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Chapter 1

Introduction

In this thesis we are going to deal with the graph theoretic dilation of planar point sets. The
problem is as follows: Given a set S of points in the Euclidean plane, find a triangulation T of
S such that the maximum detour between any pair of these points in T is minimal, where the
detour between a pair of points (u, v) in S2 is defined as the ratio between the shortest path
distance of (u, v) in T and the Euclidean distance |uv| (see chapter 2 for formal definitions of
these terms). In figure 1.1 we can see an example of a planar point set and two triangulations,
one of which achieves a very low maximum detour, while the other triangulation has a very
high maximum detour. The maximum detour between any pair of points in S2 with respect
to a triangulation T of S is called the graph theoretic dilation of T , and the minimum graph
theoretic dilation that any triangulation of S can achieve is called the graph theoretic dilation
of S.

Figure 1.1: Two triangulations of point set {a, b, c, d}. In triangulation (a) the detour between
points a and c is very high, whereas triangulation (b) achieves a very low detour. The bold
dashed lines represent a shortest path between a and c in the respective triangulation.
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d

The problem of computing the minimum dilation triangulation of a given planar point set
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belongs to a larger class of problems that constitute the main topic of geometric network design
theory (see [Epp96] for a survey on which most of this introduction is based). The general
problem in geometric network design theory is to connect a given set of points, or sites, by a
network that has certain “good” properties. It is clear that geometric network design theory has
applications in numerous fields, such as telecommunications, road design, and medical imaging,
to cite some examples from [Epp96]. Naturally, there are many ways in which the general
problem from network design theory can be specialized. For example, we could require that the
network optimize a certain quantity. Some natural quantities to look at are

1. the weight, i.e., the total length of all edges in the network,

2. the diameter, i.e., the longest network distance between two sites, or finally

3. the dilation, which we are going to consider in this thesis.

Furthermore, it is possible to impose certain restrictions on the network by which the sites can
be connected. For instance, the desired network could be

1. a tree,

2. a planar graph, or

3. a general graph.

Some problems in geometric design theory, like for example the minimum weight spanning
tree problem, are very well studied, and many algorithms exist that solve these problems ef-
ficiently (see e.g., [Tar83] for classical results and [Cha00] for the state of the art). Other
problems, like the minimum weight triangulation problem, seem to be very hard, and it is not
known whether it is possible to solve them in polynomial time. Actually, the minimum weight
triangulation problem is one of the last unsolved problems from Garey and Johnson’s book on
NP -completeness [GJ79].

Let us now look at the problems which are concerned with dilation. Naturally, if we ask for a
general graph that achieves dilation 1, the complete graph is an obvious choice. Unfortunately,
the complete graph has a quadratic number of edges. However, for any fixed ε > 0 it is possible
to compute graphs with O (n) edges whose dilation is at most 1 + ε in O (n log n) time, where
n is the number of sites. Such graphs are usually called spanners.

Much less is known about minimum dilation spanning trees. It is clear that the minimum
weight spanning tree has dilation O(n), since the minimum weight spanning tree has the prop-
erty that the shortest path between any two sites in the minimum weight spanning tree has
the smallest possible maximum edge length (this property is called the bottleneck shortest path
property). Indeed, the bottleneck shortest path property implies that the length of each edge
along a shortest path between two sites is at most the Euclidean distance of the two sites, and
there are at most n − 1 edges along any shortest path in a tree (since this is the number of
edges in a tree with n vertices). Nonetheless, it is possible to construct point sets such that the
minimum weight spanning tree yields a dilation that is Ω(n), even when a dilation of O (

√
n)

can be achieved. There are also some lower bounds known for minimum dilation spanning trees.
For example, it can be shown that any tree that connects the vertices of a regular n-gon has
dilation Ω (

√
n).

Little research has been done on minimum dilation triangulations, even though there has
been some work on estimating the dilation of certain types of triangulations that had already
been studied in other contexts. In [Che86] and [Che89], Chew shows that the rectilinear De-
launay triangulation has dilation at most

√
10. A similar result for the Euclidean Delaunay

8



Figure 1.2: An illustration of the Diamond property: One of the two isosceles triangles on edge
e is empty.

e

triangulation is given by Dobkin et al. in [DFS90] where they show that the dilation of the
Euclidean Delaunay triangulation is bounded above by

((
1 +
√

5
)
/2
)
π ≈ 5.08. This bound

was further improved to 2π
3 cos(π/6) ≈ 2.42 by Keil and Gutwin [KG89].

