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Abstract
Let V ⊂ R2 be a set of n sites in the plane. The unit disk graph DG(V ) of V is the graph with
vertex set V in which two sites v and w are adjacent if and only if their Euclidean distance is at
most 1.

We develop a compact routing scheme R for DG(V ). The routing scheme R preprocesses
DG(V ) by assigning a label `(v) to every site v in V . After that, for any two sites s and t, the
scheme R must be able to route a packet from s to t as follows: given the label of a current
vertex r (initially, r = s) and the label of the target vertex t, the scheme determines a neighbor
r′ of r. Then, the packet is forwarded to r′, and the process continues until the packet reaches
its desired target t. The resulting path between the source s and the target t is called the routing
path of s and t. The stretch of the routing scheme is the maximum ratio of the total Euclidean
length of the routing path and of the shortest path in DG(V ), between any two sites s, t ∈ V .

We show that for any given ε > 0, we can construct a routing scheme for DG(V ) with
diameter D achieving stretch 1 + ε and label size O(logD log3 n/ log logn) (the constant in the
O-Notation depends on ε). In the past, several routing schemes for unit disk graphs have been
proposed. Our scheme is the first one to achieve poly-logarithmic label size and arbitrarily small
stretch without storing any additional information in the packet.

1 Introduction

The routing problem is a well-known problem in distributed graph algorithms [10, 13]. We
are given a graph G and want to preprocces it by assigning labels to each node of G such
that the following task can be solved: a data packet is located at a source node and has to
be routed to a target node. A routing scheme should have several properties. First, routing
must be local: a node can only use the label of the target node as well as its own local
information to compute a neighbor to which the packet is sent next. Second, the routing
should be efficient: the ratio of the routed path and the shortest path — the stretch factor
— should be close to 1. Finally, the routing scheme should be compact: the size of the labels
(in bits) must be small.

Many routing schemes use additional headers. The header contains mutable information
and is stored in the data packet. Thus, the header moves with the data packet through the
graph. The usage of an additional header makes it possible to implement recursive routing
strategies or to remember information from past positions of the packet.

A trivial solution to solve the routing problem is to store the complete shortest path tree
in every label. Then it is easy to route the data packets along a shortest path. However,
such a routing scheme is not compact. Moreover, Peleg and Upfal [13] proved that in general
graphs, any routing scheme that achieves a constant stretch factor must store a polynomial
number of bits for each node.

Nevertheless, there is a rich collection of routing schemes for general graphs [1, 2, 5, 7, 8,
14, 15]. For example, the scheme by Roditty and Tov [15] uses labels of size mnO(1/

√
logn)
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Figure 1 The disks in the unit disk graph have diameter 1 and there is an edge between two
midpoints if and only if their corresponding disks intersect.

and routes a packet from s to t on a path of length O
(
k∆ +m1/k), where ∆ is the shortest

path distance between s and t, k > 2 is any fixed integer, n is the number of nodes, and m
is the number of edges. Their routing scheme needs headers of poly-logarithmic size. There
are routing schemes for special graph classes that achieve better bounds on the label size
and stretch factor [3, 9, 16–18].

Our graph class of interest comes from the study of mobile and wireless networks. These
networks are usually modeled as unit disk graphs [6] with diameter D. There are already
several routing schemes for unit disk graphs [11,20]. We present the first headerless routing
scheme with label size O(ε−4 logD log3 n/ log logn) that achieves stretch 1 + ε.

2 Preliminaries

Let G = (V,E) be a simple, undirected, and connected graph with n vertices. In our model
the graph G is embedded in the Euclidean plane and an edge uv is weighted according to the
Euclidean distance |uv| of its endpoints, for all , uv ∈ V . We write d(u, v) for the (weighted)
shortest path distance between the vertices u, v ∈ V . Moreover, every vertex v has a unique
identifier vid ∈ {0, . . . , n − 1}. In a unit disk graph DG(V ) of V , there is an edge between
two nodes u, v ∈ V if and only if |uv| ≤ 1, see Figure 1. We use D to denote the diameter
maxu,v∈V d(u, v) of DG(V ). We assume that DG(V ) is connected. Hence, D ≤ n− 1.

