Delaunay queries. First, we show that the
algorithm by Löffler and Snoeyink [21] can be simplified considerably if we are
happy with randomization and expected running time guarantees. In particular,
we avoid the need for linear-time polygon triangulation [7], which was the main
tool in the previous algorithm.

Second, though fast Delaunay queries for arbitrary regions are out of reach,
we show that for realistic input we can get a better dependence on the realism
parameters than in [21]. In particular, we consider k, the largest depth in the



arrangement of R, and βf , the smallest fatness of any region in R (defined for
a region R as the largest β such that for any disk D with center in R and
intersecting ∂R, area(R∩D) ≥ β · area(D)). We can preprocess R in O(n log n)
time into a data structure of O(n) size that handles imprecise Delaunay queries
in O(n log(k/βf )) time. We also consider βt, the smallest thickness (defined as
the fraction of the outcircle of a region occupied by it) of any region in R, and
r, the ratio between the diameters of the largest and the smallest region in R.
With the same preprocessing time and space, we can answer imprecise Delaunay
queries in O(n(log(k/βt) + log log r)) time. For comparison, the previous bound
is O(nkr2/β2

t ) [21]. Finally, we achieve similar results in various other realistic
input models.

We describe two different approaches. The first, which gives the same result
as [21], is extremely simple and illustrates the general idea. The second approach
relies on quadtrees [12, Chapter 14] and is a bit more complicated, but generalizes
easily. We extensively use a technique that has emerged just recently in the
literature [9, 10, 23] and which we call scaffolding : in order to compute many
related structures quickly, we first compute a “typical” structure—the scaffold
Q—in a preprocessing phase. To answer a query, we insert the input points into
Q and use a hereditary algorithm [9] to remove the scaffold efficiently. We need
an algorithm for hereditary Delaunay triangulations:

Theorem 1 (Chazelle et al [8], see also [9]). Let P,Q ⊆ R2 be two planar
point sets with |P ∪ Q| = m, and suppose that DT (P ∪Q) is available. Then
DT (P ) can be computed in expected time O(m). ut

2 Unit disks: simplified algorithm

We begin with a very simple randomized algorithm for the original setting: given
a sequence R = 〈R1, . . . , Rn〉 of n disjoint unit disks, we show how to preprocess
R in O(n log n) time into a linear-space data structure that can handle imprecise
Delaunay queries in O(n) expected time.

Let ci denote the center of Ri and for r > 0 let Rri be the disk centered at ci
with radius r. The preprocessing algorithm creates a point set Q that for each
Ri contains ci and 7 points equally spaced on ∂R2

i , the boundary of R2
i . Then

it computes DT (Q), the Delaunay triangulation of Q, and stores it. Since Q
has 8n points, this takes O(n log n) time (eg, [12, Section 9]). We will need the
following useful lemma about Q.

Lemma 1. Let X be a point set with at most one point from each Ri. Any disk
D of radius r contains at most 9(r + 3)2 points of Q ∪X.

Proof. Let c be the center of D. Any point of Q ∪X in D comes from some Ri
with ‖c− ci‖ ≤ r + 2. The number of such Ri is at most the number of disjoint
unit disks that fit into a disk of radius r+ 3. A simple volume argument bounds
this this by (r+3)2. As each Ri contributes up to 9 points, the claim follows. ut



Given the sequence P = 〈p1, . . . , pn〉 of precise points, we construct DT(P ) by
first inserting P into DT (Q) to obtain DT(Q∪P ) and then applying Theorem 1
to remove Q. To compute DT (Q ∪ P ), we proceed as follows: for each point pi
we perform a (breadth-first or depth-first) search among the triangles of DT(Q∪
{p1, . . . , pi−1}) that starts at some triangle incident to ci and never leaves Ri,
until we find the triangle ti that contains pi. Then we insert pi into DT(Q ∪
{p1, . . . , pi−1)) by making it adjacent to the three vertices of ti and performing
Delaunay flipping [12, Section 9.3]. This takes time proportional to the number of
triangles visited plus the degree of pi in DT (Q ∪ {p1, . . . , pi}). The next lemma
allows us to bound these quantities.

