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Abstract
Given n sites in the plane, their Euclidean minimum spanning tree (EMST), is the minimum

spanning tree with the sites as vertices, where the weight of the edge between two sites is their
Euclidean distance. In this paper, we revisit this problem, and design algorithms to compute the
EMST in a limited-workspace model. In this model the input of size n lies in a random access
read-only memory. The output has to be reported sequentially, and it cannot be accessed or
modified. In addition, there is a read-write workspace of O(s) words, where s ∈ {1, . . . , n} is a
given parameter. We present an algorithm that computes EMST using O(n3 log s/s2) time and
O(s) words of workspace. Using the fact that EMST is a subgraph of the bounded-degree relative
neighborhood graph (RNG), we apply Kruskal’s MST algorithm on RNG. To achieve this with
limited workspace, we introduce a compact representation of planar graphs, called an s-net which
allows us to manipulate RNG’s component structure during the execution of the algorithm.

1 Introduction

A significant amount of research was focused on the design of algorithms using few variables.
Many of them dating from the 1970s, when memory used to be an expensive commodity.
While in recent days the cost has been substantially reduced, the amount of data has increased,
and the size of some devices has been dramatically reduced. Sensors and small devices,
where larger memories are neither possible nor desirable, have proliferated in recent years.
Moreover, even if a device is procured with a large memory, it might still be preferable to
limit the number of write operations, since they are slow and costly. Therefore, while many
memory-constrained models exist, the general scheme is the following: the input resides in a
read-only memory where data cannot be modified by the algorithm. The algorithm is allowed
to store a few variables to solve the problem. These variables reside in a local memory and
can be modified as needed (usually called workspace). Since the output may also not fit in
our local memory, the model provides us with a write-only memory where the desired output
is sequentially reported by the algorithm.

In general, one might consider algorithms that are allowed to use a workspace of O(s)
words for some parameter s, where a word is a collection of θ(logn) bits. The goal is then
to design algorithms whose running time decreases as s increases, and that provides a nice
trade-off between workspace size and running time.

Asano et al. [1] proposed an algorithm to compute the EMST of a set of n given sites in
O(n3) time using a workspace of O(1) words. In this paper, we provide an algorithm that
computes the EMST in O(n3 log s/s2) time using O(s) words of workspace. This algorithm
provides a smooth transition between the O(n3) time algorithm [1] with constant words of
workspace and the O(n logn) time algorithm [2] using a workspace of O(n) words.

∗ Supported in part by DFG project MU/3501/2 and by the ETH Postdoctoral Fellowship.

34th European Workshop on Computational Geometry, Berlin, Germany, March 21–23, 2018.
This is an extended abstract of a presentation given at EuroCG’18. It has been made public for the benefit of the
community and should be considered a preprint rather than a formally reviewed paper. Thus, this work is expected
to appear eventually in more final form at a conference with formal proceedings and/or in a journal.



51:2 Time-Space Trade-Offs for Computing EMST

u
v

Du

Dv

Figure 1 The graph RNG for a set of sites. The disk Du (resp. Dv) is centered at u (resp. v)
and passes through v (resp. u). The edge uv is in RNG, since there is no site in the lens Du ∩ Dv.

2 Preliminaries and Definitions

Let V be a set of n points (sites) in the plane. The Euclidean minimum spanning tree of V ,
EMST(V ), is the minimum spanning tree of the complete graph G on V , where the edges
are weighted by the Euclidean distance between their endpoints. We assume that V is in
general position, i.e., the edge lengths in G are pairwise distinct, thus EMST(V ) is unique.
Given V , we can compute EMST(V ) in O(n logn) time using O(n) words of workspace [2].

The relative neighborhood graph of V , RNG(V ), is the undirected graph with vertex set V
obtained by add an edge between any two sites u, v ∈ V if and only if the intersection of the
two disks centered at u or v and passing through the other one, which is called the lens of u
and v, is empty of sites in V [7]; see Figure 1. A plane embedding of RNG(V ) is obtained by
the straight line drawing of the edges. Furthermore, the maximum degree of RNG(V ) is six
and so, the number of edges of RNG(V ), which is denoted by m, is O(n). It is well-known
that EMST(V ) is a subgraph of RNG(V ). This implies that RNG(V ) is connected. Given
V , we can compute RNG(V ) in O(n logn) time using O(n) words of workspace [5–7].

Recall the classic algorithm by Kruskal to find EMST(V ) [4]: start with an empty forest
T , and consider the m = O(n) edges of RNG(V ) one by one, by increasing weight. In each
step, insert the current edge e = vw into T iff there is no path between v and w in T . In the
end, T is EMST(V ). This takes O(n logn) total time and O(n) words of workspace.

