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Flip Distance Between Triangulations of a Simple Polygon is
NP-Complete

Oswin Aichholzer∗ Wolfgang Mulzer† Alexander Pilz‡

Abstract

Let T be a triangulation of a simple polygon. A flip in
T is the operation of removing one diagonal of T and
adding a different one such that the resulting graph
is again a triangulation. The flip distance between
two triangulations is the smallest number of flips that
is necessary to transform one triangulation into the
other. We show that computing the flip distance be-
tween two triangulations of a simple polygon is NP-
hard.

1 Introduction

Let P be a simple polygon in the plane, that is, the
closed region bounded by a piece-wise linear, simple
cycle. A triangulation T of P is a geometric (straight-
line) maximal outerplanar graph whose outer face is
the complement of P and whose vertex set are the
vertices of P . Let d be a diagonal of P whose removal
creates a convex quadrilateral f . By replacing d with
the other diagonal of f , we again get a triangulation
of P . This operation is called a flip. The flip graph
of P is the abstract graph whose vertices are the tri-
angulations of P and in which two triangulations are
adjacent if and only if they differ by a single flip. We
study the flip distance, that is, the minimum number
of flips required to transform a given source triangu-
lation into a target triangulation.

Edge flips became popular in the context of Delau-
nay triangulations. Lawson [6] proved that the flip
graph is connected with diameter O(n2). Hurtado,
Noy, and Urrutia [5] gave an example where the flip
distance is Ω(n2), and showed that the same bounds
hold for triangulations of simple polygons. They also
proved that if the polygon has k reflex vertices, then
the flip graph has diameter O(n+ k2). This general-
izes the well-known fact that the flip distance between
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any two triangulations of a convex polygon is at most
2n− 10, for n > 12 [11].

Hanke, Ottmann, and Schuierer [4] showed that the
flip distance between two triangulations of a point set
is at most the number of crossings in the overlay of the
source and the target triangulation. Eppstein [3] gave
a polynomial-time algorithm for computing a lower
bound on the flip distance. This bound is tight for
point sets that do not contain empty 5-gons. For a
survey on flip operations see Bose and Hurtado [2].
Recently, the problem of finding the flip distance be-
tween two triangulations of a point set was shown to
be NP-complete by Lubiw and Pathak [7] and, in-
dependently, to be APX-hard by Pilz [8]. Here, we
obtain the following result.

Theorem 1 (main result) Let P be a simple poly-
gon. It is NP-complete to decide whether the flip
distance between two triangulations of P is a most k.

In this extended abstract we omit all proofs; they can
be found in the preprint [1]. Our reduction uses
a variant of the Rectilinear Steiner Arbores-
cence Problem. Let S be a set of N points in the
plane, called sinks, whose coordinates are nonnega-
tive integers. A rectilinear Steiner tree T is called a
rectilinear Steiner arborescence (RSA) for S if (i) T
is rooted at the origin; (ii) each leaf of T lies at a sink
in S; and (iii) for each s = (x, y) ∈ S, the length of
the path in T from the origin to s equals x + y, i.e.,
all edges in T point north or east, as seen from the
origin [9]. In the RSA problem, we are given a set of
sinks S and an integer k and ask whether S has an
RSA of length at most k. The problem is strongly
NP-complete; in particular, it remains NP-complete
if S is contained in an n×n grid, with n polynomially
bounded in N = |S| [10]. For our reduction we need
a restricted version of the RSA problem, called the
YRSA problem. In an instance (S, k) of the YRSA
problem, we require that no two sinks in S have the
same y-coordinate. One can show that this variant of
the problem remains NP-complete.