Lemma 2. Let Y = Q ∪ X where X is any point set and consider DT (Y ).
Then, for any point p ∈ Y ∩Ri, all neighbors of p in DT (Y ) lie inside R3

i .

Proof. Suppose there is an edge pq with p ∈ R1
i and q 6∈ R3

i , see Figure 1.
Then there is a disk C with p and q on its boundary and having no point of
Y in its interior. The disk C contains a (generally smaller) disk C ′ tangent
to R1

i and to ∂R3
i . The intersection of C ′ with ∂R2

i is a circular arc of length
8 arcsin(1/4) > 4π/7. But this is a contradiction since one of the 7 points on
∂R2

i must lie in C ′ ⊆ C, so C cannot be empty. ut
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Fig. 1. C′ covers a constant fraction of the boundary of R2
i and hence meets Q.

The next two lemmas bound the number of triangles visited while inserting pi.

Lemma 3. Any triangle of DT (Q ∪ {p1, . . . , pi}) that intersects Ri has all three
vertices in R3

i .

Proof. Let t be a triangle with a vertex q outside of R3
i that intersects Ri. The

outcircle C of t intersects Ri, has q on its boundary, and contains no point of
Q ∪ {p1, . . . , pi} in its interior. As in Lemma 2, we see that C contains one of
the 7 points on the boundary of R2

i , so t cannot be Delaunay. ut



Lemma 4. At most 644 triangles of DT (Q ∪ {p1, . . . , pi}) intersect Ri.

Proof. The triangles that intersect Ri form the of faces of a planar graph G. By
Lemma 3 every vertex of G lies inside R3

i , so by Lemma 1, there are at most
v = 9(3 + 3)2 = 324 vertices, and thus at most 2v − 4 = 644 faces. ut

The final lemma bounds the degree of pi at the time it is inserted.

Lemma 5. The degree of pi in DT(Q ∪ {p1, . . . , pi}) is at most 324.

Proof. By Lemma 2, all the neighbours of pi are inside R3
i and by Lemma 1

there are at most 9(3 + 3)2 = 324 points of Q ∪ {p1, . . . , pi} in R3
i . ut

Thus, by Lemmas 4 and 5 each point of P can be inserted in constant time,
so we require O(n) time to construct DT(Q∪P ). A further O(n) expected time
is then needed to obtain DT (P ) using Theorem 1. This yields the desired result.

Theorem 2. Let R = 〈R1, . . . , Rn〉 be a sequence of disjoint planar unit disks.
In O(n log n) time and using O(n) space we can preprocess R into a data struc-
ture that can answer imprecise Delaunay queries in O(n) expected time.

3 Disks of different size: quadtree-approach

We now extend Theorem 2 to differently-sized disks using a somewhat more in-
volved approach. The main idea is the same: to answer a Delaunay query P we
first construct DT (Q′ ∪ P ) for an appropriate set Q′ and split it using Theo-
rem 1. The difference is that now we do not immediately precompute Q′, but we
derive a quadtree from R that can be used to find Q′ and DT (Q′ ∪ P ) efficiently
later on. With the additional structure of the quadtree we can handle disks of
different sizes. The following lemma follows from the empty circle property of
Delaunay triangulations.

Lemma 6 (see Rajan [22]). Let P ⊆ R2 be a planar n-point set, and let T be
a triangulation of P with no obtuse angle. Then T is Delaunay. ut

A free quadtree T is an ordered rooted tree that corresponds to a hierarchical
decomposition of the plane into axis-aligned square boxes. Each node v of T has
an associated box Bv, such that (i) if w is a descendent of v in T , then Bw ⊆ Bv;
and (ii) if v and w are unrelated, then Bv ∩Bw = ∅. The size of a node v is the
side length of Bv. For each node v, its cell Cv is the part of Bv not covered by
v’s children. The cells are pairwise disjoint and their union covers the root. A
standard quadtree is a free quadtree with two kinds of nodes: internal nodes have
exactly four children of half their size, and leaf nodes have no children. In this
section we also allow cluster nodes, which have a single child that is smaller than
its parent by at least a large constant factor 2c, see Figure 2(a). They ensure
that the complexity of T stays linear [4, Section 3.2]. Given P ⊆ R2, we say that
T is a quadtree for P if (i) |P ∩Cv| ≤ 1 for each leaf v of T ; (ii) P ∩Cv = ∅ for
all nonleaves v; (iii) P is contained in T ’s root box and sufficiently far away from
its boundary; and (iv) T has O(|P |) nodes, see Figure 2(b). The next lemma is
a variant of a theorem by Bern et al [4] (see also [5]).