Routing Schemes. Let G = (V,E) be a graph. A routing scheme R for G consists of a
labeling function `(v) ∈ {0, 1}+. It serves as the address of the node v in G and might
contain some more information about the topology of G. Furthermore, R has a routing
function σ : `(V )× `(V )→ V . The routing function σ describes the behavior of the routing
scheme, as follows: assume a data packet is located at a vertex s ∈ V and must be routed to
a destination t ∈ V . Then, σ(`(s), `(t)) has to compute a vertex to which the data packet is
forwarded. Now, let v0 = s and vi+1 = σ(`(vi), `(t)), for i ≥ 0. The sequence (vi)i∈N is called
routing sequence. The routing scheme R is correct, if and only if for all distinct s, t ∈ V ,
there is a number m ∈ N such that vj = t, for all j ≥ m, and vj 6= t, for all j = 0, . . . ,m−1.
If R is correct for G, then δ(s, t) =

∑m
i=1 |vi−1vi| is called the routing length between s and

t (in G). The stretch of the routing scheme is the largest ratio δ(s, t)/d(s, t) over all distinct
vertices s, t ∈ V . The goal is to achieve a routing scheme that minimizes the stretch factor
as well as the number of bits stored in the labels.
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3 Building Blocks

The Distance Oracle of Chan and Skrepetos. Our routing scheme is based on the recent
approximate distance oracle for unit disk graphs by Chan and Skrepetos [4]: we are given an
n-vertex unit disk graph with diameter D and a parameter ε ≥ D−1. Chan and Skrepetos
show how to compute an efficient data structure that can answer approximate distance
queries in DG(V ): given two vertices s, t ∈ V , compute a number θ ∈ R with d(s, t) ≤ θ ≤
d(s, t) +O(εD). The main tool for this data structure is a decomposition tree T for DG(V )
with the following properties.

Every node µ of T is assigned two sets port(µ) and V (µ) such that port(µ) ⊆ V (µ) ⊆ V .
The subgraph of DG(V ) induced by V (µ) is connected and the vertices in port(µ) are
called portals.
If µ is the root, then V (µ) = V . If µ is a leaf, then V (µ) = port(µ).
If µ is an inner node with k children σ1, . . . , σk, the sets port(µ), V (σ1), . . . , V (σk) are
pairwise disjoint, and we have V (σi) ⊆ V (µ), for 1 ≤ i ≤ k.
The height of T is in O(logn), and for every node µ of T , we have | port(µ)| ∈ O(1/ε).

To state the final (and most important) property of T , we need some additional notation.
The properties of T so far imply that the portal sets of two different nodes in T are disjoint.
For every portal p, we let µ(p) be the unique node in T with p ∈ port(µ(p)). Moreover, let
µ be a node of T and s, t ∈ V (µ). We denote by dµ(s, t) the shortest path distance between
s and t in the subgraph of DG(V ) induced by V (µ). Now, the decomposition tree of Chan
and Skrepetos has the property that for every pair of vertices s, t ∈ V , if we set

θ(s, t) = min
p portal

s,t∈V (µ(p))

dµ(p)(s, p) + dµ(p)(p, t)

then
θ(s, t) ≤ d(s, t) +O(εD). (1)

Simple Routing Schemes. Moreover, we need the following known routing schemes. The
first routing scheme is due to Fraigniaud and Gavoille [9] as well as Thorup and Zwick [18].
The second routing scheme is based on an idea described by Kaplan et al. [11]. For the
proof, we refer to [12].

I Lemma 1. Let T be an n-vertex tree with arbitrary edge weights. There is a routing
scheme for T with label size O(log2 n/ log logn) and stretch 1.

