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Abstract.3

This expository article surveys “encoding arguments.” In its most most basic form4

an encoding argument proves an upper bound on the probability of an event using the fact5

a uniformly random choice from a set of size n cannot be encoded with fewer than log2n6

bits on average.7

We survey many applications of this basic argument, give a generalization of this8

argument for the case of non-uniform distributions, and give a rigorous justification for9
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1 Introduction46

There is no doubt that probability theory plays a fundamental role in computer science:47

Some of the fastest and simplest fundamental algorithms and data structures are random-48

ized [24, 28]; average-case analysis of algorithms relies entirely on tools from probability49

theory [35]; and many difficult combinatorial questions have strikingly simple solutions50

using probabilistic arguments [1].51

Unfortunately, many of these beautiful results present a challenge to most com-52

puter scientists because of the advanced mathematical concepts they rely on. For in-53

stance, the 2013 edition of ACM/IEEE Curriculum Guidelines for Undergraduate Degree54

Programs in Computer Science does not require a full course in probability theory [29,55

Page 50]. Indeed, the report recommends a total of 6 Tier-1 hours and 2 Tier-2 hours spent56

on discrete probability, as part of the discrete structures curriculum [29, Page 77].57

In this expository paper, we survey applications of “encoding arguments” that58

transform the problem of upper-bounding the probability of a specific event, E, into the59

problem of devising a code for the set of elementary events in E. Such a problem could also60

be approached using a traditional probabilistic analysis or, since we are only concerned61

with finite spaces, by directly counting the size of E. Of course, the probabilistic method62

offers many theoretical and intuitive advantages over direct counting, even though a prob-63

abilistic argument is only effectively a sophisticated rephrasing of a counting argument.64

Accordingly, an encoding argument offers its own set of advantages over an alternative65

proof technique, even though it also effectively is a rephrased form of counting. More66

specifically:67

1. Encoding arguments are almost “probability-free.” Except for applying a simple68

Uniform Encoding Lemma, there is no probability involved. In particular, there is no69

chance of common mistakes such as multiplying probabilities of non-independent70

events or (equivalently) multiplying expectations.71

The proof of the Uniform Encoding Lemma itself is trivial and the only probability72

it uses is the fact that, if a finite set X contains r special elements and we pick an ele-73

ment uniformly at random from X, then the probability of picking a special element74

is r/ |X |.75

2. Encoding arguments usually yield strong results; Pr{E} typically decreases at least76

exponentially in the parameter of interest. Traditionally, these strong concentration77

results require (at least) careful calculations on probabilities of independent events78

and/or the application of concentration inequalities. The subject of concentration79
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inequalities is advanced enough to be the topic of entire textbooks [6, 11].80

3. Encoding arguments are natural for computer scientists. They turn a probabilistic81

analysis problem into the problem of designing an efficient code—an algorithmic82

problem. Consider the following two problems:83

(a) Prove an upper-bound of 1/nlogn on the probability that a random graph on n84

vertices contains a clique of size k = d4logne.185

(b) Design an encoding for graphs on n vertices so that a graph, G, that contains a86

clique of size k = d4logne, is encoded using at most
(n

2
)− log2n bits. (Note: Your87

encoding and decoding algorithms don’t have to be efficient, just correct.)88

Many computer science undergraduates would not know where to start on the first89

problem. Even a good student who realizes that they can use Boole’s Inequality will90

still be stuck wrestling with the formula
( n
4logn

)
2−(

4logn
2 ).91

Our motivation for this work is that encoding arguments are an easily accessible,92

yet versatile tool for answering many questions. Most of these arguments can be ap-93

plied after learning almost no probability theory beyond the Encoding Lemma mentioned94

above.95

The remainder of this article is organized as follows: In Section 2, we present nec-96

essary background, including the Uniform Encoding Lemma, which is the basis of most of97

our encoding arguments. In Section 3 we show how the Uniform Encoding Lemma can be98

applied to a variety of problems. In Section 4, we introduce a more general Non-Uniform99

Encoding Lemma that can handle a larger variety of applications, some of which are given100

in Section 5. Section 6 presents an alternative view of encoding arguments, justifying the101

use of non-integer codeword lengths. Section 7 summarizes and concludes with some102

directions for future research.103

2 Background104

This section presents the necessary background on prefix-free codes and binomial coeffi-105

cients.106

2.1 Basic Definitions, Prefix-free Codes and the Uniform Encoding Lemma107

A finite length binary string, or bit string, is a finite (possibly empty) sequence of elements108

from {0,1}. For k ∈ N, we denote by {0,1}k the set of all binary strings of length k, and by109

1Since we are overwhelmingly concerned with binary encoding, we will agree now that the base of loga-
rithms in logx is 2, except when explicitly stated otherwise.
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Figure 1: A prefix-free code for the set X = {a,b,c,d,e,f} and the corresponding leaf-
labelled binary tree (which can also be viewed as a partial prefix-free code for the set
{a,b,c, . . . ,z}).

{0,1}∗ the set of all finite strings. For a binary string, x, we use |x| to denote the length of110

x. A binary string of length n will be called an n-bit string. Furthermore, we denote by111

n1(x) the number of 1-bits in x, and by n0(x) the number of zero bits. Given a (finite or112

countable) set X, a code C : X → {0,1}∗ is a one-to-one function from X to the set of finite113

length binary strings. The elements of the range of C are called C’s codewords. Often,114

there are some elements of the set X that are not of interest to us. In these cases, we115

consider partial codes. A partial code C : X9 {0,1}∗ is a one-to-one partial function. When116

discussing partial codes we will use the convention that |C(x)| =∞ if x is not in the domain117

of C.118

A binary string x is called a prefix of another binary string y if there is some binary119

string z such that xz = y. A (partial) code C is prefix-free if, for every pair x , y in the120

domain of C, the codeword C(x) is not a prefix of the codeword C(y). It can be helpful to121

visualize prefix-free codes as (rooted ordered) binary trees whose leaves are labelled with122

the elements of X. The codeword for a particular x ∈ X is obtained by tracing the root-to-123

leaf path leading to x and outputting a 0 each time this path goes from a parent to its left124

child, and a 1 each time it goes to a right child. (See Figure 1.)125

We claim that if C is prefix-free, then the number ofC’s codewords that have length126

at most k is not more than 2k . To see this, observe that C can be modified into a code Ĉ, in127

which every codeword of length ` < k is extended—by appending k−` zeros—so that it has128

length exactly k. The prefix-freeness of C ensures that Ĉ is also prefix-free. The number129

of Ĉ’s codewords of length k is equal to the number of C’s codewords of length at most k;130

since codewords are just binary strings, there are not more than 2k of these.131

Observe that every finite set X has a prefix-free code in which every codeword has132

length dlog |X |e. We simply enumerate the elements of X in some order x0,x1, . . . ,x|X |−1 and133

assign to each xi the binary representation of i (padded with leading zeros), which has134

length dlog |X |e, since i ∈ {0, . . . , |X | − 1}. We call this encoding the fixed-length code for X,135

and we will use it implicitly in many arguments.136
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logn
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C(x) =

Figure 2: Illustration of Theorem 1 and its proof.

Given a (finite or countable) set X, a probability distribution p : X → [0,1] on X137

is a function with
∑
x∈X p(x) = 1. We sometimes write px instead of p(x). The uniform138

distribution is given by px = 1/ |X | for all x ∈ X. Fix a number n ∈ N and a parameter139

α ∈ [0,1]. A probability distribution on X = {0,1}n that is of particular interest to us is140

the Bernoulli distribution with parameter α, denoted Bernoulli(α). In this distribution, a141

random bit string x ∈ {0,1}n is sampled by setting each bit to 1 with probability α and to 0142

with probability 1−α, independently of the other bits.143

The following lemma provides the foundation on which this survey is built. The144

lemma is folklore, but as we will see in the following sections, it has an incredibly wide145

range of applications and can lead to surprisingly powerful results.146

Lemma 1 (Uniform Encoding Lemma). LetX be a finite set, and letC : X9 {0,1}∗ be a partial147

prefix-free code. If an element x ∈ X is chosen uniformly at random, then148

Pr{|C(x)| ≤ log |X | − s} ≤ 2−s .149

Proof. Let k = blog |X | − sc and recall that C has at most 2k codewords of length at most k.150

Since C is one-to-one each such codeword has at most one preimage in X. Since x is chosen151

uniformly at random from X, the probability that it is the preimage of one of these short152

codewords is at most153

2k

|X | ≤
2log |X |−s

|X | = 2−s .154

2.2 Runs in Binary Strings155

As a warm-up exercise to illustrate the use of the Uniform Encoding Lemma we will show156

that a random n-bit string is unlikely to contain a run of significantly more than logn one157

bits. (See Figure 2.)158

Theorem 1. Let x = (x1, . . . ,xn) ∈ {0,1}n be chosen uniformly at random and let t =
⌈dlogne+ s⌉.159
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Then, the probability that there exists an i ∈ {1, . . . ,n−t+1} such that xi = xi+1 = · · · = xi+t−1 = 1160

is at most 2−s.161

Proof. We will prove this theorem by constructing a partial prefix-free code for strings162

having a run of t or more ones. For such a string x = (x1, . . . ,xn) let i be the minimum163

index such that xi = xi+1 = · · · = xi+t−1 = 1. The codeword C(x) for x is the binary string164

that consists of the (dlogne-bit binary encoding of the) index i followed by the n − t bits165

x1, . . . ,xi−1,xi+t , . . . ,xn. (See Figure 2.)166

Observe that C(x) has length167

dlogne+n− t ≤ n− s .168

For any such x, we can reconstruct (x1, . . . ,xn) from C(x) by reading it from left to right.169

Indeed, the leftmost dlogne bits from C(x) tell us, in binary, the value of an index i for170

which xi = xi+1 = · · · = xi+t−1 = 1; the following n − t bits in sequence give us the values171

of the remaining unknown bits x1,x2, . . . ,xi−1,xi+t ,xi+t+1, . . . ,xn. Thus, C is a partial code172

whose domain is the set of binary strings of length n having a run of t or more ones. Also,173

C is prefix-free, since all codewords are unique and have the same length.174

Now, x was chosen uniformly at random from a set of size 2n. Therefore, by the175