2 Double Chains

We use definitions (and illustrations) along the lines
of [8]. A double chain D consists of two chains, an
upper chain and a lower chain. There are n points
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Figure 1: The upper and lower extreme triangulations
of PD with a flip distance of (n− 1)2, as shown in [5].

p

Figure 2: The extra point p in the kernel of D allows
flipping one extreme triangulation of P pD to the other
in 4n− 4 flips.

on each chain, 〈u1, . . . , un〉 on the upper chain and
〈l1, . . . , ln〉 on the lower chain, both numbered from
left to right. The upper chain is reflex w.r.t. any point
of the lower chain, and vice versa. Let PD be the
polygon defined by 〈l1, . . . , ln, un, . . . , u1〉. We call
the triangulation Tu of PD where u1 has maximum
degree the upper extreme triangulation; observe that
this triangulation is unique. The triangulation Tl of
PD where l1 has maximum degree is called the lower
extreme triangulation. The flip distance between Tu
and Tl is (n− 1)2 [5], see Figure 1.

Definition 1 Let D be a double chain. Let W1 be
the double wedge defined by the supporting lines of
u1u2 and l1l2 whose interior does not contain a point
of D. Wn is defined analogously by the supporting
lines of unun−1 and lnln−1. Let W = W1 ∪Wn be
called the wedge of D. A point is outside of D if it
is not contained in W ∪ PD. The kernel of D is the
intersection of the closed half-planes below u1u2 and
un−1un, as well as above l1l2 and ln−1ln.

We refer to a polygon as in Figure 2, where p is in
the kernel of D, by P pD. As mentioned in [12], the flip
distance between the two extreme triangulations from
Figure 1 is much smaller in P pD than in PD. Figure 2
shows that 4n − 4 flips suffice. It turns out that this
is optimal, even for more general polygons:

Lemma 2 Let P be a polygon that completely con-
tains PD and has 〈l1, . . . , ln〉 and 〈un, . . . , u1〉 as part
of its boundary. Further, let T1 and T2 be two triangu-
lations that contain the upper extreme triangulation
and the lower extreme triangulation of PD as a sub-
triangulation, respectively. Then T1 and T2 have flip
distance at least 4n− 4.

The proof by Lubiw and Pathak [7] for constant-size
double chains directly generalizes to the above result.
The following is a special case of a result from [8].
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Figure 3: A double chain extended by a vertex z.
The vertex z is incident to u7 and l8, represented by
the blue point b in the grid. The brown chain path
represents the chain triangles. If we flip edges to z,
b will move along that path. A flip between chain
triangles (dotted edge replaced by the dashed one)
changes a bend in that path (from the dotted one).

Lemma 3 Let P be a polygon that completely con-
tains PD and has 〈l1, . . . , ln〉 and 〈un, . . . , u1〉 as part
of its boundary, and let T1 and T2 be two triangu-
lations that contain the upper extreme triangulation
and the lower extreme triangulation of PD as sub-
triangulation, respectively. Suppose there is no ver-
tex in the interior of the wedge of PD. Then the flip
distance between T1 and T2 is at least (n− 1)2.

Take a polygon P zD and consider a triangulation T
of P zD. A chain edge is an edge of T between the upper
and the lower chain of D. A chain triangle is a trian-
gle that contains two chain edges. We use the chain
edges to define the chain path, an abstract path on
the n× n grid. Let e1, e2, . . . , em be the chain edges,
sorted from left to right according to their intersec-
tions with a line ` that separates the upper from the
lower chain. For i = 1, . . . ,m, write ei = (uv, lw) and
set ci = (v, w). Note that, in particular, c1 = (1, 1),
which we use as the root of our setting. Since T is a
triangulation, any two consecutive edges ei, ei+1 share
one endpoint, while the other endpoints are adjacent
on the corresponding chain. Thus, ci+1 dominates ci
and ‖ci+1 − ci‖1 = 1. The chain path is defined as
the path c1c2 . . . cm. See Figure 3 for an example.

The chain path is an x- and y-monotone path in
the n × n grid. We call its upper right endpoint b.
By observing the changes of the chain path by flips of
different types, the following lemma can be obtained.

Lemma 4 Let T be a triangulation of P zD. Then
T uniquely determines an x- and y-monotone path
(i.e., the chain path) in the n × n grid starting at
the root (1, 1). Conversely, any chain path uniquely
determines a triangulation of T . The possible flips of
T correspond to the following operations on the chain
path: (i) extend the right endpoint north or east; (ii)
shorten the path at the right endpoint; (iii) change an
east-north bend to an north-east bend, or vice versa.
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3 Installing Sinks

We show how to reduce YRSA to our flip distance
problem. Let S be a set of N sinks with root at (1, 1)
on an (n−1)×(n−1) grid (recall that n is polynomial
in N). We describe how to construct a polygon P ∗D
for S. Our construction has two integral parameters
β and d. With foresight, we set β = 2N and d = nN .

