
Time-Space Trade-Offs for Computing Euclidean
Minimum Spanning Trees?

Bahareh Banyassady1[0000−0002−3422−9028], Luis Barba2, and
Wolfgang Mulzer1[0000−0002−1948−5840]

1 Freie Universität Berlin, Berlin, Germany,
[bahareh, mulzer]@inf.fu-berlin.de,

2 ETH Zurich, Zurich, Switzerland,
luis.barba@inf.ethz.ch

Abstract. In the limited-workspace model, we assume that the input of
size n lies in a random access read-only memory. The output has to be
reported sequentially, and it cannot be accessed or modified. In addition,
there is a read-write workspace of O(s) words, where s ∈ {1, . . . , n} is a
given parameter. In a time-space trade-off, we are interested in how the
running time of an algorithm improves as s varies from 1 to n.
We present a time-space trade-off for computing the Euclidean minimum
spanning tree (EMST) of a set V of n sites in the plane. We present
an algorithm that computes EMST(V) using O(n3 log s/s2) time and
O(s) words of workspace. Our algorithm uses the fact that EMST(V)
is a subgraph of the bounded-degree relative neighborhood graph of V ,
and applies Kruskal’s MST algorithm on it. To achieve this with limited
workspace, we introduce a compact representation of planar graphs, called
an s-net which allows us to manipulate its component structure during
the execution of the algorithm.

Keywords: Euclidean minimum spanning tree, relative neighborhood
graph, time-space trade-off, limited workspace model, Kruskal’s algorithm

1 Introduction

Given n sites in the plane, their Euclidean minimum spanning tree (EMST), is
the minimum spanning tree with the sites as vertices, where the weight of the
edge between two sites is their Euclidean distance. This problem is at the core of
computational geometry and has been a classical problem taught in almost every
first year lecture on the subject. Several classical algorithms are known that can
compute EMST(V) in O(n log n) time using O(n) words of workspace [11].

In this work, we revisit this problem, and design algorithms to compute the
EMST in a memory-constrained model, where only few extra variables are allowed
to be used during the execution of the algorithm. This kind of algorithms not
only provides an interesting trade-off between running time and memory needed,

? B.B. and W.M. were supported in part by DFG project MU/3501/2. L.B. was
supported by the ETH Postdoctoral Fellowship.

2

but also is very useful in portable devices where important hardware constraints
are present.

A significant amount of research was focused on the design of algorithms
using few variables. Many of them dating from the 1970s, when memory used
to be an expensive commodity. While in recent days the cost has substantially
been reduced, the amount of data has increased, and the size of some devices
has been dramatically reduced. Sensors and small devices where larger memories
are neither possible nor desirable have proliferated in recent years. In addition,
when working on inputs that do not fit in the local memory of our computer, it is
often the case that data is simultaneously accessed by several devices. Moreover,
even if a device is procured with a large memory, it might still be preferable to
limit the number of write operations. Writing to flash memory is slow and costly,
and may also reduce the lifetime of the memory. Additionally, if the input is
stored on removable devices, write-access may not be allowed due to technical or
security reasons. Therefore, while many memory-constrained models exist, the
general scheme is the following: The input resides in a read-only memory where
data cannot be modified by the algorithm. The algorithms are allowed to store a
few variables that reside in a local memory and can be modified as needed to
solve the problem (usually called workspace). Since the output may also not fit
in our local memory, the model provides us with a write-only memory where the
desired output is sequentially reported by the algorithm.

In general, one might consider algorithms that are allowed to use a workspace
of O(s) words for some parameter s, where a word is a collection of bits and is
large enough to contain either an input item (such as a point coordinate) or a
pointer into the input structure (of logarithmic size on the length of the input).
The goal is then to design algorithms whose running time decreases as s increases,
and that provide a nice trade-off between workspace size and running time.

Our results. For the case of EMST, Asano et al. [6] proposed an algorithm
to compute the EMST of a set of n given sites in O(n3) time using a workspace
of O(1) words. In this paper, we revisit this problem and provide a time-space
trade-off. Our algorithm computes the EMST in O(n3 log s/s2) time using O(s)
additional words of workspace. This algorithm provides a smooth transition
between the O(n3) time algorithm [6] with constant words of workspace and the
O(n log n) time algorithm [11] using a workspace of O(n) words.