Das and Joseph generalize these results by identifying two properties of planar graphs such
that if A is an algorithm that computes a planar graph from a given set of sites and if all the
graphs constructed by A meet these properties, then the dilation of all the graphs constructed
by A is bounded by a constant [DJ89]. The properties are

• Diamond property. There is some angle α < π such that for any edge e in a graph
constructed by the algorithm, one of the isosceles triangles with e as a base and with
apex angle α contains no other site (see figure 1.2). Intuitively, this property means that
it cannot happen that a shortest path between two sites is obstructed by an edge of the
graph.

• Good polygon property. There is some constant d such that for each face f of a graph
constructed by the algorithm and any two sites u, v that are visible to each other across
the face, one of the two paths around f from u to v has detour at most d. This constraint
means that a shortest path between two sites does not incur a large detour by going
around a large oval face. Note that this property is met by any triangulation, since all
bounded faces of a triangulation are triangles and obviously the graph theoretic dilation
of a triangle is 1.

Surprisingly, there are almost no results known about the actual minimum dilation triangu-
lation, which constitutes the main topic of this thesis.

Before we proceed by giving a brief outline of the contents of this thesis, let us quickly
mention a notion that is very similar to the graph theoretic dilation. This concept is called the
geometric dilation of a planar point set. The difference between geometric and graph theoretic
dilation is that the geometric dilation is defined as the supremum of the detour between any
pair of points on a graph, not just between the vertices of the graph as it is the case for the
graph theoretic dilation.

Even though at the first glance the geometric dilation appears to be very similar to the
graph theoretic dilation, there are major structural differences. Perhaps the largest difference
between the two concepts lies in the fact that it can be shown that if there is a pair of points that
achieves maximum geometric dilation, then there is one that is co-visible, i.e., the two points
can be connected by a straight line that does not intersect any other line of the graph. Using this
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property, it is possible to devise several efficient algorithms that approximate or compute exactly
the geometric dilation of polygonal curves and polygons [AKKS02, EBKLL01, Gru02, LMS02].
The author is not aware of any algorithms for computing a planar graph that achieves the
optimum geometric dilation for a given point set. However, there is an upper bound of 1.678
and a lower bound of

(
1 + 10−11

)
π/2 for the geometric dilation of any finite planar point set

[EBGR03, DGR04].
This thesis, however, deals with the graph theoretic dilation of finite planar point sets. In

particular, we will consider the graph theoretic dilation of the set of nodes of a regular n-gon.
Even though this seems to be a very special case, it turns out that it is even nontrivial to find
an algorithm that approximates the graph theoretic dilation of the regular n-gon and to prove
its correctness. Furthermore, it seems that some of our results should be generalizable to fat
point sets, i.e., planar point sets that can be sandwiched between two circles whose radii have
a constant ratio.

In addition to this introduction, this thesis has seven more chapters and two appendices.
In chapter 2, we are going to define all the terms that are central to the ensuing discussion

and mention some simple consequences of these definitions. These definitions will be filled
with life in chapter 3, which contains the results of some experiments that were conducted
with a small Java-program that computes minimum dilation triangulations for small point sets.
We begin our theoretical analysis of minimum dilation triangulations in chapter 4, where we
give a general upper bound for the graph theoretic dilation of any triangulation of the regular
n-gon, estimate the value of the dilation of a special triangulation of the regular n-gon, the
canonical triangulation, and derive an upper bound for the case that n = 3 · 2i. These upper
bounds are complemented by a lower bound that we shall derive in chapter 5, where we will
carry out a detailed analysis in order to obtain a lower bound on the graph theoretic dilation
of any triangulation of the regular n-gon. Some interesting consequences of this lower bound
will be exposed in chapter 6, in which we show that the Euclidean distance between the two
vertices of any maximum detour pair is bounded from below by a large constant and that in
any triangulation there are three distinguished vertices such that any shortest path between the
two vertices of a maximum detour pair must include at least one of them. These consequences
will be put to use in chapter 7, whose purpose is to present a polynomial time approximation
algorithm that approximates the graph theoretic dilation of the regular n-gon within a factor
of 1 + 1/

√
log n. Finally, we conclude in chapter 8 with some final remarks and some possible

directions for further work.
In appendix A, we present two heuristics that can be used to approximate the graph theoretic

dilation of the regular n-gon, and appendix B contains a description of an efficient method to
enumerate all the triangulations of a convex planar point set.
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Chapter 2

Definitions

In this chapter we are going to define all the central notions we are going to use throughout
this thesis.