Let P zD be the polygon from Section 2, but with βn
vertices on each chain. As we saw in Section 2, we can
interpret a triangulation of P zD as a a chain path in the
βn × βn grid. We imagine that the sinks of S are in
this grid, with their coordinates multiplied by β. For
each sink s = (x, y), we place a (rotated) small double
chain Ds of size d such that lβy and lβy+1 correspond
to the last point on the lower and upper chain of Ds,
respectively. In addition, uβx is the only point in the
kernel of Ds and uβx is also the only point in the
interior of the wedge of Ds. We call the resulting
polygon P ∗D. If β is large enough, the small double
chains Ds do not interfere with each other, and P ∗D
is simple. Since the y-coordinates in S are pairwise
distinct, we create at most one double chain at each
edge of the lower chain of P zD. Observe that we have
some flexibility for the precise placement of the points
of each Ds. Thus we can choose their placement in a
way that their coordinates are polynomial in n.

Next, we describe the source and target triangula-
tion for P ∗D. The source triangulation T1 contains all
edges of P zD. The interior of P zD is triangulated such
that all edges are incident to z, i.e., b is at the root.
The small double chains are all triangulated with the
upper extreme triangulation. The target triangula-
tion T2 is defined similarly, but now all the small
double chains are triangulated with the lower extreme
triangulation (note that the choice of the upper and
lower chain is arbitrary for the small double chains).

Hence, each corresponding pair of small double
chains in T1 and T2 has flip distance (d − 1)2 due to
Lemma 3, unless the appropriate vertex on the upper
chain of P ∗D is used. Intuitively, if d is large enough,
a shortest flip sequence will have to “traverse” each
sink, inducing an arborescence for S. Vice versa, ev-
ery arborescence for S gives a short flip sequence be-
tween T1 and T2.

Lemma 5 Let A be an arborescence for S of
length k. Then the flip distance on P ∗D between T1
and T2 is at most 2βk + (4d− 2)N .

Next we consider the opposite direction of the cor-
respondence. In the proof of the following lemma, we
will describe a mapping from each triangulation T of
P ∗D to a triangulation Tz of P zD. For each sink s ∈ S,
the corresponding chain triangle ts in Tz is defined as
the chain triangle in P zD that allows the double chain
Ds to be flipped quickly. We say that a flip sequence
σ1 on P zD visits a sink s ∈ S, if σ1 has at least one
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Figure 4: A part of a triangulation of P ∗D and the two
corresponding triangulations Tz and Ts.

triangulation T that contains the corresponding chain
triangle ts. We call σ1 a flip traversal for S if (i) the
sequence σ1 begins and ends in the same triangulation
Tz such that Tz corresponds to b lying on the root; (ii)
the sequence σ1 visits every sink in S.

Lemma 6 Let σ be a flip sequence on P ∗D from T1
to T2 with |σ| < (d − 1)2. Then there exists a flip
sequence σ1 on P zD such that σ1 is a flip traversal for
S with |σ1| ≤ |σ| − (4d− 4)N .

Sketch of Proof. Let T ∗ be a triangulation of P ∗D.
Let Ds be a small double chain placed between the
vertices ls and l′s with us being the vertex in the kernel
of Ds. We define ∆s as the triangle that is either
the inner triangle (i.e., all three sides are diagonals)
incident to two vertices of Ds or the triangle that is
incident to both convex vertices of Ds but is not an
ear. Note that in the first case the third vertex might
be us and that in the latter case the third vertex has
to be us. Due to the structure of P ∗D there always
exists exactly one such triangle ∆s per sink. Let the
polygon Pus