I Lemma 2. Let DG(V ) be an n-vertex unit disk graph with diameter D and 0 < ε ≤ D−1.
There is a routing scheme for DG(V ) with label size O

(
ε−4 logn

)
and stretch 1 +O(ε).

4 A Routing Scheme with Additive Stretch

In this section we present a routing scheme that is efficient for DG(V ) if the diameter D is
large. Let ε > D−1 and c = n · (εD)−1. We define xc = bx · cc, for each x ∈ R+

0 . Let T be
the decomposition tree of DG(V ), as explained in Section 3.

The idea of the routing scheme is as follows: We use T to compute a set of shortest path
trees whose union covers DG(V ) such that every vertex is contained in at most O(ε−1 logn)
trees. In each step of the routing process, we use the source and target labels to select a
good shortest path tree and route in this tree.
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Figure 2 Left: If t is in Tp(s), i.e., θ(s, t; p) = dµ(p)(t, p) − dµ(p)(p, s), we route away from p.
Middle and Right: If t is not in Tp(s), i.e., θ(s, t; p) = dµ(p)(t, p) + dµ(p)(p, s), we route towards p.
The right picture suggests to define θ(s, t; p) as dµ(p)(s, p) − dµ(p)(t, p). This does not influence the
guarantees of our routing scheme but would lead to more cases.

The Labels. Let v ∈ V , and let p be a portal with v ∈ V (µ(p)). We compute the shortest
path tree Tp for p in V (µ(p)) and enumerate its vertices in postorder. The postorder number
of v in Tp is denoted by rp(v). Next, the subtree of Tp rooted at v is called Tp(v) and we
use lp(v) to denote the smallest postorder number in Tp(v). Thus, a vertex w ∈ V (µ(p))
is in the subtree Tp(v) if and only if rp(w) ∈ [lp(v), rp(v)]. Finally, we apply the tree
routing from Lemma 1 to Tp and denote by `p(v) the corresponding label of v. We store
(pid, dµ(p)(v, p)c, lp(v), rp(v), `p(v)) in `(v), for every portal p. The rounding of the distances
is necessary since we are not allowed to store real values. For the proof of the next lemma
see [12].

I Lemma 3. For every vertex v ∈ V , we have | `(v)| ∈ O
(

log3 n

ε log logn

)
.

The Routing Function. We are given the labels `(s) and `(t) for the current vertex s

and the target vertex t. First, we identify all portals p with s, t ∈ V (µ(p)). We can
do this by identifying all vertices p such that the entry (pid, dµ(p)(s, p)c, lp(s), rp(s), `p(s))
is in `(s) and the entry (pid, dµ(p)(t, p)c, lp(t), rp(t), `p(t)) is in `(t). Next, let θ(s, t; p) =
dµ(p)(t, p)+dµ(p)(p, s), if t is not in the subtree Tp(s), and θ(s, t; p) = dµ(p)(t, p)−dµ(p)(p, s),
otherwise; see Figure 2 for an illustration of the two cases. Let popt be the portal that
minimizes θ(s, t; p) among all portals p. Then, it is easy to see, that θ(s, t; popt) ≤ θ(s, t).
Hence, θ(s, t; popt) is a good approximation for the distance between s and t and we would
like to route in Tpopt . However, the routing function cannot compute the optimal portal
popt, since we do not have direct access to the exact distances. Instead, we use the rounded
distances to compute a near-optimal portal. We define θc(s, t; p) = dµ(p)(t, p)c+dµ(p)(p, s)c,
if t is not in the subtree Tp(s), and θc(s, t; p) = dµ(p)(t, p)c − dµ(p)(p, s)c, otherwise. Let p∗
be the portal that lexicographically minimizes (θc(s, t; p), pid), among all portals p. We call
p∗ the s-t-portal and set θc(s, t) = θc(s, t; p∗). Observe that the s-t-portal can be computed
by using only the labels of s and t. The routing function now uses the labels `p∗(s) and
`p∗(t) to compute the next vertex in Tp∗ and forwards the data packet to this vertex.