As the main tool to achieve this running time, we introduce a compact
representation of planar graphs, called an s-net. The main idea is to carefully
choose a “dense” set of s edges of the graph for which we remember their face
incidences. That is, we store whether or not any of these edges are incident to the
same face of the graph. Moreover, the density property of this s-net guarantees
that no path can walk along a face of the graph for long without reaching an
edge of the s-net. This allows us to “quickly” find the face of the graph that
any given edge lies on. More specifically, we use this structure to speed up the
implementation of Kruskal’s EMST algorithm on planar graphs using limited
workspace. Recall that in this algorithm, edges are added in increasing order to
an auxiliary graph. Moreover, for each of them we need to find out whether or

3

not its endpoints lie on the same component of this auxiliary graph when the
edge is inserted. If the original graph is planar, then this amounts to testing
whether or not these endpoints are incident to the same face of the graph—a task
for which the compact representation of the s-net allows us to obtain time-space
trade-offs to compute the EMST of planar graphs. While the s-net is designed
to speed up Kruskal’s algorithm, this structure is of independent interest as it
provides a compact way to represent planar graphs that can be exploited by
other algorithms.

Related work. The study of constant-workspace algorithm started with
the introduction of the complexity class LOGSPACE [3]. After that, many classic
problems were studied in this setting. Selection and sorting were among the
first such problems [13, 20–22]. In graph theory, Reingold [23] solved a long
standing problem, and showed that connectivity in an undirected graph can be
tested using constant workspace. The model was made popular in computational
geometry by Asano et al. [6] who presented several algorithms to compute classic
geometric data structures in the constant-workspace model. Algorithms with
time-space trade-off for many of these problems were presented in subsequent
years [1, 2, 4, 5, 7–10, 15, 16, 18], with the notable exception of the problem of
computing the EMST which is finally addressed in this paper.

2 Preliminaries and Definitions

Let V be a set of n points (sites) in the plane. The Euclidean minimum spanning
tree of V , EMST(V), is the minimum spanning tree of the complete graph G
on V , where the edges are weighted by the Euclidean distance between their
endpoints. We assume that V is in general position, i.e., the edge lengths in G are
pairwise distinct, thus EMST(V) is unique. Given V , we can compute EMST(V)
in O(n log n) time using O(n) words of workspace [11].

The relative neighborhood graph of V , RNG(V), is the undirected graph with
vertex set V obtained by connecting two sites u, v ∈ V with an edge if and
only if there is no site w ∈ V \ {u, v} such that both |uw| and |vw| is less than
|uv|, where |uv| denotes the Euclidean distance between u and v [24]. This is
also known as the empty lens property, where the lens between u and v is the
intersection of the disks of radius |uv| centered at both u and v; see Figure 1. One
can show that a plane embedding of RNG(V) is obtained by drawing the edges
as straight line segments between the corresponding sites in V . Furthermore,
each vertex in RNG(V) has at most six neighbors, so that RNG(V) has O(n)
edges. We will denote the number of those edges by m. It is well-known that
EMST(V) is a subgraph of RNG(V). In particular, this implies that RNG(V)
is connected. Given V , we can compute RNG(V) in O(n log n) time using O(n)
words of workspace [17,19,24].

Recall the classic algorithm by Kruskal to find EMST(V) [14]: we start with an
empty forest T , and we consider the edges of RNG(V) one by one, by increasing
weight. In each step, we insert the current edge e = vw into T if and only if
there is no path between v and w in T . In the end, T will be EMST(V). Since

4

u
v

Du

Dv

Fig. 1. The RNG for a set of sites V . The disks Du and Dv have radius |uv| and are
centered at u and v, respectively. The edge uv is in RNG(V), since there is no site in
V that lies in the lens Du ∩Dv.

EMST(V) is a subgraph of RNG(V), it suffices to consider only the edges of
RNG(V). Thus, Kruskal’s algorithm needs to consider m = O(n) edges and runs
in O(n log n) time, using O(n) words of workspace.