(a) (b)

Fig. 2. (a) A quadtree. The lower left box contains a cluster node. (b) The quadtree
is a valid quadtree for this set of points.

Lemma 7. Let P ⊆ R2 be a planar n-point set, and let T be a quadtree for P .
Then, given P and T , we can find DT(P ) in expected time O(n).

Proof. First, we extend T into a quadtree T ′ that is (i) balanced and (ii) sepa-
rated, ie, (i) no leaf in T ′ shares an edge with a leaf whose size differs by more
than a factor of two and (ii) each non-empty leaf of T ′ is surrounded by two
layers of empty boxes of the same size. This can be done by a top-down traver-
sal of T , adding additional boxes for the balance condition and by subdividing
the non-empty leaves of T to ensure separation. If after c subdivision steps a
non-empty leaf B still does not satisfy separation, we place a small box around
the point in B and treat it as a cluster, in which separation obviously holds.

Given T ′, we obtain a non-obtuse Steiner triangulation T for P with O(n)
additional vertices through a sequence of local manipulations, as described by
Bern et al [4, Section 3]. Since all these operations involve constantly many
adjacent cells, the total time for this step is linear. By Lemma 6, T is Delaunay,
and we can use Theorem 1 to extract DT (P ) in O(n) expected time. ut

To apply Lemma 7 we need to preprocess R into a quadtree T such that any
cell Cv in T intersects only constantly many disks. While we could consider the
disks directly, we will instead use a quadtree T for a point set Q representing the
disks. For each disk we include its center and top-, bottom-, left- and rightmost
points in Q. Then, T can be constructed in O(n log n) time [4].

Lemma 8. Every cell Cv of T is intersected by O(1) disks in R.

Proof. If v is an internal node, then Cv = ∅. If v is a leaf, then Cv = Bv and if
a disk D intersects Bv without meeting a corner of Bv, then Bv either contains
D’s center or one of its four extreme points [13]. Thus, Cv intersects at most 5
disks, one for each corner and one for a point of Q it contains.

Now suppose v is a cluster node with child w. Then Cv = Bv \ Bw, and
we must count the disks that intersect Bv, do not cover a corner of Bv, and
have an extreme point or their center in Bw. For this, consider the at most
four orthogonal neighbors of Bw in Bv (ie, copies of Bw directly to the left,



to the right, above and below Bw). As we just argued, each of these neighbors
meets O(1) disks, and every disk D with an extreme point or center in Bw that
intersects Cv also meets one of the orthogonal neighbors (if D has no extreme
point or center in an orthogonal neighbor and does not cover any of its corners,
it has to cover its center), which implies the claim.5 ut

Theorem 3. Let R = 〈R1, . . . , Rn〉 be a sequence of disjoint planar disks (of
possibly different size). In O(n log n) time and using O(n) space we can prepro-
cess R into a data structure that can answer imprecise Delaunay queries in O(n)
expected time.

Proof. We construct Q and the quadtree T for Q as described above. For each
Ri we store a list with the leaves in T that intersect it. By Lemma 8, the total
size of these lists, and hence the complexity of the data structure, is linear. Now
we describe how queries are handled: let P = 〈p1, . . . , pn〉 be the input sequence.
For each pi, we find the node v of T such that pi ∈ Cv by traversing the list
for Ri. This takes linear time. Since each cell of T contains at most constantly
many input points, we can turn T into a quadtree for P in linear time. We now
compute DT(P ) via Lemma 7. ut

4 Overlapping Disks: Deflated Quadtrees

We extend the approach to disks with limited overlap. Now R contains n planar
disks such that no point is covered by more than k disks. Aronov and Har-
Peled [1] show that k can be approximated up to a constant factor in O(n log n)
time. It is easily seen that imprecise Delaunay queries take Ω(n log k) time in
the worst case, and we show that this bound can be achieved.

