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—— Abstract

Suppose we are given a set S C R? of n point sites in the plane, each with an associated radius
rs > 0, for s € S. The disk graph D(S) for S is the undirected graph with vertex set S and an
edge between s and ¢ in S if and only if |st| < rs + 7y, i.e., if the disks with radius rs around s
and with radius r; around ¢ intersect. The transmission graph T(S) for S is the directed graph
with vertex set S and an edge from s to ¢t if and only if |st| < 7, i.e., if the disk with radius r;
around s contains the site ¢.

We consider two problems concerning cycles in disk graphs and transmission graphs. First,
we show that the weighted girth of a disk graph can be found in O(nlogn) expected time, almost
matching the bounds for planar graphs. Second, we present an algorithm for finding a directed
triangle in a transmission graph in O(nlog®n) time. Thus, these problems are much easier for
disk and transmission graphs than for general graphs.

1 Introduction

Despite decades of research, many seemingly simple problems on graphs continue to stump
researchers. For example, given a simple graph G = (V, E), the best “combinatorial”
algorithm to determine whether G contains a triangle (i.e., a cycle of length three) requires
O(n® polyloglog(n)/log* n) time [13], only a slight improvement over the trivial algorithm.
Using fast matrix multiplication, the problem can be solved in O(n*) time, where w < 2.37287
is the matrix multiplication exponent [7,8]. For planar graphs, the problem becomes much
easier: here, the unweighted girth (i.e., the length of the shortest cycle) can be found in
linear time [5].

Two interesting graph classes that invite further study are disk graphs and transmission
graphs. In both cases, we are given a set S C R? of n point sites in the plane. Each site s € S
has an associated radius rs > 0 and an associated disk D, centered around s with radius 7.
The disk intersection graph D(S) for S is the undirected graph on S where two sites s,t € S
are adjacent if and only if their associated disks intersect, i.e., if D, N Dy # (. The edges
of D(S) are weighted according to the euclidean distance of their endpoints. The directed
transmission graph T(S) for S is the directed graph on S where there is an edge from a site
s to a site t if and only if t € Ds. Both graphs are well studied in computational geometry,
since they serve as simple theoretical models for geometric sensor networks (see [9] and the
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references therein). Previously, Kaplan et al. [10] have studied the girth and triangles in
disk intersection graphs. They showed that for a disk intersection graph with n sites, one
can compute the unweighted girth in O(nlogn) deterministic time and that one can find a
shortest triangle in O(nlogn) expected time. The running time for the unweighted girth is
optimal in the algebraic decision tree model [12]. We extend the results of Kaplan et al. [10]
to the weighted girth in disk graphs and to the triangle problem in transmission graphs.

2 Weighted girth of a disk graph

In this section we consider the problem of finding the weighted girth of a disk intersection
graph. First, we describe an algorithm that, given a vertex and an abstract graph with some
restrictions, finds the shortest cycle in the graph containing that vertex. This algorithm is
then used as a subroutine in Section 2.2 to compute the weighted girth of a disk intersection
graph.

2.1 Finding the shortest cycle containing a given vertex

Let G = (V, E) be an abstract graph with nonnegative edge weights, such that all shortest
paths and all cycles in G have pairwise distinct lengths and such that for all edges uv € F,
the shortest path from u to v is the edge uv. Let |V| = n and |E| = m. We present an
algorithm that, given G and a vertex s € V', computes a shortest cycle in G containing s.
A simple randomized algorithm for this problem was presented by Yuster [14]. We give a
deterministic algorithm.

We run Dijkstra’s algorithm to determine the shortest path tree T for s in G in O(nlogn+
m) time. Then, we traverse T' to find for each v € V' the vertex b[v] € V that comes after s
on the shortest path from s to v. This takes O(n) steps. Finally, we iterate over all edges
e € F that do not occur in T. For each such edge e = uv, we check if b[u] # b[v]. If this is
the case, then e closes a cycle in T" that contains s. We determine the length of this cycle in
O(1) time, using the shortest path distances and the length of e. We return the shortest
such cycle. Overall, the algorithm requires O(nlogn + m) time. The following lemma shows
the shortest cycle in G that contains s is of the desired form.

» Lemma 2.1. The shortest cycle in G that contains s consists of two paths in the shortest
path tree T of s, and one additional edge.

Proof. Let C = (vo = s),v1,v2,...,0—1,5 be the shortest cycle in G containing s, where
all vertices v; are pairwise distinct and ¢ > 3. For v; € C, let dy(v;) be the length of the
path s,v1,...,v;, and let da(v;) be the length of the path v;,viy1,...,s. Let m(v;) denote
the shortest path from s to v;, and let |v;v;41| be the length of the edge v;v; 1.

Suppose that C is not of the desired from. Let vy, vk1 be the edge on C with dy (vy) <
|vgvk11] + d2(vgt1) and da(vi41) < di(vg) + |vgvE41]. By our assumptions on G, the edge
VEVE+1 exists and k # 0,¢ — 1. We distinguish two cases.