Let s ∈ {1, . . . , n} be a parameter, and assume that we are given a set V
of n sites in general position (as defined above) in a read-only array. The goal
is to find EMST(V), with O(s) words of workspace. We use RNG(V) in order
to compute EMST(V). By general position, the edge lengths in RNG(V) are
pairwise distinct. Thus, we define ER = e1, . . . , em to be the sorted sequence
of the edges in RNG(V), in increasing order of length. For i ∈ {1, . . . ,m}, we
define RNGi to be the subgraph of RNG(V) with vertex set V and edge set
{e1, . . . , ei−1}.

In the limited workspace model, we cannot store RNGi explicitly. Instead, we
resort to the computing instead of storing paradigm [6]. That is, we completely
compute the next batch of edges in ER whenever we need new edges of RNG(V) in
Kruskal’s algorithm. To check whether a new edge ei ∈ ER belongs to EMST(V),
we need to check if ei connects two distinct components of RNGi. To do this with
O(s) words of workspace, we will use a succinct representation of its component
structure; see below. In our algorithm, we represent each edge ei ∈ ER by two
directed half-edges. The two half-edges are oriented in opposite directions such
that the face incident a half-edge lies to the left of it. We call the endpoints
of a half-edge the head and the tail such that the half-edge is directed from
the tail endpoint to the head endpoint. Obviously, each half-edge in RNGi has
an opposing partner. However, in our succinct representation, we will rely on
individual half-edges. Throughout the paper, directed half-edges will be denoted
as −→e , and undirected edges as e. For a half-edge −→e = −→uv with u, v ∈ V , we call
v the head of −→e , and u the tail of −→e .

5

3 The Algorithm

Before we discuss our algorithm, we explain how to compute batches of edges
in RNG(V) using O(s) words of workspace. A similar technique has been used
previously in the context of Voronoi diagrams [8].

Lemma 3.1. Let V be a set of n sites in the plane, in general position. Let
s ∈ {1, . . . , n} be a parameter. Given a set Q ⊆ V of s sites, we can compute for
each u ∈ Q the at most six neighbors of u in RNG(V) in total time O(n log s),
using O(s) words of workspace.

Proof. The algorithm uses dn/se steps. In each step, we process a batch of s sites
of V = V1 ∪ . . .∪ Vdn/se, and produce at most six candidates for each site of Q to
be in RNG(V). In the first step, we take the first batch V1 ⊆ V of s sites, and we
compute RNG(Q ∪ V1). Because both Q and V1 have at most s sites, we can do
this in O(s log s) time using O(s) words of workspace using standard algorithms.
For each u ∈ Q, we remember the at most six neighbors of u in RNG(Q ∪ V1).
Notice that for each pair u ∈ Q, v ∈ V1, if the edge uv is not in RNG(Q ∪ V1),
then the lens of u and v is non-empty. That is, there is a witness among the
points of Q ∪ V1 that certifies that uv is not an edge of RNG(V). Let N1 be the
set containing all neighbors in RNG(Q∪ V1) of all sites in Q. Storing N1, the set
of candidate neighbors requires O(s) words of workspace.

Then, in each step j = 2, . . . , O(n/s), we take next batch Vj ⊆ V of s sites,
and compute RNG(Q ∪ Vj ∪Nj−1) in O(s log s) time using O(s) words of space.
For each u ∈ Q, we store the set of at most six neighbors in this computed graph.
Additionally, we let Nj be the set containing all neighbors in RNG(Q∪Vj ∪Nj−1)
of all sites in Q. Note that Nj , the set of candidate neighbors, consists of O(s)
sites as each site in Q has degree at most six in the computed graph.

Therefore, after dn/se steps, we are left with at most six candidate neighbors
for each site in Q. As mentioned above, for a pair u ∈ Q, v ∈ V , if v is not among
the candidate neighbors of u, then at some point in the construction there was a
site witnessing that the lens of u and v is non-empty. Therefore, only the sites
which are in the set of candidate neighbors can define edges of RNG(V). However,
all the candidate neighbors are not necessarily the neighbors in RNG(V) of sites
in Q.