The general strategy is the same as in Section 3. Let Q be the 5n represen-
tative points for R, and let T be a quadtree for Q. As before, T can be found
in time O(n log n) and has complexity O(n). Now we use T to build a k-deflated
quadtree T ′. For an integer λ > 0, a λ-deflated quadtree T ′ for a point set Q
has the same general structure as the quadtrees from the previous section, but
it has lower complexity: each node of T ′ can contain up to λ points of Q in its
cell and there are O(n/λ) nodes. We have four different types of nodes: (i) leaves
are nodes v without children, with up to λ points in Cv; (ii) internal nodes v
have four children of half their size covering their parent, and Cv = ∅; (iii) clus-
ter nodes are, as before, nodes v with a single—much smaller—child, and with
no points in Cv; (iv) finally, a deflated node v has only one child w—possibly
much smaller than its parent—and additionally Cv may contain up to λ points.
Deflated nodes are a generalization of cluster nodes and ensure a more rapid
progress in partitioning the point set Q.
5 There is a slight subtlety concerning clusters which are close to the boundary of Bv:

we require that either Bw shares an edge with Bv or that Bw’s orthogonal neighbors
are fully contained in Bv. This is ensured by positioning the clusters appropriately.
The additional points on Bv’s boundary can easily be handled, eg, by building a
corresponding cluster in the adjacent box.



Algorithm DeflateTree(v)

1. If nv ≤ λ, return the tree consisting of v.
2. Let Tv be the subtree rooted in v, and let z be a node in Tv with the smallest value

nz such that nz > nv − λ. Note that z could be v.
3. For all children w of z, let T ′

w = DeflateTree(w).
4. Build a tree T ′

v by picking v as the root, z as the only child of v, and linking the
trees T ′

w to z. If v 6= z, then v is a deflated node. Return T ′
v as the result.

Algorithm 1: Turn a quadtree into a λ-deflated quadtree.

Given a quadtree T for Q, a λ-deflated quadtree T ′ can be found in linear
time. For every node v in T , compute nv = |Bv∩Q|. This takes O(n) time. Then,
T ′ is obtained by applying DeflateTree (Algorithm 1) to the root of T . Since
DeflateTree performs a simple top-down traversal of T , it takes O(n) time.

Lemma 9. A λ-deflated quadtree T ′ produced by Algorithm 1 has O(n/λ) nodes.

Proof. Let T ′′ be the subtree of T ′ that contains all nodes v with nv > λ, and
suppose that every cluster node in T ′′ has been contracted with its child. We will
show that T ′′ has O(n/λ) nodes, which implies the claim, since no two cluster
nodes are adjacent, and because all the non-cluster nodes in T ′ which are not in
T ′′ must be leaves. We count the nodes in T ′′ as follows: (i) since the leaves of
T ′′ correspond to disjoint subsets of Q of size at least λ, there are at most n/λ
of them; (ii) the bound on the leaves also implies that T ′′ contains at most n/λ
nodes with at least 2 children; (iii) the number of nodes in T ′′ with a single child
that has at least 2 children is likewise bounded; (iv) when an internal node v
has a single child w that also has only a single child, then by construction v and
w together must contain at least λ points in their cells, otherwise they would
not have been two separate nodes. Thus, we can charge λ/2 points from Q to v,
and the total number of such nodes is 2n/λ. ut

Now let T ′ be a k-deflated quadtree for Q. By treating deflated nodes like
clusters and noting that the center and corners of each box of T ′ can be contained
in at most k disks, the same arguments as in Lemma 8 lead to the next lemma:

Lemma 10. Every cell Cv of T ′ is intersected by O(k) disks of R. ut

Theorem 4. Let R = 〈R1, . . . , Rn〉 be a sequence of planar disks such that no
point is covered by more than k disks. In O(n log n) time and using O(n) space
we can preprocess R into a data structure that can answer imprecise Delaunay
queries in O(n log k) expected time.