Let S be a finite set of points in the Euclidean plane, and let G = (V,E) be a planar graph,
i.e., a graph which has a planar embedding. By a planar embedding of a graph H we mean a
drawing of H in the Euclidean plane such that all the edges of H are represented by smooth,
simple curves which do not meet except in the points that represent the vertices of H. In the
following, let us assume that V (G) = S and that G is embedded in the plane such the vertices
of G are represented by the corresponding points in S.

Let u and v be two points in S. We can think of many different ways to define a notion of
distance between u and v, but there are two distance metrics that are of particular practical
interest: On the one hand, there is the Euclidean distance between u and v, which we will
denote by |uv| and which represents the length of the direct connection between u and v, as
the bird flies. On the other hand, we can also look at the shortest path distance between u and
v with respect to G, which we are going to call πG (u, v). For the shortest path distance, we
assign each edge e ∈ E (G) the length of the curve which represents e in the planar embedding
of G. The shortest path distance represents the minimum distance we need to cover in order to
travel from u to v when we are only allowed to use the edges in G.

The ratio between the shortest path distance and the Euclidean distance is called the (rel-
ative) detour between u and v with respect to G, which we shall denote by δG (u, v). Formally,
the detour is defined as follows:

δG (u, v) def=

{
1, if u = v,

πG(u,v)
|uv| , if u 6= v.

The convention to define δG (v, v) = 1 for any v ∈ S is very natural, since from the definition
it is immediate that δG (u, v) ≥ 1 for every u, v ∈ S, as clearly we have πG (u, v) ≥ |uv| for all
u, v ∈ S. Further properties that can be derived directly from the definition are δG (u, v) =
δ (v, u) (i.e., the detour is symmetric) and δG (u, v) = 1⇔ {u, v} ∈ E (G) for u 6= v ∈ S, where
the second property holds only if S is in general position, i.e., no three points in S lie on a
common line.

Intuitively, the detour is a measure for the quality of the connection between u and v in G.
If the detour is large, this means that we have to travel a long way along the edges in G in order
to reach v from u even though the direct route would be much shorter.

In order to get a measure for the quality of the connection between any two vertices of G,
it is natural to take the maximum over all the detours between pairs of vertices in G. This
quantity is called the graph theoretic dilation of G. We will denote it by δ (G). The formal
definition is this:

11



δ (G) def= max
(u,v)∈V (G)2

δG (u, v) .

Now, given a finite set S ⊆ E2 of points in the Euclidean plane, the question arises how to
connect these points in such a way that the graph theoretic dilation of the resulting graph is as
small as possible. This quantity is called the graph theoretic dilation of S and will be denoted
by δ (S). Formally, we write:

δ (S) def= min
G=(V,E) planar

V (G)=S

δ (G) .

Let G∗ be a planar graph that achieves the optimal graph theoretic dilation for point set
S. Without loss of generality, we may assume that G∗ is a triangulation of S, since the graph
theoretic dilation of G∗ can only decrease when further edges are added. By a triangulation of
point set S we mean a maximal planar subdivision H whose vertex set is S, where maximal
means that H ∪ {u, v} is not planar any more for any {u, v} ∈ (S2

)\E (H). Here
(
S
2

)
denotes

the set of all unordered pairs of distinct elements in S. All the faces of a triangulation except
for the unbounded face are triangles, since every simple polygon can be triangulated. For more
information on triangulations of planar point sets, refer to any textbook on computational
geometry, e.g., [dBKOS00].

At this point, one might ask why we restrict our attention to planar graphs, and why we do
not allow arbitrary graphs or Steiner points. A Steiner point is an additional point that is not
part of the input and that is added in order to improve the dilation of the point set. However,
if we allow Steiner points or edge crossings, a new problem arises: Do we still consider only
the detours between the vertices of the graph, or do we also include the Steiner points and the
points in which the edges cross into our consideration? If we do so, the problem becomes much
more complicated, and if we don’t, the problem seems somewhat implausible. Therefore – for
the time being – we are going to focus our attention on planar graphs.
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Chapter 3

Experimental Results

In the course of this thesis a small Java-program was implemented that computes the optimal
graph theoretic dilation of the set of nodes of the regular n-gon, which we denote by Sn. The
program works by exhaustively enumerating all possible triangulations of Sn and choosing those
which achieve the minimum graph theoretic dilation. Naturally, this approach is only feasible
for very small values for n, and indeed, for n = 21 it took about seven days on a current PC to
get the desired answer.