Let s ∈ {1, . . . , n} be a parameter, and let V be a set of n sites in general position (as
above) in a read-only array. The goal is to find EMST(V ), with O(s) words of workspace.
We use RNG(V ) in order to compute EMST(V ). By general position, the edge lengths in
RNG(V ) are pairwise distinct. Thus, we define ER = e1, . . . , em to be the sorted sequence
of the edges in RNG(V ), in increasing order of length. For i ∈ {1, . . . ,m}, we define RNGi

to be the subgraph of RNG(V ) with vertex set V and edge set {e1, . . . , ei−1}.
In the limited workspace model, we cannot store RNGi explicitly. Instead, we resort to

the computing instead of storing paradigm [1]. That is, we completely compute the next
batch of edges in ER whenever we need new edges of RNG(V ) in Kruskal’s algorithm. To
check whether a new edge ei ∈ ER belongs to EMST(V ), we need to check if ei connects
two distinct components of RNGi. To do this with O(s) words of workspace, we will use a
succinct representation of its component structure; see below. In our algorithm, we represent
each edge ei ∈ ER by two directed half-edges. The two half-edges are oriented in opposite
directions such that the face incident a half-edge lies to the left of it. Obviously, each
half-edge in RNGi has an opposing partner. However, in our succinct representation, we will
rely on individual half-edges. We denote directed half-edges as −→e , and undirected edges as e.
For a half-edge −→e = −→uv with u, v ∈ V , we call v the head of −→e , and u the tail of −→e .
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Figure 2 A schematic drawing of RNGi is shown in black. The face-cycles of RNGi are shown in
gray. All the half-edges of a face-cycle are directed according to the arrows.

3 The Algorithm

In Lemma 3.1 we compute batches of edges of RNG(V ) using O(s) words of workspace. Then
using this lemma we enumerate the edges of RNG(V ) by increasing lengths, in Lemma 3.2.

I Lemma 3.1. Let V be a set of n sites in the plane, in general position. Let s ∈ {1, . . . , n}
be a parameter. Given a set Q ⊆ V of s sites, we can compute for each u ∈ Q the at most
six neighbors of u in RNG(V ) in total time O(n log s), using O(s) words of workspace.

Proof. Let Vj ⊆ V , j = 1, . . . dn/se, be the j-th batch of s sites of V . In the first step,
we compute RNG(Q ∪ V1) with standard algorithms in O(s log s) time using O(s) words of
workspace. We store N1, the set of all neighbors in RNG(Q ∪ V1) of all sites in Q. Then, in
each step j 6= 1, we compute RNG(Q ∪ Vj ∪Nj−1) in O(s log s) time using O(s) words of
workspace. We store Nj , the set of all neighbors in RNG(Q ∪ Vj ∪Nj−1) of all sites in Q.
Since the degree of sites in Q is at most six, |Nj | = O(s). Notice that for a pair u ∈ Q, v ∈ V ,
if v is not among the neighbors of u in Ndn/se, at some step there was a site in the lens of u
and v. Thus, only the sites in Ndn/se define edges of RNG(V ). However, all of them are not
necessarily the neighbors of sites of Q in RNG(V ). To filter these neighbors, we again scan
V in batches of size s: for each u ∈ Q, we test if the lens between u and each of its neighbors
in Ndn/se is empty of sites of V . After scanning V , the candidates with empty lens define
neighbors of u in RNG(V ). Since we use O(s log s) time per step, the claim follows. J

I Lemma 3.2. Let V be a set of n sites in the plane, in general position. Let s ∈ {1, . . . , n}
be a parameter. Let ER = e1, . . . , em be the sequence of edges in RNG(V ), by increasing
length. Let i ≥ 1. Given ei−1 (or null, if i = 1), we can find ei, . . . , ei+s−1 (or ei, . . . , em, if
i+ s− 1 > m), in O(n2 log s/s) time using O(s) words of workspace.

Proof. We generate all the edges of RNG(V ) by applying O(n/s) times Lemma 3.1. Since,
we obtain the edges in batches of size O(s), each taking O(n log s) time, the total time
amounts to O(n2 log s/s). During this process, we find ei, . . . , ei+s−1 of ER with a trick by
Chan and Chen [3]. More precisely, whenever we produce new edges of RNG(V ), we store the
edges that are longer than ei−1 in an array A of size O(s). Whenever A contains more than 2s
elements, using a linear time selection procedure, we find the edge with rank s, and we remove
all edges lorger than that [4]. This needs O(s) operations per step, repeating for O(n/s)
steps, giving total time O(n) for selecting the edges. In the end, we have ei, . . . , ei+s−1 in A,
albeit not in sorted order. Thus, we sort the final A in O(s log s) time. The running time is
dominated by the time needed to compute the edges of RNG(V ), so the claim follows. J

For i ∈ {1, . . . ,m}, a face-cycle in RNGi is the circular sequence of half-edges that bounds
a face in RNGi. All half-edges in a face-cycle are oriented in the same direction, and RNGi

can be represented as a collection of face-cycles; see Figure 2. Asano et al. [1] observe that
to run Kruskal’s algorithm on RNG(V ), it suffices to know the structure of the face-cycles.
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Figure 3 A schematic drawing of RNGi. The endpoints u and v of ej identify the predecessors
of ej , shown by p(u) and p(v) in green, and the successors of ej , shown by s(u) and s(v) in blue.