To obtain the edges of RNG(V) incident to the sites of Q, we take each
site in Q and its corresponding neighbors in Ndn/se. Then, we go again through
the entire set V = V1 ∪ . . . ∪ Vdn/se in batches of size s: for each u ∈ Q, we
test the at most six candidate neighbors in Ndn/se against all elements of the
current batch to test the empty-lens property. After going through all sites, the
candidates that maintained the empty-lens property throughout define the edges
of RNG(V) incident to the sites of Q. Since we use O(s log s) time per step, and
since there are dn/se steps, the total running time is O(n log s) using O(s) words
of workspace. ut

Through repeated application of Lemma 3.1, we can enumerate the edges of
RNG(V) by increasing lengths.

6

Lemma 3.2. Let V be a set of n sites in the plane, in general position. Let
s ∈ {1, . . . , n} be a parameter. Let ER = e1, e2, . . . , em be the sequence of edges in
RNG(V), by increasing length. Let i ≥ 1. Given ei−1 (or ⊥, if i = 1), we can find
the edges ei, . . . , ei+s−1 in O(n2 log s/s) time using O(s) words of workspace.3

Proof. By applying Lemma 3.1 O(n/s) times, we can generate all the edges
of RNG(V). Because we obtain the edges in batches of size O(s), each taking
O(n log s) time, the total time to compute all the edges amounts to O(n2 log s/s).
During this process, we find the edges ei, . . . , ei+s−1 of ER. This can be done with
a trick by Chan and Chen [12], similar to the procedure in the second algorithm
in [7]. More precisely, whenever we produce new edges of RNG(V), we store the
edges that are longer than ei−1 in an array A of size O(s). Whenever A contains
more than 2s elements, we use a linear time selection procedure to remove all
edges of rank larger than s [14]. This needs O(s) operations per step. We repeat
this procedure for O(n/s) steps, giving total time O(n) for selecting the edges.
In the end, we have ei, . . . , ei+s−1 in A, albeit not in sorted order. Thus, we sort
the final A in O(s log s) time. The running time is dominated by the time needed
to compute the edges of RNG(V), so the claim follows. ut

Lemma 3.2, together with the techniques from the original constant workspace
EMST-algorithm by Asano et al. [6], already leads to a simple time-space trade-off
for computing EMST(V). Recall that we represent the edges of RNG(V) as pairs
of opposing half-edges, such that the face incident to a half-edge lies to its left.
For i ∈ {1, . . . ,m}, a face-cycle in RNGi is the circular sequence of half-edges
that bounds a face in RNGi. All half-edges in a face-cycle are oriented in the
same direction, and RNGi can be represented as a collection of face-cycles; see
Figure 2. Asano et al. [6] observe that to run Kruskal’s algorithm on RNG(V), it
suffices to know the structure of the face-cycles.

Fig. 2. A schematic drawing of RNGi is shown in black. The face-cycles of this graph
are shown in gray. All the half-edges of a face-cycle are directed according to the arrows.

3 Naturally, if i + s− 1 > m, we report the edges ei, . . . , em.

7

Observation 3.3. Let i ∈ {1, . . . ,m}. The edge ei ∈ ER belongs to EMST(V)
if and only if there is no face-cycle C in RNGi such that both endpoints of ei lie
on C.

Proof. Let u and v be the endpoints of ei. If there is a face-cycle C in RNGi that
contains both u and v, then ei clearly does not belong to EMST(V). Conversely,
suppose there is no face-cycle in RNGi containing both u and v. Thus, any two
face-cycles Cu and Cv such that u lies on Cu and v lies on Cv must be distinct.
Since RNG(V) is plane, Cu and Cv must belong to two different connected
components of RNGi, and ei is an edge of EMST(V). ut

Observation 3.3 tells us that we can identify the edges of EMST(V) if we
can determine, for each i ∈ {1, . . . ,m}, the face-cycles of RNGi that contain the
endpoints of ei. To accomplish this task, we use the next lemma to traverse the
face-cycles.