First, suppose that m(vg) N w(ver1) = {s}. Consider the cycle C' given by 7(vi), the
edge vivg+1, and 7(vg41). Since s # v, vg+1 and since the edge vgvi41 does not appear
on 7(vy) and m(vg41), it follows that C’ is a proper cycle. Furthermore, by assumption, C”
is strictly shorter than C, because m(vy) is shorter than dy(vy) or m(vk41) is shorter than
da(vg+1). This contradicts our choice of C.

Second, suppose that |7(v) N m(vg+1)| > 2. Since 7(vy) and 7(vk41) are shortest paths,
their intersection is a prefix of each path. By the assumption on G, at least one of vy, vs_1
is not in w(vk) U m(vk41). Without loss of generality, this vertex is v1. Let j > 1 be the
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smallest index such that v; € w(v) U m(vg41). We have j € {2,...,k}. Consider the cycle
C’ that starts at at s, follows C' along vy, vs,... up to vj, and then returns along m(vy) or
m(vg+1) to s. By construction, C’ is a proper cycle. Furthermore, C’ # C, because even if
j =k, the path m(v;) does not use the edge vivr11 due to the choice of k. Finally, C’ is
strictly shorter than C, because the second part of C’ from v; to s follows a shortest path
and is thus strictly shorter than ds(v;). Again, C’ contradicts our choice of C. <

2.2 Computing the girth

We describe an algorithm to compute the weighted girth of a disk intersection graph D(S).
First, we find the shortest triangle in the disk graph D(S). This takes O(nlogn) expected
time using the algorithm of Kaplan et al. [10].

If D(S) contains no triangle, then it is plane [6] [10, Lemma 1]. Thus, we can explicitly
construct D(S) with a sweep line algorithm in time O(nlogn) and determine the girth of
this weighted graph with an appropriate algorithm for planar graphs.

If D(S) contains a triangle, its length W can serve as an upper bound for the length
of the shortest cycle in D(S). We use the same partition of S into large and small sites as
Kaplan et al. [10]. Namely, we set ¢ = W/121/2, and we call all sites with radius at least ¢
large and the remaining sites small. Still following Kaplan et al., we cover the plane with four
overlapping axis parallel grids G1, G2, G3, and G4. The open grid cells have side length 4/,
and the grids are defined such that the points (0,0), (2¢,0), (0,2¢) and (2¢,2¢) are vertices
of G1, G2, G3, and G4, respectively.

We want to find the shortest cycle with at least four vertices and with length at most
W. First, we consider cycles that consist only of small sites. From the choice of ¢, it follows
that there is no triangle consisting only of small sites: otherwise, there would be a triangle
of length at most 3 - 4¢ < W, contradicting the choice of W. Thus, the subgraph D’ of D(5)
induced by the small vertices is plane [6] [10, Lemma 1]. As before, we can compute D’ and
its girth directly, using a plane sweep and known results for planar graphs. Let A; be this
girth.

Finally, we consider cycles with at least one large site. By the choice of ¢, every triangle
that is completely contained in an open grid cell has length less than W. Since there are no
such triangles in D(S), we can apply Lemma 6 of Kaplan et al. [10] to conclude that each
grid cell contains O(1) large sites.

By the triangle inequality, in a cycle of length less than W, the maximum distance
between any two sites is less than W/2. Thus, any such cycle containing a given site s € S
completely lies in a rectangle with side length W around s. This corresponds to a 7 x 7
neighborhood N (o) around a grid cell o containing s. Since N (o) consists of O(1) cells and
since each cell contains O(1) large sites, there are O(1) large sites in N (o).

We iterate over all grid cells o. For each o, we consider all large sites s € 0. As discussed,
we must find the shortest cycle containing s in the subgraph D(S,) of D(S) induced by
the sites S, = SN N(o). Suppose D(S,) contains n/ small sites and n/ large sites. Since
the graph induced by the small sites is plane and since n”, = O(1), the graph D(S,) has
O(ney) edges. This means that we can explicitly compute D(S,) in time O(n, logn,) and
apply the algorithm from Section 2.1 in order to compute the shortest cycle containing s

in time O(n, logny). Let Ay be the length of the shortest cycle encountered in this step.

If we also want to output the shortest cycle in the end, we also store a pointer to o and
s. Since each small site is involved only in a constant number of neighborhoods, we have:
S Y veq, o = O(n), and thus the overall running time of this step is O(nlogn). In the
end, we return min{W, Ay, As}. Thus, we obtain the following theorem:
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Figure 1 Three disks with associated radius at least r/3 are in the same grid cell form a clique

» Theorem 2.2. Given a set S of n point sites in R? with associated radii, we can compute
the weighted girth of D(S) in P(n)+ O(nlogn) expected time, where P(n) is the time needed
to compute the weighted girth of a planar graph with real edge weights.

» Corollary 2.3. Using the algorithm of Lacki and Sankowski [11], we can compute the
weighted girth of a disk graph in O(nlogn) expected time.

3 Directed triangles in transmission graphs

In this section we consider directed triangles in transmission graphs. Given a disk transmission
graph T'(S) we want to decide, if this graph contains at least one directed triangle.