I Observation 3.3. Let i ∈ {1, . . . ,m}. The edge ei ∈ ER belongs to EMST(V ) if and only
if there is no face-cycle C in RNGi such that both endpoints of ei lie on C.

For j ≥ i ≥ 1, we define predecessor (successor) of ej in RNGi, regarding each endpoint w
of ej , as the half-edge in RNGi which has w as its head (tail) and is the first edge encountered
in a counterclockwise (clockwise) sweep from ej around w; see Figure 3. If there is no edge
incident to w in RNGi, we set null to the predecessor p(w), and successor s(w), of ej . Here,
we can already derive a simple time-space trade-off for computing EMST(V ).

I Theorem 3.4. Let V be a set of n sites in the plane, in general position. Let s ∈ {1, . . . , n}
be a parameter. We can output all the edges of EMST(V ), in sorted order, in O(n3 log s/s)
time using O(s) words of workspace.

Proof. Let ER = e1, . . . , em be the edges of RNG(V ), sorted by length. We simulate
Kruskal’s algorithm on ER: take batches of s edges of ER and report the ones which are in
EMST(V ). More precisely, we use Lemma 3.2 to find a batch of s edges ei, . . . , ei+s−1, in
O(n2 log s/s) time. For each such edge ej , we pick an endpoint uj ∈ V and we find first its
incident edges in RNG(V ) (Lemma 3.1), and then its incident edges in RNGj (compare the
edges from RNG(V ) with ej). Then, we identify the successor s(uj) of each ej in RNGj (if it
exists), and we perform s parallel walks, where walk j takes place in RNGj . In each step, we
have s current half-edges and we advance each half-edge along its face-cycle, using Lemma 3.1
in O(n log s) time. A walk j continues until either it encounters the other endpoint of ej

or until it arrives at the predecessor p(uj) of ej in RNGj . Only in the latter case, ej is in
EMST(V ), and we report it. Since there are O(n) half-edges in RNG(V ), it takes O(n) steps
to conclude all the walks. Thus, we can process a single batch of edges in O(n2 log s) time,
using O(s) words of workspace. Since we have O(n/s) many batches, the claim follows. J

For the case of linear space s = n, the running time of Theorem 3.4 is O(n2 logn), while
the classic algorithm takes O(n logn) time to find EMST(V ). The bottleneck in Theorem 3.4
is performing the walks in RNGj , that might take up to Ω(n) steps, leading to a running
time of Ω(n2 log s) for processing a single batch. To avoid this, we maintain a compressed
representation of RNGj that allows us to reduce the number of steps in each walk to O(n/s).

An s-net N for RNGi, i ∈ {1, . . . ,m}, is a collection of half-edges, called net-edges, in
RNGi such that: (i) each face-cycle in RNGi with at least bn/sc+ 1 half-edges contains at
least one net-edge; and (ii) for any net-edge −→e ∈ N , let C be the face-cycle of −→e in RNGi.
Then, between the head of −→e and the tail of the next net-edge on C, there are at least bn/sc
and at most 2bn/sc other half-edges on C. Note that the next net-edge on C after −→e could
be possibly −→e itself. This implies that face-cycles with less than bn/sc edges contain no
net-edges. The following observation records two important properties of s-nets.
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Figure 4 (a) A schematic drawing of RNGi is shown in gray. The half-edges of N are in black
and the edges of the next batch Ei,s are dashed red segments. (b) The auxiliary graph H including
the batch-edges (in red). The graph H contains the net-edges (in black), and the successors of the
batch-edges and the compressed edges (which are combined in green paths in this picture).

IObservation 3.5. Let i ∈ {1, . . . ,m}, and N be an s-net for RNGi. Then, (N1) |N | = O(s);
(N2) let

−→
f be a half-edge of RNGi, and C be the face-cycle that contains it. Then, it takes

at most 2bn/sc steps along C from the head of
−→
f until either a net-edge or the tail of

−→
f .