Lemma 3.4. Let i ∈ {1, . . . ,m}. Suppose we are given ei ∈ ER and a half-edge
−→
f ∈ RNGi, as well as the at most six edges incident to the head of

−→
f in RNG(V).

Let C be the face-cycle of RNGi that
−→
f lies on. We can find the half-edge

−→
f ′

that comes after
−→
f on C, in O(1) time using O(1) words of workspace.

Proof. Let w be the head of
−→
f . By comparing the edges incident to w with ei, we

identify the incident half-edges of w in RNGi, in O(1) time. Then, among them

we pick the half-edge
−→
f ′ which has the smallest clockwise angle with

−→
f around w

and has w as its tail. This takes O(1) time using O(1) words of workspace. ut

For j ≥ i ≥ 1, we define predecessor and successor of ej in RNGi regarding
each endpoint w of ej as follows: the predecessor −→pw of ej is the half-edge in RNGi

which has w as its head and is the first half-edge encountered in a counterclockwise
sweep from ej around w. The successor −→sw of ej is the half-edge in RNGi which
has w as its tail and is the first half-edge encountered in a clockwise sweep from
ej around w; see Figure 3. If there is no edge incident to w in RNGi, we set
pw, sw =⊥.

From our observations so far, we can already derive a simple time-space
trade-off for computing EMST(V).

Theorem 3.5. Let V be a set of n sites in the plane, in general position. Let
s ∈ {1, . . . , n} be a parameter. We can output all the edges of EMST(V), in
sorted order, in O(n3 log s/s) time using O(s) words of workspace.

Proof. We simulate Kruskal’s algorithm on RNG(V). For this, we take batches
of s edges, sorted by increasing length, and we report the edges of EMST(V) in
each batch. Let ER = e1, . . . , em be the edges of RNG(V), sorted by length. To
determine whether an edge ei ∈ ER is in EMST(V), we apply Observation 3.3,
i.e., we determine whether the endpoints of ei are on two distinct face-cycles of
the corresponding RNGi. To do this, we process ER in batches of s edges, and
for each edge, we perform a walk along the face-cycle that contains one endpoint

8

ej

uj

vj

pu

pv

su

sv

Fig. 3. A schematic drawing of RNGi is shown in black. The endpoint w = u, v of ej
identifies the half-edges pw and sw as the predecessor and the successor of ej . They are
shown in green and blue, respectively.

of ei until we either encounter the other endpoint of ei or until we are back at
the starting point of our walk.

More precisely, we proceed as follows: first, we use Lemma 3.2 to find the next
batch ei, . . . , ei+s−1 of s edges in ER, in O(n2 log s/s) time. For each such edge
ej , we pick an endpoint uj ∈ V . Using Lemma 3.1, we find for each uj first the
incident edges in RNG(V), and then the incident edges in RNGj (by comparing
the edges from RNG(V) with ej). Then, we identify the successor of each ej in
RNGj (if it exists), and we perform s parallel walks, where walk j takes place in
RNGj . In each step, we have s current half-edges, and we use Lemma 3.1 and
Lemma 3.4 to advance each half-edge along its face-cycle. This takes O(n log s)
operations. A walk j continues until we either encounter the other endpoint of
ej or until we arrive at the predecessor of ej in RNGj . In the latter case, ej is
in EMST(V), and we report it. In the former case, ej is not in EMST(V). Since
there are O(n) half-edges in RNG(V), it takes O(n) steps to conclude all the
walks. If follows that we can process a single batch of edges in O(n2 log s) time.
We have O(n/s) many batches, so the total running time of the algorithm is
O(n3 log s/s), using O(s) words of workspace. ut

Theorem 3.5 is clearly not optimal: for the case of linear space s = n, we get
a running time of O(n2 log n), although we know that it should take O(n log n)
time to find EMST(V). Can we do better? The bottleneck in Theorem 3.5 is the
time needed to perform the walks in the partial relative neighborhood graphs
RNGj . In particular, such a walk might take up to Ω(n) steps, leading to a
running time of Ω(n2 log s) for processing a single batch. To avoid this, we will
maintain a compressed representation of the partial relative neighborhood graphs
that allow us to reduce the number of steps in each walk to O(n/s).