Uniform Encoding Lemma, the probability that there exists any index i ∈ {1, . . . ,n − t − 1}176

such that xi = xi+1 = · · · = xi+t−1 = 1 is at most177

Pr{|C(x)| ≤ n− s} ≤ 2−s .178

Simple as it is, the proof of Theorem 1 contains the main ideas used in most encod-179

ing arguments:180

1. The arguments usually show that a particular bad event is unlikely. In Theorem 1 the181

bad event is the occurrence of a substring of t consecutive ones.182

2. The code is a partial prefix-free code whose domain is the bad event, whose elements183

we call the bad outcomes. In this case, the code C is only capable of encoding strings184

containing a run of t consecutive ones, and a particular string containing such a run185

is a bad outcome.186

3. The code usually begins with a concise description of the bad outcome, and is then187

followed by a straightforward encoding of the information that is not implied by188

the bad outcome. In Theorem 1, the bad outcome is completely described by the189

index i at which the run of t ones begins, and this implies that the bits xi , . . . ,xi+t−1190
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are all equal to 1, so these bits do not need to be specified in the second part of the191

codeword.192

2.3 A Note on Ceilings193

Note that Theorem 1 also has an easy proof using the union bound: If we let Ei denote the194

event xi = xi+1 = · · · = xi+t = 1, then195

Pr



n−t−1⋃

i=0

Ei
 ≤

n−t−1∑

i=0

Pr{Ei} (using the union bound)196

=
n−t−1∑

i=0

2−t (using the independence of the xi ’s)197

≤ n2−t (the sum has n− t ≤ n identical terms)198

≤ n2−dlogne−s (from the definition of t)199

≤ 2−s .200
201

This traditional proof also works with the sometimes smaller value t = dlogn+ se (note the202

lack of a ceiling over the logarithmic term), in which case the final inequality becomes an203

equality.204

In the encoding proof of Theorem 1, the ceiling in the expression for t is an artifact205

of encoding the integer i which is taken from a set of size n. When sketching an encoding206

argument, we think of this as requiring logn bits. Nonetheless, when the time comes to207

carefully write down a proof we include a ceiling over this term since bits are a discrete208

quantity.209

In Section 6, however, we will formally justify that the informal intuition we use210

in blackboard proofs is actually valid; we can think of the encoding of i using logn bits211

even if logn is not an integer. In general we can imagine encoding a choice from among r212

options using logr bits for any r ∈ N. From this point onwards, we omit ceilings this way213

in all our theorems and proofs. This simplifies calculations and provides tighter results.214

For now, it allows us to state the following cleaner version of Theorem 1:215

Theorem 1b. Let x = (x1, . . . ,xn) ∈ {0,1}n be chosen uniformly at random and let t = dlogn+ se.216

Then, the probability that there exists an i ∈ {1, . . . ,n−t+1} such that xi = xi+1 = · · · = xi+t−1 = 1217

is at most 2−s.218

2.4 Encoding Sparse Bit Strings219

At this point we should also point out an extremely useful trick for encoding sparse bit220

strings. For any α ∈ (0,1), there exists a code Cα : {0,1}n → {0,1}∗ such that, for any bit221

6



string x ∈ {0,1}n having n1(x) ones and n0(x) zeros,222

|Cα(x)| = dn1(x) log(1/α) +n0(x) log(1/(1−α))e . (1)223

This code is the Shannon-Fano code for Bernoulli(α) bit strings of length n [15, 36]. More224

generally, for any probability density p : X→ [0,1], there is a Shannon-Fano code C : X→225

{0,1}∗ such that226

|C(x)| = dlog(1/px)e .227

Moreover, we can construct such a code deterministically, even when X is countably infi-228

nite.229

Again, as we will see in Section 6, we can omit the ceiling in the expression for230

|Cα(x)|. This is true for any value of n. In particular, for n = 1, it gives us a “code” for231

encoding a single bit where the cost of encoding a 1 is log(1/α) and the cost of encoding232

a 0 is log(1/(1 − α)). Indeed, the “code” for bit strings of length n > 1 is just what we get233

when we apply this 1-bit code to each bit of the bit string.234

If we wish to encode bit strings of length n and we know in advance that the strings235

contain exactly k one bits, then we can obtain an optimal code by taking α = k/n. The236

resulting fixed length code has length237

k log(n/k) + (n− k) log(n/(n− k)) . (2)238

Equation (2) brings us to our next topic: binary entropy.239

2.5 Binary Entropy240

The binary entropy function H : (0,1)→ (0,1] is defined by241

H(α) = α log(1/α) + (1−α) log(1/(1−α))242

and it will be quite useful. The binary entropy function and two upper bounds on it that243

we derive below are illustrated in Figure 3.244

We have already encountered a quantity that can be expressed in terms of the bi-245

nary entropy. From (2), a bit string of length n with exactly k one bits can be encoded with246

a fixed-length code of nH(k/n) bits.247

The binary entropy function can be difficult to work with, so it is helpful to have248

some manageable approximations. One of these is derived as follows:249

H(α) = α log(1/α) + (1−α) log(1/(1−α))250

= α log(1/α) + (1−α) log(1 +α/(1−α))251

≤ α log(1/α) +α loge (3)252
253
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1− (1− 2α)2
2ln2

H(α)

Figure 3: Binary entropy, H , and two useful approximations.

since 1+x ≤ ex for all x ∈ R. Equation (3) is a useful approximation when α is close to zero,254

in which case H(α) is also close to zero.255

For α close to 1/2 (in which caseH(α) is close to 1), we obtain a good approximation256

from the Taylor series expansion at 1/2. Indeed, a simple calculation shows that257

H ′(α) = log(1/α)− log(1/(1−α))258

and that259

H (i)(α) =
(i − 2)!

ln2

(
(−1)i−1

αi−1
− 1

(1−α)i−1

)
,260

for i ≥ 2. Hence, H (i)(1/2) = 0, for i ≥ 1 odd, and261

H (i)(1/2) = − (i − 2)!2i

ln2
,262

for i ≥ 2 even. The Taylor series expansion at 1/2 now gives263

H(α) =H(1/2) +
∞∑

i=1

H (i)(1/2)
i!

(α − (1/2))i264

= 1− 1
ln2

∞∑

i=1

(2i − 2)!22i

(2i)!22i
(2α − 1)2i

265

= 1− 1
2ln2

∞∑

i=1

(2α − 1)2i

i(2i − 1)
.266

267
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In particular, for α = (1− ε)/2,268

H(α) = 1− 1
2ln2

∞∑

i=1

ε2i

i(2i − 1)
269

< 1− ε2

2ln2
. (4)270

271

2.6 Basic Chernoff Bound272

With all the pieces in place, we can now give an encoding argument for a well-known and273

extremely useful result typically attributed to Chernoff [8].274

Theorem 2. Let x ∈ {0,1}n be chosen uniformly at random. Then, for any ε ≥ 0,275

Pr{n1(x) ≤ n(1− ε)/2} ≤ e−ε2n/2 .276

Proof. Encode the bit string x using a Shannon-Fano code Cα with α = (1− ε)/2. Then, the277

length of the codeword for x is278

|Cα(x)| = n1(x) log(1/α) +n0(x) log(1/(1−α)) .279

Since α < 1/2, we have log(1/α) > log(1/(1−α)), so |Cα(x)| is maximal when n1(x) is maxi-280

mal. Thus, if n1(x) ≤ αn, then281

|Cα(x)| ≤ αn log(1/α) + (1−α)n log(1/(1−α))282

= nH(α) ≤ n
(
1− ε2

2ln2

)
= n− s ,283

284

where the second inequality is an application of (4), and where s = ε2n/(2ln2). Now, x was285

chosen uniformly at random from a set of size 2n. By the Uniform Encoding Lemma, we286

obtain that287

Pr{n1(x) ≤ αn} ≤ Pr{|Cα(x)| ≤ n− s} ≤ 2−s = e−ε
2n/2 .288

In Section 5.1, after developing a Non-Uniform Encoding Lemma, we will extend289

this argument to Bernoulli(α) bit strings.290

2.7 Factorials and Binomial Coefficients291

Before moving on to some more advanced encoding arguments, it will be helpful to remind292

the reader of a few inequalities that can be derived from Stirling’s Approximation of the293

factorial [34]. Recall that Stirling’s Approximation states that294

n! =
(n
e

)n√
2πn

(
1 +Θ

(1
n

))
. (5)295
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In many cases, we are interested in representing a set of size n! using a fixed-length296

code. By (5), and using once again that 1 + x ≤ ex for all x ∈ R, the length of the codewords297

in such a code is298

logn! = n logn−n loge+ (1/2)logn+ log
√

2π+ log(1 +Θ(1/n))299

= n logn−n loge+ (1/2)logn+ log
√

2π+Θ(1/n)300

= n logn−n loge+Θ(logn) . (6)301
302

We are sometimes interested in codes for the
(n
k

)
subsets of k elements from a set303

of size n. Note that there is an easy bijection between such subsets and binary strings of304

length n with exactly k ones. Therefore, we can represent these using the Shannon-Fano305

code Ck/n and each of our codewords will have length nH(k/n). In particular, this implies306

that307

log
(
n
k

)
≤ nH(k/n) ≤ k logn− k logk + k loge (7)308

where the last inequality is an application of (3). The astute reader will notice that we just309

used an encoding argument to prove an upper-bound on
(n
k

)
without knowing the formula310 (n

k

)
= n!
k!(n−k)! . Alternatively, we could obtain a slightly worse bound by applying (5) to this311

formula.312

2.8 Encoding the Natural Numbers313

So far, we have only explicitly been concerned with codes for finite sets. In this section,314

we give an outline of some prefix-free codes for the set of natural numbers. Of course,315

if p : N → [0,1] is a probability density, then the Shannon-Fano code for p could serve.316

However, it seems easier to simply design our codes by hand, rather than find appropriate317

distributions.318

A code is prefix-free if and only if any message consisting of a sequence of its319

codewords can be decoded unambiguously and instantaneously as it is read from left to320

right: Consider some sequence of codewords M = y1y2 · · ·yk from a prefix-free code C.321

Since C is prefix-free, then C has no codeword z which is a prefix of y1, so reading M322

from left to right, the first codeword of C which we recognize is precisely y1. Continuing323

in this manner, we can decode the whole message M. Conversely, if for each codeword324

y of C, a message consisting of this single codeword can be decoded unambiguously and325

instantaneously from left to right, we know that y has no prefix among the codewords of326

C, i.e. C is prefix-free. This idea allows us to more easily design the codes in this section,327

which were originally given by Elias [12].328

The unary encoding of an integer i ∈ N, denoted by U (i), begins with i 1 bits which329
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are punctuated with a 0 bit. This code is not particularly useful in itself, but it can be im-330

proved as follows: The Elias γ-code for i, denoted by Eγ (i), begins with the unary encoding331

of the number of bits in i, and then the binary encoding of i itself (minus its leading bit).332

The Elias δ-code for i, denoted by Eδ(i) begins with an Elias γ-code for the number of bits333

in i, and then the binary encoding of i itself (minus its leading bit). This process can be334

continued recursively to obtain the Elias ω-code, which we denote by Eω. Each of these335

codes has a decoding procedure as in the preceding paragraph, which establishes their336

prefix-freeness.337

The most important properties of these codes are their codeword lengths:338

|U (i)| = i + 1 ,339

|Eγ (i)| = 2log i +O(1) ,340

|Eδ(i)| = log i + 2loglog i +O(1) ,341

|Eω(i)| = log i + loglog i + · · ·+ log · · · log
︸    ︷︷    ︸
log∗ i times

i +O(log∗ i) .342

343

It may be worth noting that the lengths of unary codes correspond to the lengths of344

Shannon-Fano codes for a geometric distribution with density pi = 1/2i+1, that is,345

log(1/pi) = log2i+1 = |U (i)| ,346

and the lengths of Elias γ-codes correspond to the lengths of Shannon-Fano codes for a347

discrete Cauchy distribution with density pi = c/i2 for a normalization constant c, that is,348

log(1/pi) = 2log i − logc = |Eγ (i)|+O(1) .349

The lengths of Elias γ-codes and ω-codes do not seem to arise as the lengths of Shannon-350

Fano codes for named distributions.351

3 Applications of the Uniform Encoding Lemma352

We now start with some applications of the Uniform Encoding Lemma. In each case, we353

will design and analyze a partial prefix-free code C : X 9 {0,1}∗, where X depends on the354

context.355

3.1 Graphs with no Large Clique or Independent Set356

The Erdős-Rényi random graph Gn,p is the probability space on graphs with vertex set V =357