Proof. It remains to show how to preprocess T ′ to handle the imprecise Delaunay
queries in time O(n log k). By Lemmas 9 and 10, the total number of disk-cell
incidences in T ′ is O(n). Thus, in O(n) total time we can find for each R ∈ R
the list of cells of T ′ it intersects. Next, we determine for each node v in T ′

the portion Xv of the original quadtree T inside the cell Cv and build a point



location data structure for Xv. Since Xv is a partial quadtree for at most k
points, it has complexity O(k), and since the Xv are disjoint, the total space
requirement and construction time are linear. This finishes the preprocessing.

To handle an imprecise Delaunay query, we first locate the input points P
in the cells of T ′ just as in Theorem 3. This takes O(n) time. Then we use the
point location structures for the Xv to locate P in T in total time O(n log k).
Now we turn T into a quadtree for P in time O(n log k), and find the Delaunay
triangulation in time O(n), as before. ut

5 Realistic Input Models

In this section we show that the results of the previous sections readily generalize
to many realistic input models [14]. This is because a point set representing the
regions—like the point set Q for the disks—exists in such models, eg, for fat
regions. Thus, we directly get an algorithm for fat regions for which we provide
a matching lower bound. We then demonstrate how to handle situations where
a set like Q cannot be easily constructed by the example of thick regions.

Let β be a constant with 0 < β ≤ 1. A planar region R is β-fat if for any
disk D with center in R and intersecting ∂R, area(R ∩ D) ≥ β · area(D). A
planar region R is β-thick if area(R) ≥ β · area(Dmin(R)), where Dmin denotes
the smallest disk enclosing R. Let κ be a positive integer. A set Q of points is
called a κ-guarding set (against axis-aligned squares) for a set of planar regions
R, if any axis-aligned square not containing a point from Q intersects at most κ
regions from R. For instance, the point set Q considered in the previous sections
is a 4-guarding set for disjoint disks [13]. It is also a 4k-guarding set for disks
which do not cover any point more than k times.

The definition of a κ-guarding set Q does not explicitly state how many
regions a square containing points of Q might intersect, but a square containing
m points of Q can intersect only 4κm regions [13, Theorem 2.8]. Now, assume
each point in Q is assigned to a region in R. We call Q a κ-strong-guarding
set of R if any square containing m points of Q intersects at most κ regions
plus the regions assigned to the m points. This definition is motivated by the
following relation between fatness and guardability. A set of planar regions R
is κ-cluttered if the corners of the bounding rectangles for R constitute a κ-
guarding set. De Berg et al prove that a set of disjoint β-fat regions is 16/β-
cluttered [14, Theorem 3.1, Theorem 3.2]. Their argument actually shows strong
guardability (cf [11, Lemma 2.8]) and easily extends to overlapping regions.

Lemma 11. For a set of β-fat regions R that cover no point more than k times,
the corners of the bounding rectangles of R constitute a (16k/β)-strong-guarding
set for R (with corners assigned to the corresponding region). ut

Since the argument in the proof of Lemma 8 (and of Lemma 10) is based on
axis-aligned squares, it directly generalizes to the quadtree for a guarding set.

Lemma 12. Let R be a set of regions and Q a κ-strong-guarding set for R. Let
T ′ be a κ-deflated quadtree of Q. Then any cell of T intersects O(κ) regions. ut



We say that R is traceable if we can find the m incidences between the n regions
in R and the l cells of a deflated quadtree T in O(l + m + n) time and the
bounding rectangles of the regions in R in O(n) time. For example, this holds
for polygonal regions of total complexity O(|R|).

Theorem 5. Let R = 〈R1, . . . , Rn〉 be a sequence of traceable planar regions
with linear-size κ-strong-guarding set Q, where κ is not necessarily known, but
Q is. In O(n log n) time and using O(n) space we can preprocess R into a
data structure that can answer imprecise Delaunay queries in O(n log κ) expected
time.

Proof. Lemma 12 would directly imply the theorem if κ was known. We can
find a suitable λ-deflated tree with λ ∈ O(κ) by an exponential search on λ, i.e.,
for a given λ we build a λ-deflated tree and check whether any box intersects
more than cλ regions for a constant c ≥ 6. Recall that a deflated quadtree can
be computed from a quadtree in linear time. Thus, finding a suitable λ takes
O(n log n) time. ut

For overlapping fat regions Lemma 11 and Theorem 5 imply the following result.