Let i ∈ {1, . . . ,m}. An s-net N for RNGi is a collection of half-edges, called
net-edges, in RNGi that has the following two properties: (i) each face-cycle in
RNGi with at least bn/sc+ 1 half-edges contains at least one net-edge; and (ii)
for any net-edge −→e ∈ N , let C be the face-cycle of RNGi with −→e . Then, between

9

the head of −→e and the tail of the next net-edge on C, there are at least bn/sc
and at most 2bn/sc other half-edges on C. Note that the next net-edge on C
after −→e could be possibly −→e itself. In particular, this implies that face-cycles
with less than bn/sc edges contain no net-edge. The following observation records
two important properties of s-nets.

Observation 3.6. Let i ∈ {1, . . . ,m}, and let N be an s-net for RNGi. Then,

(N1) N has O(s) half-edges; and (N2) let
−→
f be a half-edge of RNGi, and let C

be the face-cycle that contains it. Then, it takes at most 2bn/sc steps along C

from the head of
−→
f until we either reach a net-edge or the tail of

−→
f .

Proof. Property (ii) implies that only face-cycle of RNGi with at least bn/sc+ 1
half-edges contain net-edges. Furthermore, on these face-cycles, we can uniquely
charge Θ(n/s) half-edges to each net-edge, again by (ii). Thus, since there are
O(n) half-edges in total, we have the first statement |N | = O(s).

For the second statement, we first note that if C contains less than 2bn/sc
half-edges, the claim holds trivially. Otherwise, C contains at least one net-edge,
by property (i). Now, property (ii) shows that we reach a net-edge in at most

2bn/sc steps from
−→
f . ut

By Observation 3.6, we can store an s-net in O(s) words of workspace. This
makes the concept of s-net useful in our time-space trade-off. Now, we can use
the s-net in order to speed up the processing of a single batch. The next lemma
shows how this is done:

Lemma 3.7. Let i ∈ {1, . . . ,m}, and let Ei,s = ei, . . . , ei+s−1 be a batch of s
edges from ER. Suppose we have an s-net N for RNGi in our workspace. Then,
we can determine which edges from Ei,s belong to EMST(V), using O(n2 log s/s)
time and O(s) words of workspace.

Proof. Let F be the set of half-edges that contains all net-edges from N , as
well as, for each batch-edge ej ∈ Ei,s, the two successors of ej in RNGi, one for
each endpoint of ej . By definition, we have |F | = O(s), and it takes O(n log s)
time to compute F , using Lemma 3.1. Now, we perform parallel walks through
the face-cycles of RNGi, using Lemma 3.1 and Lemma 3.4. We have one walk
for each half-edge in F , and each walk proceeds until it encounters the tail of
a half-edge from F (including the starting half-edge itself). By Lemma 3.4, in
each step of these parallel walks we need O(n log s) time to find the next edge
on the face-cycle and then we need O(s log s) time to check whether these new
edges are in F . Because F contains the net-edges of N , by property (N2), each
walk finishes after O(n/s) steps, and thus the total time for this procedure is
O(n2 log s/s).

Next, we build an auxiliary undirected graph H, as follows: the vertices of H
are the endpoints of the half-edges in F . Furthermore, H contains undirected
edges for all the half-edges in F and additional compressed edges, that represent
the outcomes of the walks: if a walk started from the head u of a half-edge in F
and ended at the tail v of a half-edge in F , we add an edge from u to v in H,

10

and we label it with the number of steps that were needed for the walk. Thus,
H contains F -edges, and compressed edges; see Figure 4. Clearly, after all the
walks have been performed, we can construct H in O(s) time, using O(s) words
of workspace.

4

5

2
3

2

2 3

3

7

1

4

1

4
2

3

3

2

(a) (b)

Fig. 4. (a) A schematic drawing of RNGi is shown in gray. The half-edges of N are in
black and the edges of the next batch Ei,s are dashed red segments. (b) The auxiliary
graph H including the batch-edges (in red). The graph H contains the net-edges (in
black), and the successors of batch-edges and the compressed edges (which are combined
in green paths in this picture).