Proof. Property (ii) implies that only face-cycles of RNGi with at least bn/sc+ 1 half-edges
contain net-edges. Furthermore, on these face-cycles, we can uniquely charge Θ(n/s) half-
edges to each net-edge, again by (ii). Thus, since there are O(n) half-edges in total, we have
the first statement. For (N2), note that if C contains less than 2bn/sc half-edges, the claim
holds trivially. Otherwise, C contains at least one net-edge, by property (i). Now, property
(ii) shows that we reach a net-edge in at most 2bn/sc steps from

−→
f . J

Now, we show how to use the s-net in order to speed up the processing of a single batch.

I Lemma 3.6. Let i ∈ {1, . . . ,m}, and let Ei,s = ei, . . . , ei+s−1 be a batch of s edges of ER.
Suppose we have an s-net N for RNGi in our workspace. Then, we can determine which
edges from Ei,s belong to EMST(V ), using O(n2 log s/s) time and O(s) words of workspace.

Proof. Let F be the set of half-edges that contains all net-edges from N , as well as, for
each batch-edge ej ∈ Ei,s, the two successors of ej in RNGi, one for each endpoint of ej . By
definition, we have |F | = O(s), and it takes O(n log s) time to compute F , using Lemma 3.1.
Now, we perform parallel walks through the face-cycles of RNGi, as in Theorem 3.4. We
have one walk for each half-edge in F , and each walk proceeds until it encounters the tail of a
half-edge from F (including the starting half-edge itself). In each step of these parallel walks
we need O(n log s) time to find the next edge on the face-cycle and then we need O(s log s)
time to check whether these new edges are in F . Since F contains N , by property (N2), each
walk finishes after O(n/s) steps. Thus, the total time for this procedure is O(n2 log s/s).

Next, we build an auxiliary undirected graph H as follows: the vertices of H are the
endpoints of the half-edges in F . Furthermore, H contains undirected edges for all the
half-edges in F and additional compressed edges representing the outcomes of the walks: if a
walk started from the head u of a half-edge in F and ended at the tail v of a half-edge in F ,
we add an edge from u to v in H, and we label it with the number of steps during the walk.
Thus, H contains F -edges and compressed edges; see Figure 4. After all the walks have been
performed, we can construct H in O(s) time, using O(s) words of workspace.

Next, using Kruskal’s algorithm we insert the batch-edges of Ei,s into H: we determine
the connected components of H, in O(s) time using depth-first search. Then, we insert
the batch-edges into H, one after another, in sorted order and we keep track of how the
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connected components of H change, using a union-find data structure [4]. Whenever a batch-
edge connects two different connected components, we output it as an edge of EMST(V ).
Otherwise, we do nothing. Note that even though H may have a lot more components than
RNGi, the algorithm is still correct, by Observation 3.3. This execution of Kruskal’s algorithm,
and updating the structure of connected components of H takes O(s log s) time, which is
dominated by the running time of O(n2 log s/s) from the first phase of the algorithm. J

The following lemma shows how to compute an s-net for RNGi+s, having an s-net for
RNGi and the graph H described in the proof of Lemma 3.6, for each i ∈ {1, . . . ,m}.
I Lemma 3.7. Let i ∈ {1, . . . ,m}, and suppose we have the graph H derived from RNGi as
above, such that all batch-edges have been inserted into H. Then, we can compute an s-net
N for RNGi+s in time O(n2 log s/s), using O(s) words of workspace.
Proof. By construction, all big face-cycles of RNGi+s, which are the faces with at least
bn/sc+ 1 half-edges appear as faces in H. Thus, by walking along all faces in H, and taking
into account the labels of the compressed edges, we can determine these big face-cycles in
O(s) time. The big face-cycles are represented through sequences of F -edges, compressed
edges, and batch-edges. For each such sequence, we determine the positions of the half-edges
for the new s-net N , by spreading the half-edges equally at distance bn/sc along the sequence,
again taking the labels of the compressed edges into account. Since the compressed edges
have length O(n/s), for each of them, we create at most O(1) new net-edges. Now that we
have determined the positions of the new net-edges on the face-cycles of RNGi+s, we perform
O(s) parallel walks in RNGi+s to actually find them. As it was explained in Theorem 3.4,
this can be done in O(n2 log s/s) time using Lemma 3.1. J

The following theorem provides a smooth trade-off between the cubic time constant
workspace algorithm and the classical O(n logn) time algorithm with O(n) words of workspace.
I Theorem 3.8. Let V be a set of n sites in the plane, in general position. Let s ∈ {1, . . . , n}
be a parameter. We can output all the edges of EMST(V ), in sorted order of length, in
O(n3 log s/s2) time using O(s) words of workspace.
Proof. This follows immediately from Lemma 3.6 and Lemma 3.7, because we need to
process O(n/s) batches of edges from ER. J
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