{1, . . . ,n} in which each edge {u,w} ∈ (V
2
)

is present with probability p and absent with358

probability 1−p, independently of the other edges. Erdős [13] used the random graphGn, 12359
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to prove that there are graphs that have neither a large clique nor a large independent set.360

Here we show how this can be done using an encoding argument.361

Theorem 3. For n ≥ 3 and s ∈ N, the probability that G ∈ Gn, 12 contains a clique or an indepen-362

dent set of size t = d3logn+
√

2se is at most 2−s.363

Proof. This is an encoding argument that compresses the
(n

2
)

bits of G’s adjacency matrix,364

as they appear in row-major order.365

Suppose the graphG contains a clique or an independent set S of size t. The encod-366

ing C(G) begins with a bit indicating whether S is a clique or independent set; followed by367

the set of vertices of S; then the adjacency matrix of G in row major-order, omitting the
(t
2
)

368

bits implied by the edges or non-edges in S. Such a codeword has length369

|C(G)| = 1 + t logn+
(
n
2

)
−
(
t
2

)
. (8)370

Before diving into the detailed arithmetic, we intuitively argue why we’re heading in the371

right direction: Roughly, (8) is of the form:372

|C(G)| =
(
n
2

)
+ t logn−Ω(t2) .373

That is, we need to invest O(t logn) bits to encode the vertex set of a clique or an indepen-374

dent set of size t, but we save Ω(t2) bits in the encoding of G’s adjacency matrix. Clearly,375

for t > c logn, with c sufficiently large, this has the form376

|C(G)| =
(
n
2

)
−Ω(t2) .377

At this point, it is just a matter of pinning down the dependence on c. A detailed calcula-378

tion beginning from (8) gives379

|C(G)| =
(
n
2

)
+ 1 + t logn− (1/2)(t2 − t)380

=
(
n
2

)
+ 1− (1/2)(t2 − t − 2t logn) .381

382

The function f (x) = (1/2)(x2 − x − 2x logn)− 1 is increasing for x ≥ logn+ 1/2, so recalling383

that t = d3logn+
√

2se, we get384

f (t) ≥ f (3logn+
√

2s)385

= (1/2)(9log2n+ 6
√

2s logn+ 2s − 3logn−
√

2s − 6log2n− 2
√

2s logn)− 1386

= (1/2)(3log2n+ 4
√

2s logn− 3logn−
√

2s) + s − 1387

≥ s388
389
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for n ≥ 3. Therefore, our code has length390

|C(G)| =
(
n
2

)
− f (t)391

≤
(
n
2

)
− s .392

393

Applying the Uniform Encoding Lemma completes the proof.394

Remark 1. The bound in Theorem 3 can be strengthened a little, since the elements of S395

can be encoded using only log
(n
t

)
bits, rather than t logn. With a more careful calculation,396

using (7), the proof then works with t = 2logn +O(loglogn) +
√
s. This comes closer to397

Erdős’ original result, which was at the threshold 2logn− 2loglogn+O(1) [13].398

3.2 Balls in Urns399

The random experiment of throwing n balls uniformly and independently at random into400

n urns is a useful abstraction of many questions encountered in algorithm design, data401

structures, and load-balancing [24, 28]. Here we show how an encoding argument can402

be used to prove the classic result that, when we do this, no urn contains more than403

O(logn/ loglogn) balls.404

Theorem 4. Let n,s ∈ N, and let t be such that t log(t/e) ≥ logn + s. Suppose we throw n405

balls independently and uniformly at random into n urns. Then, for sufficiently large n, the406

probability that any urn contains more than t balls is at most 2−s.407

Before proving Theorem 4, we note that, for any constant ε > 0 and all sufficiently408

large n, taking409

t =
⌈

(1 + ε) logn
loglogn

⌉
410

satisfies the requirements of Theorem 4, since then411

t log t ≥ (1 + ε) logn
loglogn

log
(

(1 + ε) logn
loglogn

)
412

= (1 + ε) logn
loglogn
loglogn

− (1 + ε) logn
log

( loglogn
1+ε

)

loglogn
413

≥ logn+ ε logn− (ε/2)logn414

= logn+ (ε/2)logn415
416

for a sufficiently large choice of n. Then,417

t log(t/e) = t log t − t loge ≥ logn+ (ε/2)logn− o(logn) ≥ logn+ s ,418

for sufficiently large n, as claimed.419
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Proof of Theorem 4. For each i ∈ {1, . . . ,n}, let bi denote the index of the urn chosen for the420

i-th ball. The sequence b = (b1, . . . , bn) is sampled uniformly at random from a set of size421

nn, and this choice will be used in our encoding argument.422

Suppose that urn j contains t or more balls. Then, we encode the sequence b with423

the value j, followed by a code that describes t of the balls in urn j, followed by the re-424

maining n − t values in b that cannot be deduced from the preceding information. Thus,425

we get426

|C(b)| = logn+ log
(
n
t

)
+ (n− t) logn427

= logn+ t logn− t log t + t loge+ (n− t) logn (using (7))428

= n logn+ logn− t log t + t loge429

≤ n logn− s (by the choice of t)430

= lognn − s431
432

bits. We conclude the proof by applying the Uniform Encoding Lemma.433

3.3 Linear Probing434

Studying balls in urns as in the previous section is useful when analyzing hashing with435

chaining (see e.g. [25, Section 5.1]). A more practically efficient form of hashing is linear436

probing. In a linear probing hash table, we hash the elements of the set X = {x1, . . . ,xn} into437

a hash table of size m = cn, for some fixed c > 1. We are given a hash function h : X →438

{1, . . . ,m} which we assume to be a uniform random variable. To insert xi , we try to place439

it at table position j = h(xi). If this position is already occupied by one of x1, . . . ,xi−1, we440

try table location (j + 1) mod m, followed by (j + 2) mod m, and so on, until we find an441

empty spot for xi . To find a given element x ∈ X in the hash table, we compute j = h(x),442

and we start a linear search from position j until we encounter either x or the first empty443

position. Assuming that the hash table has been created by inserting the elements from X444

successively according to the algorithm above, we want to study the expected search time445

for some item x ∈ X.446

We call a maximal consecutive sequence of occupied table locations a block. (The447

table locations m− 1 and 0 are considered consecutive.)448

Theorem 5. Let n ∈ N, c > e. Suppose that a set X = {x1, . . . ,xn} of n items has been inserted449

into a hash table of size m = cn, using linear probing. Let t ∈ N such that450

t log(c/e)− log t ≥ s+O(1) ,451

and fix some x ∈ X. Then the probability that the block containing x has size t is at most 2−s.452
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Proof. This is an encoding argument for the sequence453

h = (h(x1),h(x2), . . . ,h(xn)) ,454

that is drawn uniformly at random from a set of size mn = (cn)n.455

Suppose that x lies in a block with t elements. We encode h by the first index b of456

the block containing x; followed by the t − 1 elements y1, . . . , yt−1 of this block (excluding457

x); followed by information to decode the hash values of x and of y1, . . . , yt−1; followed by458

the n− t hash values for the remaining elements in X.459

Since the values h(x),h(y1),h(y2), . . . ,h(yt−1) are in the range b, . . . ,b + t − 1 (modulo460

m), they can be encoded using t log t bits. Therefore, we obtain a codeword of length461

|C(h)| =
b

︷︸︸︷
logm+

y1,...,yt−1︷     ︸︸     ︷
log

(
n
t − 1

)
+

h(x),h(y1),...,h(yt−1)
︷︸︸︷
t log t +

everything else
︷        ︸︸        ︷
(n− t) logm462

≤ logm+ (t − 1)logn− (t − 1)log(t − 1) + (t − 1)loge+ t log t + (n− t) logm (by (7))463

= (n− t + 1)logm+ (t − 1)log(m/c) + (t − 1)loge+ log(t − 1) + t log(t/(t − 1)) (m = cn)464

= n logm− (t − 1)logc+ (t − 1)loge+ log t +O(1)465

= logmn − (t − 1)log(c/e) + log t +O(1)466

≤ logmn − s ,467
468

since we assumed that t satisfies469

t log(c/e)− log t ≥ s+O(1) .470

The proof is complete by applying the Uniform Encoding Lemma.471

Remark 2. The proof of Theorem 5 only works if the factor c in the sizem = cn of the linear472

probing hash table is c > e. We know from previous analysis that this is not necessary, and473

that any c > 1 is sufficient [35, Theorem 9.8]. We leave it as an open problem to find an474

encoding proof of Theorem 5 that works for any c > 1.475

Corollary 1. Let n ∈ N, c > e. Suppose that a set X = {x1, . . . ,xn} of n items has been inserted476

into a hash table of size m = cn, using linear probing. Fix some x ∈ X. Then, the expected search477

time for x in the hash table is O(1).478

Proof. Let T denote the size of the block containing x in the hash table. Let t0 be a large479

enough constant. Then, by Theorem 5, the probability that T = t+ t0 is at most 2−t log(c/e)/2,480

since then481

(t + t0) log(c/e)− log(t + t0) ≥ (t + t0) log(c/e)/2 ≥ t log(c/e)/2 +O(1) .482
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Thus, the expected search time for x is483

E{T } =
∞∑

t=1

tPr{T = t} =
t0∑

t=1

tPr{T = t}+
∞∑

t=1

(t + t0)Pr{T = t + t0}484

≤ t20 +
∞∑

t=1

(t + t0)2−t log(c/e)/2 = t20 +
∞∑

t=1

(t + t0)(c/e)−t/2 =O(1) .485

486

3.4 Cuckoo Hashing487

Cuckoo hashing is relatively new hashing scheme that offers an alternative to classic per-488

fect hashing [30]. We present a clever proof, due to Mihai Pătraşcu, that cuckoo hashing489

succeeds with probability 1 −O(1/n) [32] (see also [18] for a more detailed exposition of490

the argument).491

We again hash the elements of the set X = {x1, . . . ,xn}. The hash table consists of492

two arrays A and B, each of size m = 2n, and two hash functions h,g : X→ {1, . . . ,m} which493

are uniform random variables. To insert an element x into the hash table, we insert it into494