The results which we obtained are shown in table 3.1 on page 14. The column labeled
# Minima contains the number of triangulations that achieve the minimum graph theoretic
dilation for a given value of n. A glance at this column reveals that the minimum dilation
triangulation is not unique. Actually, this is not a big surprise since it is possible that there are
some edges in a minimum dilation triangulation that do not participate in the shortest path
between the two vertices of any maximum detour pair. Sometimes, these edges can be flipped
without affecting the maximum detour, and hence the minimum dilation triangulation is not
unique. It is interesting to note that for n = 7 all triangulations of S7 are optimal.

The column labeled Total # contains the total number of possible triangulations of the
regular n-gon. One can show that this number, and in fact the number of triangulations of
any planar convex set of n points, equals Cn−2, where Cn denotes the n-th Catalan-number for
n ∈ N0, which is defined as Cn

def= 1
n+1

(
2n
n

)
(see e.g., [Aig01] for a proof of this statement). It is

well known that the Catalan numbers grow exponentially with n.
% Minima shows what percentage of the triangulations achieve the optimum graph theoretic

dilation. As expected, this number becomes negligible very soon. Ticks denotes the number of
clock ticks the program needed in order to compute the desired information for a given n. It is
a measure for the running time. This quantity was added in order to demonstrate the dramatic
effect of the combinatorial explosion on the performance of the program.

Finally, the field Minimum Dilation shows the minimum graph theoretic dilation of the
regular n-gon δ (Sn) as it was computed by our program. Please be aware that the results
that are shown in this table should be taken with a certain caution. Since our program relies
on double precision floating point arithmetic, the results are not entirely accurate. However,
table 3.1 is very useful as a guide to give some intuition on the behavior of the graph theoretic
dilation.

Perhaps the most astonishing feature of the results shown in table 3.1 is that the graph
theoretic dilation does not show any clear monotonicity properties. One might have expected
that δ (Sn) grows monotonically with n, but – at least for small values of n – this is not the
case. One might also assume that the graph theoretic dilation increases as n is multiplied with
an integral factor, since this would mean that points are added outside the convex hull of Sn.
However, this conjecture also turns out to be false, as the values of δ (S4), δ (S8), δ (S12), and
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δ (S16) demonstrate. Nonetheless, the values in table 3.1 suggest that δ (Sn) “tends to grow” as
n increases, and it should be expected that δ (Sn) does not change too much if n is large. We
will use this intuition in chapter 7 where we devise an algorithm that quickly approximates the
minimum detour triangulation.

Figures 3.1–3.4 show some of the minimum dilation triangulations that were computed by
our Java-program. Note that these triangulations tend to be very regular and symmetric, a fact
which we will exploit in section 4.3 where we consider a regular triangulation of Sn in order to
devise an upper bound for all n which are of the form n = 3 · 2i and in appendix A.2 where we
present a heuristic that tries to approximate the minimum detour triangulation by a symmetric
triangulation.

Table 3.1: Experimental Results for small values of n.
n # Minima Total # % Minima Ticks Minimum Dilation
4 2 2 100 0 1.41422
5 5 5 100 0 1.23607
6 8 14 57 0 1.36603
7 42 42 100 0 1.33513
8 16 132 12 0 1.41422
9 87 429 20 10 1.34730

10 20 1,430 1 60 1.39681
11 44 4,862 ≤ 1 240 1.37704
12 500 16,796 ≤ 1 1,031 1.38367
13 1,248 58,786 ≤ 1 4,406 1.39122
14 784 208,012 ≤ 1 19,488 1.40533
15 660 742,900 ≤ 1 81,478 1.40898
16 2,000 2,674,440 ≤ 1 355,762 1.40925
17 6,732 9,694,845 ≤ 1 1,499,897 1.40845
18 6 35,357,670 ≤ 1 6,418,740 1.38170
19 4,560 129,644,790 ≤ 1 26,149,270 1.40989
20 5,040 477,638,700 ≤ 1 112,332,436 1.41422
21 18,816 1,767,263,190 ≤ 1 466,895,338 1.41611
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Figure 3.1: Examples of minimum dilation triangulations for S14 and S15. We have δ (S14) ≈
1.40533 and δ (S15) ≈ 1.40898. A maximum detour pair and a shortest path between its two
vertices are shown in gray.

Figure 3.2: Examples of minimum dilation triangulations for S16 and S17. We have δ (S16) ≈
1.40925 and δ (S17) ≈ 1.40845. A maximum detour pair and a shortest path between its two
vertices are shown in gray.
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Figure 3.3: Examples of minimum dilation triangulations for S18 and S19. We have δ (S18) ≈
1.38170 and δ (S19) ≈ 1.40989. A maximum detour pair and a shortest path between its two
vertices are shown in gray.