First we consider the following structural lemma. It gives a condition on the disks that
will help us find certain triangles.

» Lemma 3.1. Let D be a disk of radius r. If D contains more than 152 sites with associated
radius at least /3, then T(S) has a directed triangle.

Proof. We cover D with a grid, where each cell has diameter r/3. Each grid cell has side
length v/2r/6, so we need at most 76 such cells (see Figure 1). By our choice of the diameter,
for each site s € D with ry > /3, the associated disk Dg completely covers the grid cell that
contains s.

If D contains more than 152 sites with associated radius at least r/3, the pigeonhole
principle shows that one grid cell contains at least three such sites. Since the corresponding
disks contain the complete grid cell, these three sites form a directed clique in 7'(S). In
particular, there is a directed triangle. |

Now we show how the condition of Lemma 3.1 can be checked for a given disk transmission
graph. This will later be the first part of the algorithm to find a triangle.
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» Lemma 3.2. In O(nlog®n) time, we can check whether S contains a site s such that Dy
contains more than 152 sites with associated radius at least ry/3. Furthermore, if every disk
contains at most 152 such sites, we can find all these sites in O(nlog?n) time.

Proof. We use the halfspace range reporting structure by Afshani and Chan [1]. This
structure allows us to preproccess a planar n-point set P C R? in O(nlogn) time so that for
any query point ¢ € R? and for any k € {1,...,n}, we can find the k nearest neighbors of ¢
in time O(logn + k) [4]. We will actually need a semi-dynamic version of this data structure
that supports insertions. For this, we apply the classic Bentley-Saxe transform to obtain a
structure with O(logn) amortized insertion time and O(log® n + klogn) worst-case query
time [3].

We consider the sites by decreasing radius. Our range reporting data structure will always
contain all sites with associated radius at least r,/3, where s is the current site. When
processing s € S, we first insert all sites with radius at least r5/3 that are not yet present
in the data structure. Then, we query the 153 nearest neighbors of s in the structure, and
we determine which of them lie in D;. If all of them do, then T'(S) contains a triangle.
Otherwise, we store this set with s. One such query takes O(log®n) time, for a total of
O(nlog?n) time. The total time to sort the sites by descending radius and for inserting
them into the structure is O(nlogn). The claim follows. <

With Lemma 3.2 we now know how to check if a graph contains a triangle because of
the condition of Lemma 3.1. Furthermore Lemma 3.2 allows us to find for each site s all
sites with radius at least r,/3, contained in Dy. In the next lemma we show how, given this
information, we can find a triangle in a transmission graph were no disk obeys the condition
of Lemma 3.1.

» Lemma 3.3. Suppose we are given a set S of n sites such that for each s € S, the disk
D, contains at most 152 sites with associated radius at least rs/3 and such that these sites
are known. We can find a directed triangle in T(S) in O(nlog?n) time, if it exists.

Proof. We need a static nearest neighbor data structure for the additively weighted eu-
clidean distance. Using an appropriate Voronoi diagram, this can be done with O(nlogn)
preprocessing time and O(logn) query time [2]. We will have queries of the following form:
given a query point ¢ € R?, find the nearest site to ¢ whose radius lies in a given interval.
For this, we build a perfect binary search tree on S, sorted by radius. In each inner vertex v
of the tree, we store an additively weighted Voronoi diagram for all disks in the subtree of v.
The weight for each site s is —r.

This tree can be constructed in O(n log? n) time in bottom up fashion. Given a query
point ¢ and a radius range (r,r’), we must perform O(logn) queries to the Voronoi diagrams,
since we can follow the paths to r and v’ and query all the diagrams of tree vertices whose
intervals are completely contained in (r, 7). Thus, the query time is O(log® n).

We iterate over the sites by decreasing radius. We will check for each site s € S if it is
the site with smallest radius in a directed triangle in T'(S). Suppose there is such a triangle
of the form s — ¢t — v — s. Thus, we have r;, < r; and ry < r,. Since t € Dy, there are
at most 152 known candidates for ¢. Having fixed such a candidate ¢, there are two cases
regarding u:

1. r, > r¢/3: in this case, having fixed ¢, there are only 152 known candidates for u, and all
of them can be checked in O(1) time.

2. 7, < r¢/3: by definition, we have s € D,. From this, it follows that that D, C D;. Thus,
to find a triangle of the desired kind, it is enough to find any site v with r,, < r;/3 and
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with s € D,,. This can be done by finding the nearest site to s with radius in (rs,7:/3).
As explained, this takes O(log?n) time.
Since we iterate over all sites, this results in a total running time of O(nlog®n). |

Now we can combine the Lemma 3.2 and Lemma 3.3 to get the following theorem:

» Theorem 3.4. Given a set S of n point sites in R? with associated radii, we can find a
directed triangle in the associated directed transmission graph T(S) in time O(nlog®n).

Proof. First we use the procedure described in Lemma 3.2 in time O(nlog®n). If it finds a
triangle, we return yes. Otherwise we use the resulting information, to apply the algorithm
from Lemma 3.3. This results in an algorithm with O(n log? n) running time. |
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