A[h(x)]; if A[h(x)] already contains an element y, we insert y into B[g(y)]; if B[g(y)] already495

contains some element z, we insert z into A[h(z)], etc. If an empty location is eventually496

found, the algorithm terminates successfully. If the algorithm runs for too long without497

successfully completing the insertion, then we say that the insertion failed, and the hash498

table is rebuilt using different newly sampled hash functions. Any element x either is held499

in A[h(x)] or B[g(x)], so we can search for x in constant time. The following pseudocode500

describes this procedure more precisely:501

Insert(x) :502

1: if x = A[h(x)] or x = B[g(x)] then503

2: return504

3: for MaxLoop iterations do505

4: if A[h(x)] is empty then506

5: A[h(x)]← x507

6: return508

7: x↔ A[h(x)]509

8: if B[g(x)] is empty then510

9: B[g(x)]← x511

10: return512

11: x↔ B[g(x)]513

12: Rehash()514

13: Insert(x)515
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The threshold ‘MaxLoop’ is to be specified later. To study the performance of inser-516

tion in cuckoo hashing, we consider the random bipartite cuckoo graph G = (A,B,E), where517

|A| = |B| =m and |E| = n, with each vertex corresponding either to a location in the array A518

or B above, and with edge multiset E = {(h(xi), g(xi)) : 1 ≤ i ≤ n}.519

An edge-simple path in G is a path that uses each edge at most once. One can check520

that if a successful insertion takes at least 2t steps, then the cuckoo graph contains an edge521

simple path with at least t edges. Thus, in bounding the length of edge-simple paths in522

the cuckoo graph, we bound the worst case insertion time.523

Lemma 2. Let s ∈ N. Suppose that we insert a set X = {x1, . . . ,xn} into a hash table using cuckoo524

hashing. Let G be the resulting cuckoo graph. Then, G has an edge-simple path of length at least525

s+ logn+O(1) with probability at most 2−s.526

Proof. We encodeG by presenting its set of edges. Since each endpoint of an edge is chosen527

independently and uniformly at random from a set of size m, the set of all edges is chosen528

uniformly at random from a set of size m2n.529

Suppose some vertex v ∈ A∪B is the endpoint of an edge-simple path of length t;530

such a path has t+1 vertices and t edges. Each edge in the path corresponds to an element531

in X. In the encoding, we present the indices of the elements in X corresponding to the t532

edges of the path in order; then, we indicate whether v ∈ A or v ∈ B; and we give the t + 1533

vertices in order starting from v; followed by the remaining 2n− 2t endpoints of edges of534

the graph. This code has length535

|C(G)| = t logn+ 1 + (t + 1)logm+ (2n− 2t) logm536

= 2n logm+ t logn− t logm+ logm+O(1)537

= logm2n − t + logn+O(1) (since m = 2n)538

≤ logm2n − s539
540

for t ≥ s+ logn+O(1). We finish by applying the Uniform Encoding Lemma.541

This immediately implies that a successful insertion takes time at most 4logn+O(1)542

with probability 1−O(1/n). Moreover, selecting ‘MaxLoop’ to be 4logn+O(1), we see that543

a rehash happens only with probability O(1/n).544

One can prove that the cuckoo hashing insertion algorithm fails if and only if some545

subgraph of the cuckoo graph contains more edges than vertices, since edges correspond546

to keys, and vertices correspond to array locations.547
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Figure 4: The potential minimal subgraphs of the cuckoo graph.

Lemma 3. The cuckoo graph has a subgraph with more edges than vertices with probability548

O(1/n). In other words, cuckoo hashing insertion succeeds with probability 1−O(1/n).549

Proof. Suppose that some vertex v is part of a subgraph with more edges than vertices, and550

in particular a minimal such subgraph with t + 1 edges and t vertices. Such a subgraph551

appears exactly as in Figure 4. By inspection, we see that for every such subgraph, there552

are two edges e1 and e2 whose removal disconnects the graph into two paths of length t1553

and t2 starting from v, where t1 + t2 = t − 1.554

We encode G by giving the vertex v; and presenting Elias δ-codes for the values of555

t1 and t2 and for the positions of the endpoints of e1 and e2; then the indices of the edges556

of the above paths in order; then the vertices of the paths in order; and the indices of the557

edges e1 and e2; and finally the remaining 2n − 2(t + 1) endpoints of edges in the graph.558

Such a code has length559

|C(G)| = logm+O(log t) + (t − 1)(logn+ logm) + 2logn+ (2n− 2(t + 1)) logm560

= 2n logm+ (t + 1)logn− (t + 2)logm+O(log t)561

= 2n logm+ (t + 1)logn− (t + 2)logn− t +O(log t) (since m = 2n)562

≤ logm2n − logn+O(1) .563
564

We finish by applying the Uniform Encoding Lemma.565

3.5 2-Choice Hashing566

We showed in Section 3.2 that if n balls are thrown independently and uniformly at ran-567

dom into n urns, then the maximum number of balls in any urn is O(logn/ loglogn) with568
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high probability. In 2-choice hashing, each ball is instead given a choice of two urns, and569

the urn containing the fewer balls is preferred.570

More specifically, we are given two hash functions h,g : X → {1, . . . ,m} which are571

uniform random variables. Each value of h and g points to one of m urns. The element572

x ∈ X is added to the urn containing the fewest elements between h(x) and g(x) during573

an insertion. The worst case search time is at most the maximum number of hashing574

collisions, or the maximum number of elements in any urn.575

Perhaps surprisingly, the simple change of having two choices instead of only one576

results in an exponential improvement over the strategy of Section 3.2. The concept of 2-577

choice hashing was first studied by Azar et al. [2], who showed that the expected maximum578

size of an urn is loglogn +O(1). Our encoding argument is based on Vöcking’s use of579

witness trees to analyze 2-choice hashing [38].580

Let G = (V ,E) be the random multigraph with V = {1, . . . ,m}, wherem = cn for some581

constant c > 8, and E = {(h(x), g(x)) : x ∈ X}. Each edge in E is labeled with the element x ∈ X582

that it corresponds to.583

Lemma 4. The probability that G has a subgraph with more edges than vertices is O(1/n).584

Proof. The proof is similar to that of Lemma 3. More specifically, we can encode G by585

giving the same encoding as in Lemma 3, with an additional bit for each edge uv in the586

encoding, indicating whether u = h(x) and v = g(x), or u = g(x) and v = h(x). Our code thus587

has length588

|C(G)| = logm+ (t − 1)(logn+ logm) + 2logn+ (2n− 2(t + 1)) logm+ t +O(log t)589

= 2n logm− logn− t logc+ t +O(log t)590

≤ logm2n − logn+O(1) ,591
592

since logc > 1.593

Lemma 5. G has a component of size at least (2/ log(c/8)) logn+O(1) with probability O(1/n).594

Proof. Suppose G has a connected component with t vertices and at least t − 1 edges. This595

component has a spanning tree T . Pick an arbitrary vertex as the root of T . To encode G,596

we specify a bit string encoding the shape of T , then the t vertices and the elements in X597

corresponding to the t − 1 edges encountered in a pre-order traversal of T ; and finally the598

remaining 2(n − t + 1) endpoints of edges in G. For each edge uv in T we also store a bit599

indicating whether u = h(x) and v = g(x), or u = g(x) and v = h(x).600
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We can encode the shape of T with a bit string of length 2(t−1), tracing a pre-order601

traversal of the tree, where a 0 bit indicates that the path to the next node goes up, and a 1602

bit indicates that the path goes down. In total, our code has length603

|C(G)| = t logm+ (t − 1)(logn+ 1) + 2(t − 1) + 2(n− t + 1)logm604

= 2n logm+ t logc − logn+ 3t − 3− 2t logc+ 2logn+ 2logc (since m = cn)605

= logm2n − t logc+ 3t + logn+O(1)606

≤ logm2n − s ,607
608

as long as t is such that609

t ≥ s+ logn+O(1)
log(c/8)

.610

In particular, for s = logn, the Uniform Encoding Lemma tells us that G has a component611

of size at least (2/ log(c/8)) logn+O(1) with probability O(1/n).612

Suppose that when x is inserted, it is placed in an urn with t other elements. Then,613

we say that the age of x is a(x) = t.614

Theorem 6. Fix c > 8 and suppose we insert n elements into a table of size cn using 2-choice615

hashing. With probability 1−O(1/n) all positions in the hash table contain at most loglogn+616

O(1) elements.617

Proof. Suppose that some element x has a(x) = t. This leads to a binary witness tree T of618

height t as follows: The root of T is the element x. When x was inserted into the hash619

table, it had to choose between the urns h(x) and g(x), both of which contained at least620

t − 1 elements; in particular, h(x) has a unique element xh with a(xh) = t − 1, and g(x) has a621

unique element xg with a(xg ) = t −1. The elements xh and xg become the left and the right622

child of x in T . The process continues recursively. If some element appears more than623

once on a level, we only recurse on its leftmost occurrence. See Figure 5 for an example.624

Using T , we can iteratively define a connected subgraph GT of G. Initially, GT625

consists of the single node in V corresponding to the bucket that contains the root element626

x of T . Now, to construct GT , we go through T level by level, starting from the root. For627

i = t, . . . ,0, let Li be all elements in T with age i, and let Ei = {(h(x), g(x)) : x ∈ Li} be the628

corresponding edges inG. When considering Li , we add toGT all edges in Ei , together with629

their endpoints, if they are not in GT already. Since every element appears at most once in630

T , this adds |Li | new edges to GT . The number of vertices in GT increases by at most |Li |.631

In the end, GT contains
∑t
i=0 |Li | edges. Since GT is connected, with probability 1−O(1/n),632

the number of edges in GT does not exceed the number of vertices, by Lemma 4. We633
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Figure 5: The tree T is a witness tree for the 2-choice hashing instance with elements
. . . ,x5,x6,x7,x8,x9,x10 inserted in order and according to the hash functions h and g.

assume that this is the case. Since initially GT had one vertex and zero edges, the iterative634

procedure must add at least
∑t
i=0 |Li |−1 new vertices to GT . This means that all nodes in T635

but one must have two children, so we can conclude that T is a complete binary tree with636

at most one subtree removed. It follows that T (and hence GT ) has at least 2t vertices. If637

we choose t = dloglogn+ de, then 2t ≥ 2d logn. We know from Lemma 5 that this happens638

with probability O(1/n) for a sufficiently large choice of the constant d.639

Remark 3. The arguments in this section can be refined by more carefully encoding the640

shape of trees using Cayley’s formula, which says that there are tt−2 unrooted labelled trees641

on t nodes [7]. In particular, an unrooted tree with t nodes and m choices for distinct642

node labels can be encoded using log
(m
t

)
+ (t − 2)log t bits instead of t logm+ 2(t − 1) bits.643

We would then recover the same results for hash tables of size m = cn with c > 2e instead644

of c > 8. In fact, it is known that for any c > 0 searching in 2-choice hashing takes time645

1/c+O(loglogn) [5]. We leave it as an open problem to find an encoding argument for this646

result when c > 0.647

Remark 4. Robin Hood hashing is another hashing solution which achieves O(loglogn)648

worst case running time for all operations [10]. The original analysis is difficult, but might649

be amenable to a similar approach as we used in this section. Indeed, when a Robin Hood650

hashing operation takes a significant amount of time, a large witness tree is again im-651

plied, which suggests an easy encoding argument. Unfortunately, this approach appears652

to involve unwieldy hypergraph encoding.653
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3.6 Bipartite Expanders654

Expanders are families of sparse graphs which share many connectivity properties with655

the complete graph. These graphs have received much research attention, and have led to656

many applications in computer science. See, for instance, the survey by Hoory, Linial, and657

Wigderson [20].658

The existence of expanders was originally established through probabilistic argu-659

ments [31]. We offer an encoding argument to prove that a certain random bipartite graph660

is an expander with high probability. There are many different notions of expansion. We661

will consider what is commonly known as vertex expansion in bipartite graphs: For some662

fixed 0 < α ≤ 1, a bipartite graph G = (A,B,E) is called a (c,α)-expander if663

min
A′⊆A
|A′ |≤α|A|

|N (A′)|
|A′ | ≥ c ,664

665

where N (A′) ⊆ B is the set of neighbours of A′ in G. That is, in a (c,α)-expander, every set666

of vertices in A that is not too large is “expanded” by a factor c by taking one step in the667

graph.668

Let G = (A,B,E) be a random bipartite multigraph where |A| = |B| = n and where669

each vertex of A is connected to three vertices of B chosen independently and uniformly670

at random (with replacement). The following theorem shows that G is an expander. The671

proof of this theorem usually involves a messy sum that contains binomial coefficients and672

probabilities: see, for example, Motwani and Raghavan [28, Theorem 5.3], Pinsker [31,673