Figure 3.4: Examples of minimum dilation triangulations for S20 and S21. We have δ (S20) ≈
1.41422 and δ (S21) ≈ 1.41611. A maximum detour pair and a shortest path between its two
vertices are shown in gray.
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Chapter 4

Upper Bounds for the Regular
n-Gon

Let Sn = {s0, s1, . . . , sn−1} be the set of nodes of a regular n-gon in counter-clockwise order.
Without loss of generality, we may assume that the radius of Sn is 1, because in a regular n-gon
of radius r the distance between any two nodes is r times the corresponding distance in a regular
n-gon of radius 1, and this factor cancels when we consider the detour.

In this chapter we shall try to develop some intuition for the graph theoretic dilation of
Sn. In order to do this, we will derive a simple upper bound on the graph theoretic dilation of
any triangulation of Sn and afterwards look at the graph theoretic dilation of two very simple
triangulations of Sn, namely the canonical triangulation Kn and the star triangulation Rn.

More precisely, in section 4.1 we will show that any triangulation of Sn has graph theoretic
dilation at most π

2 . This follows easily from the definition. Furthermore, we will also show
that this bound is asymptotically tight, which means that there exist triangulations of Sn that
actually achieve this upper bound asymptotically.

In section 4.2 we will give an estimate for the graph theoretic dilation of the canonical
triangulation of Sn, i.e., the triangulation of Sn in which every vertex is connected to s0. Even
though this is a very simple triangulation, it turns out to be nontrivial to compute its graph
theoretic dilation, and we will not succeed in obtaining a precise value (and it seems that the
precise value cannot be represented in closed form). The value we obtain can be considered as
an upper bound on the graph theoretic dilation of Sn.

Finally, in section 4.3 we will consider the special case that n is of the form n = 3 · 2i for
an i ∈ N0. In this case we can give a good upper bound on the graph theoretic dilation of Sn
by considering the so called regular triangulation of Sn, i.e., the triangulation of Sn that is “as
symmetric as possible”.

In the course of the following discussion we will often need to refer to the number of vertices
that lie between a given pair of nodes on the convex hull of Sn. Let sa, sb ∈ Sn. Then we define
the convex hull distance between sa and sb, which we will denote by ∆Sn (sa, sb) , as

∆Sn (sa, sb)
def= min {|b− a| , n− |b− a|} .

Intuitively, ∆Sn (sa, sb) counts the minimum number of “hops” we need to make when trav-
eling from sa to sb along the convex hull of Sn (see figure 4.1).
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Figure 4.1: An example of convex hull distance for S8. The convex hull distance between s1

and s4 is 3, the convex hull distance between s0 and s6 is 2.

s3

s6s7

s4

s5

s2

s1

s0

4.1 An Upper Bound on the Graph Theoretic Dilation of Any
Triangulation of the Regular n-Gon

Let T be any triangulation of Sn. In this section we shall show that δ (T ) ≤ π
2 . The main idea

behind this upper bound is that between any two points of Sn there always exists a path that
goes along the convex hull of Sn, as the edges that constitute the border of the convex hull are
contained in any triangulation. More precisely, any two points in Sn can be connected through
a path that uses at most dn2 e nodes (the start and end node included), since the points in Sn
are uniformly distributed on the unit circle.

Hence, let sa and sb be two distinct points in Sn, and let ∆ = ∆Sn (sa, sb) be the convex
hull distance between sa and sb. Then the Euclidean distance between sa and sb is 2 sin

(
∆π
n

)
,

while the length of the path along the convex hull is 2∆ sin
(
π
n

)
(see figure 4.2).

Therefore, we can bound the detour between sa and sb as follows:

δT (sa, sb) ≤
∆ sin

(
π
n

)

sin
(
∆π
n

) .

Since we are looking for an upper bound for the graph theoretic dilation of T , we need to
find the value of ∆ for which the function ∆ 7→ ∆ sin

(
π
n

)
/ sin

(
∆π
n

)
takes on its maximum

value, where ∆ ranges from 1 to bn2 c as we noted above. Unfortunately, it is not immediately
obvious where this maximum lies. Therefore, now, as well as in the future, we shall need to
employ some calculus in order to obtain the desired results. The behavior of the upper bound
function is settled by the following claim:

Claim 4.1 For n ∈ N, let α = π
n and f : {1, . . . , bn/2c} → R be given by

f (∆) def=
∆

sin (∆α)
.