Corollary 1. Let R = 〈R1, . . . , Rn〉 be a sequence of planar traceable β-fat
regions such that no point is covered by more than k of the regions. In O(n log n)
time and using O(n) space we can preprocess R into a data structure that can
answer imprecise Delaunay queries in O(n log(k/β)) expected time.

We next show that the O(n log(1/β)) bound for disjoint fat regions is optimal.

Theorem 6. For any n and 1/β ∈ [1, n], there exists a set R of O(n) planar
β-fat rectangles such that imprecise Delaunay queries for R take Ω(n log(1/β))
steps in the algebraic computation tree model.

Proof. We adapt a lower bound by Djidjev and Lingas [15, Section 4]. Wlog,
β−1 is an integer. Consider the problem β-1-closeness: we are given k = βn-
sequences x1, . . . ,xk, each containing β−1 real numbers in [0, β−2], and we need
to decide whether any xi contains two numbers with difference at most 1. Any al-
gebraic decision tree for β-1-closeness has cost Ω(n log(1/β)): let W ′ ⊆ Rn be
defined as W ′ =

{
(x1, . . . ,xk) | |xij − xil| > 1 for 1 ≤ i ≤ k; 1 ≤ j 6= l ≤ β−1

}
,

where xij is the jth coordinate of xi. LetW = W ′∩[0, β−2]n. SinceW has at least
(β−1!)βn connected components, Ben-Or’s lower bound [3, Theorem 5] implies
the claim. Now, we construct R. Let ε = β/10 and consider the β−1 +2 intervals
on the x-axis Bε[0], Bε[β/3], Bε[2β/3], . . . , Bε[1/3], Bε[1/2], where Bε[x] denotes
the one-dimensional closed ε-ball around x. Extend the intervals into β3-fat rect-
angles with side lengths 2ε and β−2. These rectangles constitute a group. Now,
R consists of k congruent groups G1, . . . , Gk; sufficiently far away from each
other. Let x1, . . . ,xk be an instance of β-1-closeness. The input P consists of
k sets P1, . . . , Pk, one for each xi. Each Pi contains β−1 + 2 points, one from
every rectangle in Gi: Pi = 〈(0, 0), (1/(3α), xi1), . . . , (1/3, xiβ−1), (1/2, 0)〉 + vi,
where vi denotes the displacement vector for Gi. Clearly, P can be computed in



O(n) time. Djidjev and Lingas [15] argue that either xi contains two numbers
with difference at most 1/3, or the Voronoi cells for Pi intersect the line through
the left-most rectangle in Gi according to the sorted order of xi. In either case,
we can decide β-1-closeness in linear time from DT (P ), as desired. ut

Finally, we consider β-thick regions. Although thickness does not give us a
guarding set, we can still preprocess R for efficient imprecise Delaunay queries if
the ratio between the largest and smallest region in R is bounded (we measure
the size by the radius of the smallest enclosing circle).

Theorem 7. Let R be a sequence of n β-thick k-overlapping regions such that
the ratio of the largest and the smallest region in R is r. In O(n log n) time we
can preprocess R into a linear-space data structure that can answer imprecise
Delaunay queries in time O(n(log(k/β) + log log r)).

Proof. Subdivide the regions into log r groups such that in each group the radii
of the minimum enclosing circles differ by at most a factor of 2. For each group
Ri, let ρi be the largest radius of a minimum enclosing circle for a region in
Ri. We replace every region in Ri by a disk of radius ρi that contains it. This
set of disks is at most (2k/β)-overlapping, so we can build a data structure
for Ri in O(ni log ni) time by Theorem 4. To answer an imprecise Delauany
query, we handle each group in O(ni log(k/β)) time and then use Kirkpatrick’s
algorithm [20] to combine the triangulations in time O(n log log r). ut

6 Conclusions

We give an alternative proof of the result by Löffler and Snoeyink [21] with a
much simpler, albeit randomized, algorithm that avoids heavy machinery. Our
approach yields optimal results for overlapping disks of different sizes and fat
regions. Furthermore, it enables us to leverage known facts about guarding sets
to handle many other realistic input models. We need randomization only when
we apply Theorem 1 to remove the scaffold, and finding a deterministic algorithm
for hereditary Delaunay triangulations remains an intriguing open problem.
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