Lemma 1], or Hoory, Linial, and Wigderson [20, Lemma 1.9].674

Theorem 7. There exists a constant α > 0 such that G is a (3/2,α)-expander with probability675

at least 1−O(n−1/2).676

Proof. We encode the graph G by presenting its edge set. Since each edge is selected uni-677

formly at random, the graph G is chosen uniformly at random from a set of size n3n.678

If G is not a (3/2,α)-expander, then there is some set A′ ⊆ A with |A′ | = k ≤ αn and679

|N (A′)|
|A′ | < 3/2 .680

To encode G, we first give k using an Elias γ-code; together with the sets A′ and N (A′);681

and the edges between A′ and N (A′). Then we encode the rest of G, skipping the 3k logn682

bits devoted to edges incident to A′. The key savings here come because N (A′) should take683
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3k logn bits to encode, but can actually be encoded in roughly 3k log(3k/2) bits. Our code684

then has length685

|C(G)| = 2logk + log
(
n
k

)
+ log

(
n

3k/2

)
+ 3k log(3k/2) + (3n− 3k) logn+O(1)686

≤ 2logk + k logn− k logk + k loge+ (3k/2)logn− (3k/2)log(3k/2)687

+ (3k/2)loge+ 3k log(3k/2) + (3n− 3k) logn+O(1) (by (7))688

= 3n logn− (k/2)logn+ (k/2)logk + βk + 2logk +O(1)689

= logn3n − s(k)690
691

bits, where β = (3/2)log(3/2) + (5/2)loge and692

s(k) = (k/2)logn− (k/2)logk − βk − 2logk −O(1) .693

Since694

d2

dk2 s(k) =
4− k
2k2 loge ,695

the function s(k) is concave for all k ≥ 4. Thus, s(k) is minimized either when k = 1,2,3,4,696

or when k = αn. We have697

s(1) = (1/2)logn+ c1 , s(2) = logn+ c2 ,698

s(3) = (3/2)logn+ c3 , s(4) = 2logn+ c4 ,699
700

for constants c1, c2, c3, c4. For k = αn we have701

s(αn) = (αn/2)log
( 1

22βα

)
− 2logαn+ c5,702

for some constant c5. Thus, 2−s(αn) = 2−Ω(n) for α < (1/2)2β ≈ 0.002. Now the Uniform703

Encoding Lemma gives the desired result. Indeed, the encoding works for all values of704

k, and it always saves at least s(1) = (1/2)logn +O(1) bits. Thus, the probability that the705

construction fails is at most O(n−1/2).706

3.7 Permutations and Binary Search Trees707

We define a permutation σ of size n to be a sequence of n pairwise distinct integers, some-708

times denoted by σ = (σ1, . . . ,σn). The set {σ1, . . . ,σn} is called the support of σ . This slightly709

unusual definition will serve us for the purpose of encoding. Except when explicitly stated,710

we will assume that the support of a permutation of size n is precisely {1, . . . ,n}. For any711

fixed support of size n, the number of distinct permutations is n!.712
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3.7.1 Analysis of Insertion Sort713

Recall the insertion-sort algorithm for sorting a list σ = (σ1, . . . ,σn) of n elements:714

InsertionSort(σ )715

1: for i← 2 to n do716

2: j← i717

3: while j > 1 and σj−1 > σj do718

4: σj ↔ σj−1 { swap }719

5: j← j − 1720

A typical task in the average-case analysis of algorithms is to determine the number721

of times Line 4 executes if σ is a uniformly random permutation of size n. The answer
(n

2
)
/2722

is an easy application of linearity of expectation: For every one of the
(n

2
)

pairs of indices723

p,q ∈ {1, . . . ,n}with p < q, the values initially stored at positions σp and σq will eventually be724

swapped if and only if σp > σq. This happens with probability 1/2 in a uniformly random725

permutation. A pair p,q ∈ {1, . . . ,n} with p < q and σp > σq is called an inversion, so the726

number of times Line 4 executes is the number of inversions of σ .727

A more advanced question is to ask for a concentration result on the number of728

inversions. This is harder to tackle; because > is transitive, the
(n

2
)

events being studied729

have a lot of interdependence. In the following, we show how an encoding argument730

leads to a concentration result. The argument presented here follows the same outline731

as Vitányi’s analysis of bubble sort [37], though without all the trappings of Kolmogorov732

complexity.733

Theorem 8. Let α ∈ (0,1/e2). A uniformly random permutation σ of size n has at most αn2 −734

n + 2 inversions with probability at most 2n log(αe2)+O(logn). In particular, for a fixed α < 1/e2,735

this probability is 2−Ω(n).736

Proof. We encode the permutation σ by recording the execution of InsertionSort on σ .737

In particular, we record for each i ∈ {2, . . . ,n}, the number of times mi that Line 4 executes738

during the i-th iteration of InsertionSort(σ ). With this information, one can run the739

following algorithm to recover σ :740

InsertionSortReconstruct(m2, . . . ,mn):741

1: σ ← (1, . . . ,n)742

2: for i← n down to 2 do743

3: for j← i −mi + 1 to i do744

4: σj ↔ σj−1 { swap }745
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5: return σ746

We have to be slightly clever with the encoding. Rather than encode m2,m3, . . . ,mn747

directly, we first encode m =
∑n
i=2mi using 2logn bits (since m < n2). Given m, it remains748

to describe the partition of m into n− 1 non-negative integers m2, . . . ,mn; there are
(m+n−2
n−2

)
749

such partitions.2750

Therefore, the values of m2, . . . ,mn can be encoded using751

|C(σ )| = 2logn+ log
(
m+n− 2
n− 2

)
752

bits and this is sufficient to recover the permutation σ . By applying (7), we obtain753

|C(σ )| ≤ (n− 2)log(m+n− 2)− (n− 2)log(n− 2) + (n− 2)loge+O(logn)754

≤ n log(m+n− 2)−n logn+n loge+O(logn)755

≤ n log(αn2)−n logn+n loge+O(logn) (since m ≤ αn2 −n+ 2)756

= 2n logn+n logα −n logn+n loge+O(logn)757

= n logn+n logα +n loge+O(logn)758

= logn! +n logα + 2n loge+O(logn) (by (6))759

= logn! +n log(αe2) +O(logn) .760
761

Again, we finish by applying the Uniform Encoding Lemma.762

Remark 5. Theorem 8 is not sharp; it only gives a non-trivial probability when α < 1/e2.763

To obtain a sharp bound, one can use the fact that m2, . . . ,mn are independent and that mi764

is uniform over {0, . . . , i − 1} together with the method of bounded differences [22]. This765

shows that m is concentrated in an interval of size O(n3/2).766

3.7.2 Records767

A (max) record in a permutation σ of size n is some value σi , 1 ≤ i ≤ n, such that768

σi = max{σ1, . . . ,σi} .769

If σ is chosen uniformly at random, the probability that σi is a record is exactly 1/i. Thus,770

the expected number of records in such a permutation is771

Hn =
n∑

i=1

1/i = lnn+O(1) ,772

2To see this, draw m + n − 2 white dots on a line, then choose n − 2 dots to colour black. This splits the
remaining m white dots into n− 1 groups whose sizes determine the values of m2, . . . ,mn.
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the n-th harmonic number. It is harder to establish concentration with non-negligible773

probability. To do this, one first needs to show the independence of certain random vari-774

ables, which quickly becomes tedious. We instead give an encoding argument to show775

concentration of the number of records, inspired by a technique used by Lucier et al. to776

study the height of random binary search trees [21] (see also Section 3.7.3).777

First, we describe a recursive encoding of a permutation σ of size n: Begin by pro-778

viding the first value of the permutation σ1; then show the set of indices from {2, . . . ,n}779

for which σ takes on a value strictly smaller than σ1 and an explicit encoding of the in-780

duced permutation on the elements at those indices; finally, give a recursive encoding of781

the permutation induced on the elements strictly larger than σ1. The number of recursive782

invocations is equal to the number of records in σ .783

If σ contains k elements strictly smaller than σ1, then the length `(σ ) of the code-784

word for σ satisfies785

`(σ ) = logn+ log
(
n− 1
k

)
+ logk! + `(σ ′) ,786

where σ ′ is the induced permutation on the n−k−1 elements strictly larger than σ1. Thus,787

we get the following recursion for the length `(n) of the encoding for a permutation of size788

n:789

`(n) = max
k∈{1,...,n−1}

(
logn+ log

(
n− 1
k

)
+ logk! + `(n− 1− k)

)
,790

with `(0) = 0 and `(1) = 0. This solves to `(n) = logn!, so the encoding described above is no791

better than a fixed-length encoding for σ . However, a simple modification of the scheme792

yields a result about the concentration of records in a uniformly random permutation.793

Theorem 9. For any fixed c > 2, a uniformly random permutation σ of size n has at least c logn794

records with probability at most795

2−c(1−H(1/c)) logn+O(loglogn) .796

Proof. We describe an encoding scheme for permutations with at least t = dc logne records.797

Suppose that the permutation σ has t records r1 < r2 < · · · < rt. First, we define a bit string798

x = (x1, . . . ,xt) ∈ {0,1}t, where x1 = 0 and xi = 1 if and only if ri lies in the second half of the799

interval [ri−1,n], for i = 2, . . . , t. Recalling that n1(x) represents the number of ones in the800

bit string x, it follows that n1(x) ≤ logn, so n1(x)/t ≤ 1/c.801

To begin our encoding of σ , we encode the bit string x by giving the set of n1(x)802

ones in x; followed by the recursive encoding of σ from earlier. Now, our knowledge of803

the value of xi halves the size of the space of options for encoding the position ri . In other804

words, our knowledge of x allows us to encode each record using roughly one less bit per805
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record. More precisely, if the number of choices for each record ri in the original encoding806

is mi , such that m1 > · · · > mt, then the number of bits spent encoding records in the new807

code is at most808

t∑

i=1

logdmi/2e ≤
t∑

i=1

log(mi/2 + 1)809

≤
t∑

i=1

log(mi/2) +
t∑

i=1

O(1/mi) (since log(x+ 1) = logx+O(1/x))810

≤
t∑

i=1

log(mi/2) +O(Ht)811

=
t∑

i=1

logmi − t +O(loglogn) ,812

813

since c is a constant. Thus, the total length of the code is814

|C(σ )| ≤
(
t

n1(x)

)
+ logn!− t +O(loglogn)815

≤ logn!− t(1−H(n1(x)/t)) +O(loglogn) (by (7))816

≤ logn!− c(1−H(1/c)) logn+O(loglogn) ,817
818

where this last inequality follows since c > 2, so 0 ≤ n1(x)/t ≤ 1/c < 1/2, and H(n1(x)/t) ≤819

H(1/c) since H(·) is increasing on [0,1/2]. We finish by applying the Uniform Encoding820