Then f is monotonically increasing.
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Figure 4.2: The Euclidean distance between sa and sb is 2 sin
(

∆π
n

)
(bold dotted line). The

length of the path along the convex hull (bold dashed line) is 2∆ sin
(
π
n

)
, because it consists of

∆ line segments each of which has length 2 sin
(
π
n

)
.

sa

π
n

∆π
n

sb

Proof: For the proof, we shall extend f to the domain [1, n/2] and use calculus to show that
f is monotonically increasing on this domain. Then the result follows immediately.

The derivative of f can be computed as follows:

f ′ (∆) =
sin (∆α)−∆α cos (∆α)

sin2 (∆α)
.

In order to show that f is monotonically increasing we need to verify that the numerator
of the derivative is positive. If we let µ = ∆α, we can deduce that π

n ≤ µ ≤ π
2 < 2. From the

power series expansion of the sine and the cosine function it now follows that

sin (µ) ≥ µ− µ3

3!
(1)
> µ

(
1− µ2

2!
+
µ4

4!

)
≥ µ cos (µ) ,

where inequality (1) is due to the fact that 0 < µ < 2.
Thus, f ′(∆) > 0, and the claim follows.

Consequently, the upper bound on the detour is maximal for ∆ = n
2 (note that we do not

need to worry about integrality here, as we are merely interested in an upper bound). Hence,
all that remains to be done is to compute the value of the upper bound for ∆ = n

2 . This is done
as follows:

n
2 sin

(
π
n

)

sin
(
π
2

) =
π

2
sin
(
π
n

)
π
n

↗ π

2
, as n→∞,

since sinx/x → 1 as x → 0 and by an argument that is almost identical to the proof of claim
4.1 we can show that sinx/x is monotonically increasing as x approaches 0.

Therefore, we find that for any sa, sb ∈n S we have

δT (sa, sb) ≤ π

2
.

Let us summarize this result in our first
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Figure 4.3: Worst case triangulation W16 for S16. The detour between s0 and s8 is about 1.561.
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Theorem 4.2 Let Sn be the set of nodes of a regular n-gon. Then any triangulation of Sn has
graph theoretic dilation at most π

2 .

It is not hard to show that this upper bound is asymptotically tight, i.e., there are trian-
gulations of Sn whose graph theoretic dilation approaches π

2 as n goes to infinity. We shall
describe such a worst case triangulation for even n. The construction can easily be adapted for
the case that n is odd.

Let Wn be the triangulation of Sn whose edge set E (Wn) is given by

E(Wn) = {{si, si+1} |0 ≤ i ≤ n− 2} ∪ {{s0, sn−1}} ∪{
{si, sn−i}

∣∣∣1 ≤ i < n

2

}
∪
{
{si, sn−i−1}

∣∣∣1 ≤ i < n

2

}
.

An example for n = 16 is shown in figure 4.3.
The diagonal between s0 and sn

2
partitions Sn into two parts, say X and Y . Then it is clear

that a shortest path Π between s0 and sn
2

cannot change between X and Y . [Suppose it does,
and let p→ q be the first edge on the path such that p ∈ X and q 6∈ X or vice versa. We shall
consider the case that p ∈ X and q 6∈ X, the other case is analogous. In this case it follows that
up to vertex p, Π goes along the convex hull in X. However, it is easy to see that line segment
pq is longer than the line segments on the convex hull, since all of the diagonals between X and
Y are longer than line segment s1sn−1 which is the base of an isosceles triangle whose other
two sides are line segments on the convex hull and whose apex angle is obtuse. Thus, it would
have been shorter to follow the convex hull in Y up to q, contradicting the fact that that Π is
a shortest path (see figure 4.4).]

Thus, any shortest path between s0 and sn
2

follows the convex hull of Sn and hence has
length n

2 · 2 sin
(
π
n

)
. Since the Euclidean distance between s0 and sn

2
is 2, it follows that

lim
n→∞ δWn

(
s0, sn

2

)
= lim

n→∞
n

2
sin
(π
n

)
,
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Figure 4.4: Since pq is longer than any line segment on the convex hull, the bold dotted path
from s0 to q is shorter than the bold dashed path from s0 over p to q.

s0

q

p

Y

X

s8

and we have already seen that this limit equals π
2 . Thus, we have shown that Wn is asymp-

totically a worst case triangulation of Sn.

4.2 The Graph Theoretic Dilation of the Canonical Triangula-
tion

In this section we are going to estimate the graph theoretic dilation of the canonical triangula-
tion, which will give us an upper bound on the graph theoretic dilation of Sn. The canonical
triangulation Kn of Sn is defined as the triangulation of Sn in which s0 is connected to ev-
ery other node by a line segment (see figure 4.5). Elementary trigonometry tells us that for
0 ≤ a ≤ n− 1 the length of line segment s0sa equals 2 sin

(
πa
n

)
.