Next, we use Kruskal’s algorithm to insert the batch-edges of Ei,s into H.
This is done as follows: we determine the connected components of H, in O(s)
time using depth-first search. Then, we insert the batch-edges into H, one after
another, in sorted order. As we do this, we keep track of how the connected
components of H change, using a union-find data structure [14]. Whenever a new
batch-edge connects two different connected components, we output it as an edge
of EMST(V). Otherwise, we do nothing. Note that even though H may have a lot
more components than RNGi, the algorithm is still correct, by Observation 3.3.
This execution of Kruskal’s algorithm, and updating the structure of connected
components of H takes O(s log s) time, which is dominated by the running time
of O(n2 log s/s) from the first phase of the algorithm. ut

Finally, we need to explain how to maintain the s-net during the algorithm.
The following lemma shows how we can compute an s-net for RNGi+s, provided
that we have an s-net for RNGi and the graph H described in the proof of
Lemma 3.7, for each i ∈ {1, . . . ,m}.

Lemma 3.8. Let i ∈ {1, . . . ,m}, and suppose we have the graph H derived from
RNGi as above, such that all batch-edges have been inserted into H. Then, we
can compute an s-net N for RNGi+s in time O(n2 log s/s), using O(s) words of
workspace.

Proof. By construction, all big face-cycles of RNGi+s, which are the faces with at
least bn/sc+1 half-edges appear as faces in H. Thus, by walking along all faces in

11

H, and taking into account the labels of the compressed edges, we can determine
these big face-cycles in O(s) time. The big face-cycles are represented through
sequences of F -edges, compressed edges, and batch-edges. For each such sequence,
we determine the positions of the half-edges for the new s-net N , by spreading
the half-edges equally at distance bn/sc along the sequence, again taking the
labels of the compressed edges into account. Since the compressed edges have
length O(n/s), for each of them, we create at most O(1) new net-edges. Now
that we have determined the positions of the new net-edges on the face-cycles of
RNGi+s, we perform O(s) parallel walks in RNGi+s to actually find them. Using
Lemma 3.4, this takes O(n2 log s/s) time. ut

We now have all the ingredients for our main result which provides a smooth
trade-off between the cubic time algorithm in constant workspace and the classical
O(n log n) time algorithm with O(n) words of workspaces.

Theorem 3.9. Let V be a set of n sites in the plane, in general position. Let
s ∈ {1, . . . , n} be a parameter. We can output all the edges of EMST(V), in
sorted order, in O(n3 log s/s2) time using O(s) words of workspace.

Proof. This follows immediately from Lemma 3.7 and Lemma 3.8, because we
need to process O(n/s) batches of edges from ER. ut

For our algorithm, it suffices to update the s-net every time that a new batch
is considered. It is however possible to maintain the s-net and the auxiliary
graph H through insertions of single edges. This allows us to handle graphs
constructed incrementally and maintain their compact representation using O(s)
workspace words. We believe this is of independent interest and can be used by
other algorithms for planar graphs in the limited-workspace model.

Acknowledgments. This work was initiated at the Fields Workshop on Discrete and
Computational Geometry, held July 31–August 04, 2017, at Carleton university.
The authors would like to thank them and all the participants of the workshop
for inspiring discussions and for providing a great research atmosphere.

References

1. H.-K. Ahn, N. Baraldo, E. Oh, and F. Silvestri. A time-space trade-off for trian-
gulations of points in the plane. In Proc. 23rd Internat. Comput. and Combinat.
Conf. (COCOON), pages 3–12, 2017.

2. B. Aronov, M. Korman, S. Pratt, A. van Renssen, and M. Roeloffzen. Time-space
trade-offs for triangulating a simple polygon. In Proc. 15th Scand. Symp. Work.
Alg. Theory (SWAT), pages 30:1–30:12, 2016.

3. S. Arora and B. Barak. Computational complexity: A modern approach. Cambridge
University Press, 2009.

4. T. Asano, K. Buchin, M. Buchin, M. Korman, W. Mulzer, G. Rote, and A. Schulz.
Memory-constrained algorithms for simple polygons. Comput. Geom., 46(8):959–969,
2013.