Lemma.821

Remark 6. The preceding result only works for c > 2, but it is known that the number822

of records in a uniformly random permutation is concentrated around lnn +O(1), where823

lnn = α logn for α = 0.6931 . . . . We leave as an open problem whether or not this significant824

gap can be closed through an encoding argument.825

3.7.3 The Height of a Random Binary Search Tree826

Every permutation σ determines a binary search tree BST(σ ) created through the sequen-827

tial insertion of the keys σ1, . . . ,σn. Specifically, if σL (respectively, σR) denotes the permu-828

tation of elements strictly smaller (respectively, strictly larger) than σ1, then BST(σ ) has σ1829

as its root, with BST(σL) and BST(σR) as left and right subtrees.830

Lucier et al. [21] use an encoding argument via Kolmogorov complexity to study the831

height of BST(σ ). They show that for a uniformly chosen permutation σ , the tree BST(σ )832

has height at most c logn with probability 1−O(1/n) for c = 15.498 . . . ; we can extend our833

result on records from Section 3.7.2 to obtain a tighter result.834
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For a node u, let s(u) denote the number of nodes in the tree rooted at u. Then, u835

is called balanced if s(uL), s(uR) > s(u)/4, where uL and uR are the left and right subtrees836

of u, respectively. In other words, since each node u determines an interval [v,w], where837

v is the smallest node in the subtree rooted at u, and w is the largest such node, then u is838

balanced if and only if839

u ∈
(w+ v

2
− w − v − 1

4
,
w+ v

2
+
w − v − 1

4

)
,840

i.e. u is called balanced if it occurs inside the middle interval of length (w − v − 1)/2 of its841

subrange.842

Theorem 10. Let σ be a uniformly random permutation of size n. There is a constant c <843

9.943483 such that BST(σ ) has height at most c logn with probability 1−O(1/n).844

Proof. Let c > 2/ log(4/3), and suppose that the tree BST(σ ) contains a path Y = (y1, . . . , yt) of845

length t = dc logne that starts at the root and in which yi+1 is a child of yi , for i = 1, . . . , t−1.846

Our encoding for σ has three parts. The first part consists of a bit string x =847

(x1, . . . ,xt), where xi = 1 if and only if yi is balanced. From our definition, if yi is bal-848

anced, then s(yi+1) ≤ (3/4)s(yi). Since n1(x) counts the number of balanced nodes along Y ,849

we get850

1 ≤ (3/4)n1(x)n ⇐⇒ n1(x) ≤ log4/3n .851

Next, our encoding contains a fixed-length encoding of yt using logn bits.852

The third part of our encoding is recursive: First, encode the value of the root y1853

using logdn/2e bits. Note that since we know whether y1 is balanced or not, there are only854

n/2 possibilities for the root value, by the discussion above. If y2 is the left child of y1,855

then specify the values in the right subtree of y1, including an explicit encoding of the856

permutation induced by these values; and recursively encode the permutation of values857

in subtree of y2. If, instead, y2 is the right child of y1, proceed symmetrically. (Note that858

a decoder can determine which of these two cases occured by comparing yt with y1 since859

y2 < y1 if and only if yt < y1.) Once we reach yt, we encode the permutations of the two860

subtrees of yt explicitly.861

The first two parts of our encoding use at most862

tH(n1(x)/t) + logn863

bits. The same analysis as in the proof of Theorem 9 shows that the second part of our864

encoding has length at most865

logn!− t +O(loglogn) .866
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In total, our code has length867

|C(σ )| = logn!− t + tH(n1(x)/t) + logn+O(loglogn)868

≤ logn!− c logn+ c lognH
(

1
c log(4/3)

)
+ logn+O(loglogn)869

= logn!− c
(
1−H

(
1

c log(4/3)

))
+ logn+O(loglogn) ,870

871

where the inequality uses the fact that c > 2/ log(4/3). Applying the Uniform Encoding872

Lemma, we see that BST(σ ) has height at most c logn with probability 1 −O(1/n) for c >873

2/ log(4/3) satisfying874

c

(
1−H

(
1

c log(4/3)

))
> 2 ,875

and a computer-aided calculation shows that c = 9.943483 satisfies this inequality.876

Remark 7. Devroye [9] shows how the length of the path to the key i in BST(σ ) relates877

to the number of records in σ . Specifically, he notes that the number of records in σ is878

the number of nodes along the rightmost path in BST(σ ). Since the height of a tree is879

the length of its longest root-to-leaf path, we obtain as a corollary that the number of880

records in a uniformly random permutation is O(logn) with high probability; the result881

from Theorem 9 only improves upon the implied constant.882

Remark 8. We know that the height of the binary search tree built from the sequential in-883

sertion of elements from a uniformly random permutation of size n is concentrated around884

α lnn +O(loglogn), for α = 4.311 . . . [33]. Perhaps if the gap in our analysis of records in885

Remark 6 can be closed through an encoding argument, then so too can the gap in our886

analysis of random binary search tree height.887

3.7.4 Hoare’s Find Algorithm888

In this section, we analyze the number of comparisons made in an execution of Hoare’s889

classic Find algorithm [19] which returns the k-th smallest element in an array of n ele-890

ments. The analysis is similar to that of the preceding section.891

We refer to an easy algorithm Partition, which takes as input an array σ = (σ1, . . . ,σn)892

and partitions it into the arrays σL and σR which contain the values strictly smaller and893

strictly larger than σ1, respectively. The element σ1 is called a pivot. The algorithm894

Partition can be implemented so as to perform only n− 1 comparisons as follows:895

Partition(σ ):896

1: σL,σR← nil897
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2: for i← 2 to n do898

3: if σi > σ1 then899

4: push σi onto σR900

5: else901

6: push σi onto σL902

7: return σL,σR903

Using this, we give the algorithm Find:904

Find(k,σ ):905

1: σL,σR← Partition(σ )906

2: if |σL| ≥ k then907

3: return Find(k,σL)908

4: else if |σL| < k − 1 then909

5: return Find(k − |σL| − 1,σR)910

6: return σ1911

Suppose that the algorithm Find sequentially identifies t pivots x1, . . . ,xt before912

finding the solution. Let σ (i) denote the value of σ in the ith recursive call and let ni = |σ (i)|,913

so that σ (0) = (σ1, . . . ,σn) and n0 = n. We will say that the ith pivot is good if its rank, in σ (i),914

is in the interval [ni/4,3ni/4]. Note that a good pivot causes the algorithm to recurse in a915

problem of size at most 3ni/4.916

Lemma 6. Fix some constants t0 ≥ 1 and 0 < α < 1/2. Suppose that, for each t0 ≤ i ≤ t, the917

number of good pivots among x1, . . . ,xi is at least αi. Then, Find makes O(n) comparisons.918

Proof. If xj is a good pivot, then the conditions of the lemma give that nj ≤ (3/4)nj−1.919

Therefore,920

ni ≤ (3/4)αin921

for each t0 ≤ i ≤ t, and the total number of comparisons made by Find is at most922

t∑

i=0

ni ≤ t0n+
t∑

i=t0

ni ≤O(n) +n
t∑

i=t0

(3/4)αi =O(n) .923

Theorem 11. Let σ be a uniformly random permutation. Then, for every fixed probability924

p ∈ (0,1), there exists a constant c such that Find(k,σ ) executes at most cn comparisons with925

probability at least p, for any k.926

Proof. We again encode the permutation σ . Set α = 1/4 and let t0 be a constant depending927

on p. Suppose that the conditions of the preceding lemma are not satisfied for α and t0,928
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i.e. there is an i ≥ t0 such that the number of good pivots among x1, . . . ,xi is less than αi.929

We encode σ in two parts. The first part of our encoding gives the value of i using an Elias930

δ-code, followed by the set of indices of the good pivots among x1, . . . ,xi , which costs931

log i + iH(α) +O(loglog i) .932

Note that the pivots x1, . . . ,xi trace a path from the root in BST(σ ). Therefore, the second933

part of our encoding is the recursive encoding presented in Section 3.7.3, in which each934

pivot can be encoded using one less bit, since knowng whether xj is a good pivot or not935

narrows down the range of possible values for xj by 1/2. In total, our code then has length936

|C(σ )| ≤ logn!− i + iH(α) + log i +O(loglog i) = logn!−Ω(i) ,937

since α = 1/4 < 1/2. The proof is completed by applying the Uniform Encoding Lemma,938

and by observing that t0 ≤ i can be made arbitrarily large.939

3.8 k-SAT and the Lovász Local Lemma940

We now consider the question of satisfiability of propositional formulas. Let us start with941

some definitions.942

A (Boolean) variable x is either true or false. The negation of x is denoted by ¬x.943

A literal is either a variable or its negation. A conjunction of literals is an “and” of literals,944

denoted by ∧. A disjunction of literals is an “or” of literals, denoted by ∨. A formula ϕ is945

an expression including conjunctions and disjunctions of literals, and the set of variables946

involved in this formula is called the support of ϕ. A clause is a disjunction of literals, i.e.947

the “or” of a set of variables or their negations, e.g.948

x1 ∨¬x2 ∨ x3 . (9)949
950

Two clauses will be said to intersect if their supports intersect. The truth value which a951

formula ϕ evaluates to under the assignment of values α to its support will be denoted by952

ϕ(α), and such a formula is said to be satisfiable if there exists an α with ϕ(α) = true. For953

example, the clause in (9) is satisfied for all truth assignments except954

(x1,x2,x3) = (false, true, false) ,955

and indeed any clause is satisfied by all but one truth assignments for its support. The956

formulas we are concerned with are conjunctions of clauses, which are said to be in con-957

junctive normal form (CNF). More specifically, when each clause has at most k literals, we958

call it a k-CNF formula.959
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The k-SAT decision problem asks to determine whether or not a given k-CNF for-960

mula is satisfiable. In general, this problem is hard. Of course, any satisfying truth assign-961

ment to the variables in a CNF formula induces a satisfying truth assignment for each of962

its clauses. Moreover, if the supports of the clauses are pairwise disjoint, then the formula963

is trivially satisfiable, and as we will see, this holds even if the clauses are only nearly964

pairwise disjoint, i.e., if the intersection of the supports of each pair of clauses has size less965

than 2k/e.966

This result has been well known as a consequence of the Lovász Local Lemma [14],967

whose original proof is non-constructive, and so does not produce a satisfying truth as-968

signment (in polynomial time) when applied to an instance of k-SAT. Some efficient con-969

structive solutions to k-SAT have been known, but only for suboptimal clause intersec-970

tion sizes. Moser [26] first presented a constructive solution to k-SAT with near optimal971

clause intersection sizes, and Moser and Tardos [27] then generalized this result to the full972