Now let (sa, sb) ∈ S2
n be a pair of nodes such that a < b. As we have already seen in

the previous section, the Euclidean distance between sa and sb is 2 sin
(

(b−a)π
n

)
. In order to

compute the detour between sa and sb we also need to know the length of the shortest path
between them. There are exactly two possibilities: Either the shortest path between sa and sb
in Kn follows the convex hull of the triangulation, or it has the form sa → s0 → sb. This is
true, since if s0 is a node on the shortest path, the triangle inequality tells us that the shortest
path must be sa → s0 → sb, and if s0 is not on the shortest path, then the path must be
sa → sa+1 → . . .→ sb−1 → sb, since no vertex appears twice on a shortest path.

In the former case the length of the shortest path is 2 sin
(
πa
n

)
+ 2 sin

(
πb
n

)
, as this is the

combined length of line segments s0sa and s0sb. In the latter case it is 2(b − a) sin
(
π
n

)
, since

the length of a single line segment on the convex hull equals 2 sin
(
π
n

)
, as we have seen already

in the previous section.
Hence, the detour between sa and sb is given by
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Figure 4.5: The canonical triangulation K8 for S8. Its graph theoretic dilation is about 1.4142.
The maximum detour occurs between s2 and s6.
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δKn (sa, sb) =
min

{
2 sin

(
πa
n

)
+ 2 sin

(
πb
n

)
, 2 (b− a) sin

(
π
n

)}

2 sin
(

(b−a)π
n

) .

As we are interested in the graph theoretic dilation of Kn, we need to find the values of a and
b for which δKn (sa, sb) achieves its maximum value. Note that the expressions 2 (b− a) sin (π/n)
and 2 sin ((b− a)π/n) do not depend on the actual values of a and b, but only on their difference.
Hence, it seems promising to substitute ∆ = b − a. For the time being, let us fix the value of
∆. This means that we are looking for

max
1≤a<b≤n−1
b−a=∆

1
sin
(

∆π
n

) min
{

sin
(πa
n

)
+ sin

(
πb

n

)
,∆ sin

(π
n

)}

=
1

sin
(

∆π
n

) min



 max

1≤a<b≤n−1
b−a=∆

{
sin
(πa
n

)
+ sin

(
π (a+ ∆)

n

)}
,∆ sin

(π
n

)


 .

It follows that we need to compute for which values of a and b the maximum is achieved.
We will do this in the next

Claim 4.3 Let λ ∈ (0, π) and f : (0, π − λ)→ R be defined as

f (x) def= sinx+ sin (x+ λ) .

Then f is maximal for

x =
π − λ

2
.
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Figure 4.6: The length of the path sa → s0 → sb is maximal if (sa, sb) is symmetric with respect
to the diagonal through s0.

sa

sb

s0

Proof: We have that f ′ (x) = cosx+ cos (x+ λ), and therefore

f ′ (x) = 0 ⇔ cosx = − cos (x+ λ)

⇔ π

2
− x = x+ λ− π

2

⇔ x =
π − λ

2
,

because cos
(
x− π

2

)
= sinx is an odd function and all the values we consider lie in the interval

(0, π). This tells us that x0
def= π−λ

2 is a maximum, since f ′ (x) > 0 for x ∈ (0, x0) and f ′ (x) < 0
for x ∈ (x0, π).

Consequently, since
πa

n
=
π

2
− π∆

2n
⇔ a =

n

2
− ∆

2
,

we can conclude that the length of the path sa → s0 → sb where sa and sb have a fixed convex
hull distance ∆ is maximal if (sa, sb) is symmetric with respect to the diagonal through s0 (see
figure 4.6). Note that no problem arises if n

2 − ∆
2 is not integral, since we are merely interested

in an upper bound.
Now we can eliminate a and b completely from our consideration and obtain an upper bound

that depends solely on ∆:

max
1≤a<b≤n−1
b−a=∆

δK (sa, sb) ≤ 1
sin
(
π∆
n

) min
{

sin
(
π

2
− π∆

2n

)
+ sin

(
π

2
+
π∆
2n

)
,∆ sin

(π
n

)}

=
1

sin
(
π∆
n

) min
{

2 cos
(
π∆
2n

)
,∆ sin

(π
n

)}
,

since sin
(
π
2 ± x

)
= sin

(
π
2

)
cosx± cos

(
π
2

)
sinx = cosx for all x ∈ R.
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The only thing that is left to do now is to determine the value of ∆ for which the above
expression achieves its maximum value. The strategy will be to show that one of the two
functions in the above expression is increasing, while the other function decreases. Then the
y-coordinate of the point in which the graphs of these functions intersect will be the value of
the maximum.