Analysis. The following lemma shows that we make progress after each step.

I Lemma 4. Let s be the current vertex, t the target vertex, and suppose that the routing
scheme sends the packet from s to v. Moreover, let p be the s-t-portal and q be the v-t-portal.
We have



W. Mulzer and M. Willert 54:5

1. θc(s, t) ≥ θc(v, t) + |sv|c,
2. if θc(s, t) = θc(v, t) then pid ≥ qid, and
3. if θc(s, t) = θc(v, t) and pid = qid then v is on a shortest path from s to t in Tq.

The intuition is as follows. First of all, the rounded approximate distance to the target
will never increase (1st statement). If this values does not change, then the next tree in
which we route can not have a larger index (2nd statement). If this index does not change,
then we decrease the hop distance to our target (3rd statement). Hence, we made progress.
The first statement of Lemma 4 can now be used to obtain the stretch factor and therefore
the main theorem. The proof uses Inequality 1 and can be found in [12].

I Theorem 5. Let DG(V ) be an n-vertex unit disk graph with diameter D and ε > D−1.
There is a routing scheme for DG(V ) with label size O

(
ε−1 log3 n/ log logn

)
and additive

stretch O(εD).

Theorem 5 and Lemma 2 can now be used as building blocks to get a routing scheme with
stretch factor 1 + ε. To achieve this we use a well-known technique that groups the vertices
of DG(V ) using a hierarchy of sparse covers with exponentially increasing diameter [4]. In
the end, each node is contained in at most O(logD) different groups. Each group gives a
connected subgraph of DG(V ) on which we apply one of the two routing schemes, depending
on whether ε ≥ D−1 or not. It is then easy to route in these subgraphs. For the details and
the analysis we refer to [12]. Nevertheless, we claim the following.

I Theorem 6. Let DG(V ) be an n-vertex unit disk graph with diameter D and ε > 0. There
is a routing scheme for DG(V ) with label size O

(
ε−4 logD log3 n/ log logn

)
and stretch 1+ε.

5 Conclusion

We presented an efficient, compact, and headerless routing scheme for unit disk graphs. It
achieves near-optimal stretch 1 + ε and uses O(logD log3 n/ log logn) bits in the label.

It would be interesting to see if this result can be extended to disk graphs in general. If
the radii of the disks are unbounded, the decomposition of Chan and Skrepetos cannot be
applied immediately. However, the case of bounded radii is still interesting, and even there,
it is not clear how the method by Chan and Skrepetos generalizes.

Finally, let us compare our routing scheme to the known schemes. The model of the
routing scheme of Kaplan et al. [11] is very close to ours. They claim that the neighborhood
can be checked locally without wasting storage. We also use this assumption in the details
of Lemma 2. The scheme was generalized to non-unit disk graphs with constant bounded
radii [19]. Nevertheless, in unit disk graphs, we achieve the same stretch factor and still have
additional information of poly-logarithmic size. The main advantage of our routing scheme
is that we do not use any additional headers. Therefore, whenever a data packet arrives at
a node, it is not necessary to know what happened before or where the packet came from.
In the routing scheme of Kaplan et al., a data packet visits a node more than once.

The routing scheme of Yan et al. [20] uses headers as well, but they are only computed in
the first step and do not change again. The idea of their routing scheme is similar to ours: the
graph is covered by O(logn) different trees. When the routing starts, the labels of the source
and the target are used to determine the identity of a tree and an O(logn)-bit label of the
target within this tree. Finally, they completely forget the original labels and route within
this tree until they reach t. Their stretch is bounded by a constant. Our routing scheme
can also be turned into this model, but we have O(logD logn) different trees that cover the

EuroCG’20
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unit disk graph and the label of a vertex in one of the trees has size O(log2 n/ log logn).
Nevertheless, we achieve the near optimal stretch 1 + ε. A more thorough analysis of their
and our model will lead to a more complicated comparison. This does not fit here, so we
refer the reader to have a look into [12].
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