Lovász Local Lemma for optimal clause intersection sizes. The analysis which we repro-973

duce in this section comes from Fortnow’s rephrasing of Moser’s proof for k-SAT using the974

incompressibility method [16].975

Moser’s algorithm is remarkably naı̈ve, and can be described in only a few sen-976

tences: Pick a uniformly random truth assignment for the variables of ϕ. For each unsat-977

isfied clause, attempt to fix it by producing a new uniformly random truth assignment for978

its support, and recursively fix any intersecting clause which is made unsatisfied by this979

reassignment. We describe this process more carefully in the algorithms Solve and Fix980

below.981

Solve(ϕ):982

1: α← uniformly random truth assignment in {true, false}n983

2: while ϕ(α) = false do984

3: D← an unsatisfied clause in ϕ985

4: α← Fix(ϕ,α,D)986

5: return α987

Fix(ϕ,α,D):988

1: β← uniformly random truth assignment in {true, false}k989

2: replace the assignments in α for D ′s support with the values in β990

3: while ϕ(α) = false do991

4: D ′← an unsatisfied clause in ϕ intersecting D992

5: α← Fix(ϕ,α,D ′)993

6: return α994
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Theorem 12. Given a k-CNF formula ϕ with m clauses and n variables such that each clause995

intersects at most r ≤ 2k−3 other clauses, then the total number of invokations of Fix in the996

execution of Solve(ϕ) is at least s+m logm with probability at most 2−s.997

Proof. Suppose that Fix is called t = ds+m logme times. Let α ∈ {true, false}n be the initial998

truth assignment for ϕ, and let β1, . . . ,βt ∈ {true, false}k be the local truth assignments999

produced in each call to Fix. The string γ = (α,β1, . . . ,βt) is uniformly chosen from a set of1000

size 2n+tk , and will be the subject of our encoding.1001

The execution of Solve(ϕ) determines a (rooted ordered) recursion tree T on t + 11002

nodes as follows: The root of T corresponds to the initial call to Solve(ϕ). Every other1003

node corresponds to a call to Fix. The children of a node correspond to the sequence of1004

calls to Fix that the procedure performs, ordered from left to right. Each (non-root) node in1005

the tree is assigned a clause and its uniformly random truth assignment produced during1006

the call to Fix. Moreover, a pre-order traversal of this tree describes the order of function1007

calls in the algorithm’s execution.1008

The string γ can be recovered in a bottom-up manner from our knowledge of the1009

tree T and the final truth assignment α′ after t calls to Fix. Specifically, let D1, . . . ,Dt be the1010

clauses encountered in a pre-order traversal of T . In particular,Dt is the last fixed clause in1011

the execution. Since Dt was not satisfied before its reassignment, this allows us to deduce1012

k values of the previous assignment before Dt was fixed. Pruning Dt from the tree and1013

continuing in this manner at Dt−1, we eventually recover the original truth assignment α1014

produced in Solve(ϕ).1015

Therefore, to encode γ , we give the final truth assignment α′; and a description of1016

the shape of the tree T ; and the sequence of at most m clauses which are children of the1017

root of T ; and the at most t clauses involved in the calls to Fix in a pre-order traversal of1018

T .1019

The key savings come from the fact that each clause intersects at most r other1020

clauses, so each clause (which is not a child of the root) can be encoded using logr bits.1021

Each clause which is a child of the root can be encoded using logm bits, and since the order1022

of these children might be significant, we use m logm bits to encode the full sequence of1023

these clauses. Finally, as in Lemma 5, the shape of T can be encoded using 2t bits. In total,1024
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the code has length1025

|C(γ)| ≤ n+ 2t +m logm+ t logr1026

≤ n+ 2t +m logm+ t(k − 3) (since r ≤ 2k−3)1027

= n+ tk − t +m logm1028

≤ n+ tk − s .1029
1030

The result is obtained by applying the Uniform Encoding Lemma.1031

Remark 9. By more carefully encoding of the shape of the recursion tree above, Mess-1032

ner and Thierauf [23] gave an encoding argument for the above result in which r < 2k/e.1033

Specifically, their refinement follows from a more careful counting of the number of trees1034

with nodes of bounded degree.1035

4 The Non-Uniform Encoding Lemma and Shannon-Fano Codes1036

Thus far, we have focused on applications that could always be modelled as choosing some1037

element x uniformly at random from a finite set X. To encompass even more applications,1038

it is helpful to have an Encoding Lemma that deals with non-uniform distributions over X.1039

First, we recall the following useful classic results:1040

Theorem 13 (Markov’s Inequality). For any non-negative random variable Y with finite ex-1041

pectation, and any a > 0,1042

Pr{Y ≥ a} ≤ (1/a)E{Y } .1043

We will say that a real-valued function ` : X→ R satisfies Kraft’s condition if1044

∑

x∈X
2−`(x) ≤ 1 .1045

Lemma 7 (Kraft’s Inequality). If C : X9 {0,1}∗ is a partial prefix-free code, then the function1046

` : x 7→ |C(x)| satisfies Kraft’s condition. Conversely, for any function ` : X → N satisfying1047

Kraft’s condition, there exists a prefix-free code C : X → {0,1}∗ such that |C(x)| = `(x) for all1048

x ∈ X.1049

The following generalization of the Uniform Encoding Lemma, which was origi-1050

nally proven by Barron [3, Theorem 3.1], serves for non-uniform input distributions:1051

Lemma 8 (Non-Uniform Encoding Lemma). Let C : X 9 {0,1}∗ be a partial prefix-free code,1052

and let px, x ∈ X, be a probability distribution onX. Suppose we draw x ∈ X randomly according1053

to px. Then, for any s ≥ 0.1054

Pr{|C(x)| ≤ log(1/px)− s} ≤ 2−s .1055
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Proof. We use Chernoff’s trick, Markov’s inequality, and Kraft’s inequality, as follows:1056

Pr{|C(x)| ≤ log(1/px)− s} = Pr{|C(x)| − log(1/px) ≤ −s}1057

= Pr{log(1/px)− |C(x)| ≥ s}1058

= Pr
{
2log(1/px)−|C(x)| ≥ 2s

}
(Chernoff’s trick)1059

≤
E
{
2log(1/px)−|C(x)|}

2s
(Markov’s inequality)1060

=
1
2s




∑

x∈X:C(x),⊥
px · 2log(1/px)−|C(x)|


1061

=
1
2s




∑

x∈X:C(x),⊥
2−|C(x)|


 .1062

1063

By Kraft’s inequality,
∑
x∈X:C(x),⊥2−|C(x)| ≤ 1, and the result is obtained.1064

The Non-Uniform Encoding Lemma is a strict generalization of the Uniform En-1065

coding Lemma: Take px = 1/ |X | for all x ∈ X and we obtain the Uniform Encoding Lemma.1066

As in Section 2.4, we will be interested in using a Shannon-Fano code Cα to encode1067

Bernoulli(α) bit strings of length n. Recall that for such a string x, this code has length1068

n1(x) log(1/α) +n0(x) log(1/(1−α)) ,1069

since we are not concerned with ceilings.1070

5 Applications of the Non-Uniform Encoding Lemma1071

5.1 Chernoff Bound1072

We will now prove the so-called additive version of the Chernoff bound on the tail of a1073

binomial random variable [8]. Theorem 2 established the special case of this result for1074

Bernoulli(1/2) bit strings.1075

Theorem 14. If B is a Binomial(n,p) random variable, then for any ε ≥ 0,1076

Pr{B ≤ (p − ε)n} ≤ 2−nD(p−ε ‖p) ,1077

where1078

D(p ‖q) = p log(p/q) + (1− p) log((1− p)/(1− q))1079

is the Kullback-Liebler divergence or relative entropy between Bernoulli(p) and Bernoulli(q)1080

random variables.1081
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Proof. By definition, B =
∑n
i=1 xi , where x1, . . . ,xn are independent Bernoulli(p) random1082

variables. We will use an encoding argument on the bit string x = (x1, . . . ,xn). The proof is1083

almost identical to that of Theorem 2—now, we encode x using a Shannon-Fano code Cα,1084

with α = p − ε. Such a code has length1085

|Cp−ε(x)| = n1(x) log(1/(p − ε)) +n0(x) log(1/(1− p+ ε)) .1086

Now, x appears with probability px = pn1(x)(1− p)n0(x), so1087

|Cp−ε(x)| = log(1/px) +n1(x) log(p/(p − ε)) + (n−n1(x)) log((1− p)/(1− p+ ε))1088

= log(1/px) +n1(x) log
(
1 +

ε
p − ε

)
+ (n1(x)−n) log

(
1 +

ε
1− p

)
,1089

1090

and |Cp−ε(x)| increases as a function of n1(x). Therefore, if n1(x) ≤ (p − ε)n, then1091

|Cp−ε(x)| ≤ log(1/px)−n(p − ε) log((p − ε)/p)−n(1− p+ ε) log((1− p+ ε)/(1− p))1092

= log(1/px)−nD(p − ε ‖p) .1093
1094

The Chernoff bound is obtained by applying the Non-Uniform Encoding Lemma.1095

5.2 Percolation on the Torus1096

Percolation theory studies the emergence of large components in random graphs. For a1097

general study of percolation theory, see the book by Grimmett [17]. We give an encoding1098

argument proving that percolation occurs on the torus when edge survival rate is greater1099

than 2/3, i.e. in random subgraphs of the torus grid graph in which each edge is included1100

independently at random with probability at least 2/3, only at most one large component1101

emerges. Our line of reasoning follows what is known as a Peierls argument.1102

Suppose that
√
n is an integer. The

√
n × √n torus grid graph is defined to be the1103

graph with vertex set {1, . . . ,√n}2, where (i, j) is adjacent to (k, l) if1104

• |i − k| ≡ 1 (mod
√
n) and |j − l| = 0, or1105

• |i − k| = 0 and |j − l| ≡ 1 (mod
√
n).1106

Theorem 15. Suppose that
√
n is an integer. LetG be a subgraph of the

√
n×√n torus grid graph1107

in which each edge is chosen with probability p < 1/3. Then, the probability that G contains a1108

cycle of length at least1109

s+ logn+O(1)
log(1/(3p))

1110

is at most 2−s.1111
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Proof. Let A be the bitstring of length 2n encoding the edge set of G. then the probability1112

pG that teh graph G is sampled is1113

pG = pn1(A)(1− p)n0(A) .1114

Suppose that G contains a cycle C′ of length t ≥ (s+ logn+O(1))/ log(1/(3p)). Encode A by1115

giving a single vertex u in C′; the sequence of directions that the cycle moves along from1116

u; and a Shannon-Fano code with parameter p for the remaining edges of G.1117

There are four possibilities for the direction of the first step taken by C′ from u, but1118

only three for each subsequent choice. Thus, this sequence can be specified by 2+(t−1)log31119

bits. The total length of our code is then1120

|C(G)| = logn+ 2 + (t − 1)log3 + (n1(A)− t) log(1/p) +n0(A) log(1/(1− p))1121

= log(1/pG) + logn− t log(1/(3p)) +O(1)1122

≤ log(1/pG)− s1123
1124

by our choice of t. We finish by applying the Non-Uniform Encoding Lemma.1125

The torus grid graph can be drawn in the obvious way without crossings on the1126

surface of a torus. This graph drawing gives rise to a dual graph, in which each vertex1127

corresponds to a face in the primal drawing, and two vertices are adjacent if and only their1128

primal faces are incident to the same edge. This dual graph is isomporphic to the original1129

torus grid graph.1130

The obvious drawing of the torus grid graph also induces drawings for any of its1131

subgraphs. Such a subgraph also has a dual, where each vertex corresponds to a face in1132

the dual torus grid graph, and two vertices are adjacent if and only if their corresponding1133

faces are incident to the same edge of the original subgraph.1134

Theorem 16. Suppose that
√
n is an integer. Let G be a subgraph of the

√
n × √n torus grid1135

graph in which each edge is chosen with probability greater than 2/3. Then, G has at most one1136

component of size ω(log2n) with high probability.1137

Proof. See Figure 6 for a visualization of this phenomenon. Suppose thatG has at least two1138

components of size ω(log2n). Then, there is a cycle of faces separating these components1139

whose length is ω(logn). From the discussion above, such a cycle corresponds to a cycle of1140

ω(logn) missing edges in the dual graph, as in Figure 6a. From Theorem 15, we know that1141

this does not happen with high probability.1142
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(a) When p = 0.33 < 1/3, long cycles are
rare. Dotted lines show missing edges
in the dual.