12

5. T. Asano and D. G. Kirkpatrick. Time-space tradeoffs for all-nearest-larger-
neighbors problems. In Proc. 13th Algorithms and Data Structures Symposium
(WADS), pages 61–72, 2013.

6. T. Asano, W. Mulzer, G. Rote, and Y. Wang. Constant-work-space algorithms for
geometric problems. J. Comput. Geom., 2(1):46–68, 2011.

7. Y. Bahoo, B. Banyassady, P. Bose, S. Durocher, and W. Mulzer. Time-space
trade-off for finding the k-visibility region of a point in a polygon. In Proc. 11th
Workshop Alg. Comp. (WALCOM), pages 308–319. Springer-Verlag, 2017.

8. B. Banyassady, M. Korman, W. Mulzer, A. van Renssen, M. Roeloffzen, P. Seiferth,
and Y. Stein. Improved time-space trade-offs for computing Voronoi diagrams. In
Proc. 34th Sympos. Theoret. Aspects Comput. Sci. (STACS), pages 9:1–9:14, 2017.

9. L. Barba, M. Korman, S. Langerman, K. Sadakane, and R. I. Silveira. Space–time
trade-offs for stack-based algorithms. Algorithmica, 72(4):1097–1129, 2015.

10. L. Barba, M. Korman, S. Langerman, and R. I. Silveira. Computing a visibility
polygon using few variables. Comput. Geom., 47(9):918–926, 2014.

11. M. de Berg, O. Cheong, M. van Kreveld, and M. H. Overmars. Computational
Geometry: Algorithms and applications. Springer-Verlag, third edition, 2008.

12. T. M. Chan and E. Y. Chen. Multi-pass geometric algorithms. Discrete Comput.
Geom., 37(1):79–102, 2007.

13. T. M. Chan, J. I. Munro, and V. Raman. Selection and sorting in the “restore”
model. In Proc. 25th Annu. ACM-SIAM Sympos. Discrete Algorithms (SODA),
pages 995–1004, 2014.

14. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to algorithms.
MIT Press, third edition, 2009.

15. O. Darwish and A. Elmasry. Optimal time-space tradeoff for the 2d convex-hull
problem. In Proc. 22nd Annu. European Sympos. Algorithms (ESA), pages 284–295,
2014.

16. S. Har-Peled. Shortest path in a polygon using sublinear space. J. Comput. Geom.,
7(2):19–45, 2016.

17. J. W. Jaromczyk and G. T. Toussaint. Relative neighborhood graphs and their
relatives. Proceedings of the IEEE, 80:1502–1517, 1992.

18. M. Korman, W. Mulzer, A. van Renssen, M. Roeloffzen, P. Seiferth, and Y. Stein.
Time–space trade-offs for triangulations and Voronoi diagrams. Comput. Geom.,
page to appear, 2017.

19. J. S. B. Mitchell and W. Mulzer. Proximity algorithms. In J. E. Goodman,
J. O’Rourke, and C. D. Tóth, editors, Handbook of Discrete and Computational
Geometry, pages 849–874. CRC Press, third edition, 2017.

20. J. I. Munro and M. S. Paterson. Selection and sorting with limited storage. Theoret.
Comput. Sci., 12(3):315–323, 1980.

21. J. I. Munro and V. Raman. Selection from read-only memory and sorting with
minimum data movement. Theoretical Computer Science, 165(2):311–323, 1996.

22. J. Pagter and T. Rauhe. Optimal time-space trade-offs for sorting. In Proc. 39th
Annu. IEEE Sympos. Found. Comput. Sci. (FOCS), pages 264–268, 1998.

23. O. Reingold. Undirected connectivity in log-space. J. ACM, 55(4):17, 2008.
24. G. T. Toussaint. The relative neighbourhood graph of a finite planar set. Pattern

Recognition, 12(4):261–268, 1980.

	Time-Space Trade-Offs for Computing Euclidean Minimum Spanning Trees