Ds
consist of the double chain Ds extended

by the vertex us, and let Ts denote a triangulation of
it. We define a mapping of any triangulation T ∗ of
P ∗D to a triangulation Tz of P zD and to triangulations
Ts for all sinks s. The triangulation Tz contains every
triangle that has all three vertices in P zD. For each
triangle ∇ that has two vertices on P zD and one on
the left chain of Ds, we replace the apex on Ds by ls.
The analogous is done if the apex of a triangle ∇ is on
the right chain of Ds; we replace that apex by l′s. For
every sink s, the triangle ∆s is known to have an apex
at a point ui of the upper chain. In Tz, we replace
∆s by the triangle lsl

′
sui. Since these are exactly the

triangles needed for a triangulation of P zD and no two
triangles overlap, Tz is indeed a triangulation of P zD.
Similarly, all triangles in T ∗ with all three vertices on
Pus

Ds
are also in Ts, and the triangles having two points

on Ds and whose apex is not in Pus

Ds
get their apex at

us in Ts (note that this includes ∆s). See Figure 4.

Using a case analysis, one can show that each flip
changes at most one of the triangulations that the
original triangulation is mapped to. �
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4 Arborescences and Traces

Next, we define traces (domains drawn on the grid)
and relate them to flip traversals. A trace is drawn
on the βn × βn grid. It consists of edges and boxes:
an edge is a line segment of length 1 whose endpoints
have positive integer coordinates; a box is a square of
side length 1 whose corners have positive integer co-
ordinates. Similar to arborescences, we require that a
trace R (i) is (topologically) connected; (ii) contains
the root (1, 1); and (iii) from every grid point con-
tained in R there exists an x- and y-monotone path
to the root that lies completely in R. We say R is a
covering trace for S (or, R covers S) if every sink in
S is part of R.

Let σ1 be a flip traversal as in Lemma 6. By
Lemma 4, we can interpret the sequence σ1 as the evo-
lution of a chain path. This gives a covering trace R
for S in the following way. For every flip in σ1 that ex-
tends the chain path, we add the corresponding edge
to R. For every chain flip in σ1, we add the cor-
responding box to R. Afterwards, we remove from
R all edges that coincide with a side of a box in R.
Clearly, R is (topologically) connected. Since σ1 is a
flip traversal for S, every sink is covered by R (i.e.,
incident to a box or edge in R). Note that every grid
point p in R is connected to the root by an x- and y-
monotone path on R, since at some point p belonged
to a chain path in σ1. Hence, R is indeed a trace, the
unique trace of σ1.

Next, we define the cost of a trace R, cost(R), so
that if R is the trace of a flip traversal σ1, then cost(R)
gives a lower bound on |σ1|. An edge has cost 2. Let
B be a box in R. A boundary side of B is a side that
is not part of another box. The cost of B is 1 plus the
number of boundary sides of B. Then, cost(R) is the
total cost over all boxes and edges in R.

Proposition 7 Let σ1 be a flip traversal and R a
trace for σ1. Then cost(R) ≤ |σ1|.

Observation 1 Any shortest path tree Aσ1
in R for

the root w.r.t. S is an arborescence.

If σ1 contains no chain flips, the corresponding trace
R has no boxes, but it may not be acyclic. However,
due to Observation 1 it contains an arborescence Aσ1 ,
in particular with 2|Aσ1

| ≤ cost(R).

Lemma 8 Let σ1 be a flip traversal of S. Then there
exists a covering trace R for S in the βn × βn grid
such that R does not contain a box and such that
cost(R) ≤ |σ1|.

Corollary 9 Let σ be a flip sequence on P ∗D from T1
to T2 with |σ| ≤ 2βk + (4d− 2)N . Then there exists
a rectilinear Steiner arborescence for S of length at
most k.

Sketch of Proof. Since there is always an arbores-
cence on S of length less than 2nN , we may assume
that k < 2nN . We can use Lemma 6, and then ap-
ply Lemma 8 to the resulting sequence to obtain an
arborescence A of length at most βk + N . It is well-
known that there exists a minimal arborescence A′

for S whose length is a multiple of β. Thus, since
β > N , we get that A′ has length at most βk, so the
corresponding arborescence for S on the original grid
has length at most k. �

Together with Lemma 5, this implies Theorem 1.
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