.................................................................................................................................................................................................................................................................................................................................................................................................................

(b) When p = 0.67 > 2/3, there is likely
only one large component.

Figure 6: Random subgraphs of the 20× 20 torus grid graph.

5.3 Triangles in Gn,p1143

Recall as in Section 3.1 that the Erdős-Rényi random graph Gn,p is the probability space1144

of undirected graphs with vertex set V = {1, . . . ,n} and in which each edge {u,w} ∈ (V
2
)

is1145

present with probability p and absent with probability 1 − p, independently of the other1146

edges.1147

By linearity of expectation, the expected number of triangles (cycles of length 3) in1148

Gn,p is p3(n
3
)
. For p = (6c)1/3/n, this expectation is c−O(1/n). Unfortunately, even when c is1149

a large constant, it still takes some work to show that there is a constant probability that1150

Gn,p contains at least one triangle. Indeed, this typically requires the use of the second1151

moment method, which involves computing the variance of the number of triangles in1152

Gn,p. To show that Gn,p has a triangle with more significant probability is even more com-1153

plicated, and a proof of this result would still typically rely on an advanced probabilistic1154

inequality [1]. Here we show how this can be accomplished with an encoding argument.1155

Theorem 17. For c > 0 and p = c/n, G ∈ Gn,p contains at least one triangle with probability at1156

least 1− 2−Ω(c3).1157

Proof. In this argument, we will produce an encoding of G’s adjacency matrix, A. For1158

simplicity of exposition, we assume that n is even.1159

Refer to Figure 7. If G contains no triangles, then we look at the number of ones in1160
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1

10

9
8

7
6

5

4
3

2

1 2 3 4 5 6 7 8 9 10
1 0 0 0 1 0 0 0 1 0
2 0 0 0 1 1 0 0 0
3 0 0 0 0 1 0 1
4 0 0 1 0 0 0
5 0 0 0 0 0
6 0 0 0 0
7 0 1 0
8 0 0
9 0

Figure 7: The random graph Gn,c/n contains triangles when c is large enough. The high-
lighted 0 bits in the last five rows can be deduced from pairs of 1 bits in the first 5 rows.

the n/2 × n/2 submatrix M determined by rows 1, . . . ,n/2 and columns n/2 + 1, . . . ,n. Note1161

that n1(M), the number of ones in M, is a Binomial(n2/4, c/n) random variable. There are1162

two cases to consider:1163

0. The number of ones in M is at most cn/8. In this case, the number of ones in this1164

submatrix is much less than the expected number, cn/4. Here one can apply the same1165

argument used to prove Chernoff’s bound (Theorem 14) or simply apply Chernoff’s1166

bound. We leave this as an exercise to the reader.1167

1. The number of ones in the submatrix is greater than cn/8. Notice that, for i < j < k if1168

Ai,j = 1 and Ai,k = 1, then the fact that there are no triangles implies that Aj,k = 0.1169

Let mi be the number of ones in the i-th row of the submatrix. By specifying rows1170

1, . . . ,n/2, we eliminate the need to specify1171

m =
n/2∑

i=1

(
mi
2

)
≥ (n/2)

(
2n1(M)/n

2

)
≥ (n/2)

(
c/4
2

)
=Ω(c2n) ,1172

zeros in rows n/2 + 1, . . . ,n (here, we used the fact that the function x 7→ (x
2
)

is convex1173

and increasing for x ≥ 1/4). We thus encode G by giving a Shannon-Fano code with1174

parameter p for the first n/2 rows of A; and a Shannon-Fano code with parameter1175

p for the rest of A, excluding the bits which can be deduced from the preceding1176

information. Such a code has length1177

|C(G)| = n1(A) log(1/p) + (n0(A)−m) log(1/(1− p))1178

which results in a savings of1179

s = log(1/pG)− |C(G)| =m log(1/(1− p)) ≥Ω(c2n) log(1/(1− p)) =Ω(c3) .1180
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Theorem 18. When p = 1/(αn) with α > 0, then G ∈ Gn,p has no triangle with probability at1181

least 1−α−3.1182

Proof. Suppose that G contains a triangle. We encode the adjacency matrix A of G. First,1183

we specify the triangle’s vertices; and finish with a Shannon-Fano code with parameter p1184

for the remaining vertices of the graph. This code has length1185

|C(G)| = 3logn+ (n1(A)− 3)log(1/p) +n0(A) log(1/(1− p))1186

= log(1/pG) + 3logn− 3log(1/p)1187

= log(1/pG)− 3logα1188

= log(1/pG)− logα3 .1189
1190

Together, Theorem 17 and Theorem 18 establish the fact that 1/n is a threshold1191

function for triangle-freeness, i.e. if p = o(1/n), then G ∈ Gn,p has no triangle with high1192

probability, and if p =ω(1/n), then G has a triangle with high probability.1193

6 Encoding with Kraft’s Condition1194

As promised in Section 2.3, we finally discuss why it has made sense to omit ceilings in all1195

of our encoding arguments.1196

Let [0,∞] denote the set of extended non-negative real numbers, supporting the1197

extended arithmetic operations a+∞ =∞ for all a ∈ [0,∞], and 2−∞ = 0.1198

Recall from Section 4 that a function ` : X→ [0,∞] satisfies Kraft’s condition if1199

∑

x∈X
2−`(x) ≤ 1 .1200

The main observation is that neither the (Non-)Uniform Encoding Lemma nor any1201

of its applications has actually required the specification of an explicit prefix-free code: We1202

know, by construction, that every code we have presented is prefix-free, but we could also1203

deduce from Kraft’s inequality that, since our described codes satisfy Kraft’s condition, a1204

prefix-free code with the same codeword lengths exists. Similarly, we will see that it is1205

actually enough to assign to every element from our universe a codeword length such that1206

Kraft’s condition is satisfied. These codeword lengths need not be integers.1207

Lemma 9. Let ` : X → [0,∞] satisfy Kraft’s condition and let x ∈ X be drawn randomly where1208

px > 0 denotes the probability of drawing x. Then1209

Pr{`(x) ≤ log(1/px)− s} ≤ 2−s .1210
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Proof. The proof is identical to that of Lemma 8.1211

The sum of two functions ` : X → [0,∞] and `′ : X ′ → [0,∞] is the function ` + `′ :1212

X × X ′ → [0,∞] defined by (` + `′)(x,x′) = `(x) + `′(x′). Note that for any partial codes1213

C : X9 {0,1}∗,C′ : X ′9 {0,1}∗, any x ∈ X, and any x′ ∈ X ′,1214

(|C|+ |C′ |)(x,x′) = |C(x)|+ |C′(x′)| = |(C ·C′)|(x,x′) .1215

In other words, the sum of the functions of codeword lengths describes the length of code-1216

words in concatenated codes.1217

Lemma 10. If ` : X→ [0,∞] and `′ : X ′→ [0,∞] satisfy Kraft’s condition, then so does ` + `′.1218

Proof. Kraft’s condition still holds:1219

∑

(x,x′)∈X×X ′
2−(`+`′)(x,x′) =

∑

x∈X

∑

x′∈X ′
2−`(x)−`′(x′) =

∑

x∈X
2−`(x)

∑

x′∈X ′
2−`

′(x′) ≤ 1 .1220

This is analogous to the fact that the concatenation of prefix-free codes is prefix-1221

free.1222

Lemma 11. For any probability density p : X → (0,1), the function ` : X → [0,∞] with `(x) =1223

log(1/px) satisfies Kraft’s condition.1224

Proof. ∑

x∈X
2−`(x) =

∑

x∈X
2− log(1/px) =

∑

x∈X
px = 1 .1225

This tells us that we can ignore the ceiling in every instance of a fixed-length code1226

and every instance of a Shannon-Fano code while encoding.1227

We now give a tight notion corresponding to Elias codes.1228

Theorem 19 (Beigel [4]). Fix some 0 < ε < e − 1. Let ` : N→ R be defined as1229

`(i) = log i + loglog i + · · ·+ log · · · log
︸    ︷︷    ︸
log∗ i times

i − (loglog(e − ε)) log∗ i +O(1) .1230

Then, ` satisfies Kraft’s condition. Moreover, the function `′ : N→ R with1231

`′(i) = log i + loglog i + · · ·+ log · · · log
︸    ︷︷    ︸
log∗ i times

i − (logloge) log∗ i + c1232

does not satisfy Kraft’s condition for any choice of the constant c.1233
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It is not hard to see how Lemma 9, Lemma 10, Lemma 11, and Theorem 19 can be1234

used to give encoding arguments with real-valued codeword lengths. For example, recall1235

how the result of Theorem 1 carried an artifact of binary encoding. Using our new tools,1236

we can now refine this and recover the exact result.1237

Theorem 1b. Let x = (x1, . . . ,xn) ∈ {0,1}n be chosen uniformly at random and let t = dlogn+ se.1238

Then, the probability that there exists an i ∈ {1, . . . ,n−t+1} such that xi = xi+1 = · · · = xi+t−1 = 11239

is at most 2−s.1240

Proof. Let ` : {0,1}n → [0,∞] be such that if x contains a run of t = dlogn+ se ones, then1241

`(x) = logn+n− t, and otherwise `(x) =∞. We will show that ` satisfies Kraft’s condition.1242

Let the function f : {1, . . . ,n−t+1} → [0,∞] have f (i) = logn for all i ∈ {1, . . . ,n−t+1},1243

and g : {0,1}n−t → [0,∞] have g(y) = n − t for all y ∈ {0,1}n−t. Both f and g satisfy Kraft’s1244

condition by Lemma 11. By Lemma 10, so does the function1245

h = f + g : {1, . . . ,n− t + 1} × {0,1}n−t→ [0,∞] ,1246

where h(i,y) = logn + n − t for all i and y. Crucially, each element of the set {1, . . . ,n − t +1247

1} × {0,1}n−t corresponds to an n-bit binary string containing a run of t ones: the element1248

(i,y) ∈ {1, . . . ,n− t + 1} × {0,1}n−t, where y = (y1, . . . , yn−t), corresponds to the binary string1249

(y1, . . . , yi−1,1,1, . . . ,1︸    ︷︷    ︸
t times

, yi , . . . , yn−t) .1250

Therefore, ` satisfies Kraft’s condition. By our choice of t, we have that `(x) ≤ n − s if and1251

only if x contains a run of t ones. We finish by applying Lemma 9.1252

7 Summary and Conclusions1253

We have described a simple method for producing encoding arguments. Using our encod-1254

ing lemmas, we gave original proofs for several previously established results.1255

Typically, one would invoke the incompressibility method after developing some of1256

the theory of Kolmogorov complexity. Our technique requires only a basic understanding1257

of prefix-free codes and one simple lemma. We are also the first to suggest a simple and1258

tight manner of encoding using only Kraft’s condition with real-valued codeword lengths.1259

In this light, we posit that there is no reason to develop an encoding argument through the1260

incompressibility method: our Uniform Encoding Lemma is simpler, the Non-Uniform1261

Encoding Lemma is more general, and our technique from Section 6 is less wasteful. In-1262

deed, though it would be easy to state and prove our Non-Uniform Encoding Lemma in1263
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the setting of Kolmogorov complexity, it seems as if the general encoding lemma from1264

Section 6 only can exist in our simplified framework.1265
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