In the last section, we have already seen that the function ∆ 7→ ∆ sin
(
π
n

)
/ sin

(
π∆
n

)
grows

with ∆ (claim 4.1 on page 18).
Thus, let us focus our attention on the behavior of the other function, namely

f (∆) def=
2 cos

(
π∆
2n

)

sin
(
π∆
n

) , where 1 ≤ ∆ ≤ n− 1.

We shall now verify that this function decreases with ∆. Elementary calculus yields

f ′ (∆) =
− sin

(
π∆
n

)
π
n sin

(
π∆
2n

)− 2 cos
(
π∆
2n

)
π
n cos

(
π∆
n

)

sin2
(
π∆
n

) .

For the sake of readability, let us substitute µ def= π∆
n . We find that 0 < µ < π, and hence

− sin
(µ

2

)
sinµ− 2 cos

(µ
2

)
cosµ ≤ 0

⇔ − sin
(µ

2

)
sinµ ≤ 2 cos

(µ
2

)
cosµ

⇔ −
√

1− cosµ
2

sinµ ≤ 2

√
1 + cosµ

2
cosµ

⇔ −1− cosµ
2

sinµ ≤ 2

√
sin2 µ

2
cosµ

⇔ cosµ− 1
2

≤ cosµ

⇔ −1 ≤ cosµ,

which is definitely a true statement. In the above calculation we used the well known facts that
|sin (x/2)| =

√
(1− cosx) /2, |cos (x/2)| =

√
(1 + cosx) /2, and the trigonometric Pythagorean

theorem (1 + cosx) (1− cosx) = sin2 x for all x ∈ R. Furthermore, for the values of µ we are
interested in we have that sinµ, sin (µ/2) , cos (x/2) > 0, as 0 < µ < π.

Hence, we can conclude that the function ∆ 7→ 2 cos
(
π∆
2n

)
/sin

(
π∆
n

)
decreases monotonically

for 1 ≤ ∆ ≤ n− 1.
In order to get the desired upper bound, we would now like to compute the value of ∆ for

which we have

2 cos
(
π∆
2n

)
= ∆ sin

(π
n

)
.

Unfortunately, we do not know how to do this. However, by dint of numerical methods, we
can arrive at a quite accurate estimation. Let n ≥ 31. We claim that in this case it is true that
2 cos

(
π∆
2n

) ≤ ∆ sin
(
π
n

)
for ∆ ≥ 0.471n, i.e., 0.471n is an estimate of the value of ∆ for which

the two functions meet.
To see why the claim holds, note that it follows from the power series expansion of the sine

and cosine function that
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0.471n sin
(π
n

)
≥ 0.471

(
π − π3

6n2
+

π5

120n4
− π7

5040n6

)

≥ 0.471
(
π − π3

6 · 312
+

π5

120 · 314
− π7

5040 · 316

)

≥ 1.477158

≥ 2− 0.4712π
2

22
+ 0.4714 π4

12 · 24
− 0.4716 π6

360 · 26
+ 0.4718 π8

20160 · 28

≥ 2 cos
(

0.471
π

2

)
.

Now, since the function ∆ 7→ ∆ sin
(
π
n

)
/ sin

(
∆π
n

)
is monotonically increasing and the func-

tion ∆ 7→ 2 cos
(
π∆
2n

)
/ sin

(
∆π
n

)
is monotonically decreasing, it follows that an upper bound for

the graph theoretic dilation of Kn is given by 0.471n sin
(
π
n

)
/ sin

(
0.471πn

)
.

Consequently, since we have already seen in the previous section that n
2 sin

(
π
n

) ↗ π
2 –

and hence n sin
(
π
n

) ↗ π – we can upperbound the graph theoretic dilation of the canonical
triangulation by 0.471π/ sin(0.471π), which is approximately 1.48586. (This bound has been
proven for n ≥ 31, but by a straightforward yet tedious calculation it can also be verified for
smaller values of n.)

We note that already for ∆ = 0.47n we have 2 cos
(
0.47π2

) ≥ 0.47n sin(πn) for n large enough,
as can be shown in the same way as above. Furthermore, we have 0.47π/ sin (0.47π) ≈ 1.48313.
Thus, asymptotically, our estimate is off by at most 3 · 10−3.

In conclusion, we have just proved

Theorem 4.4 Let Sn be the set of nodes of a regular n-gon, and let Kn be the canonical
triangulation of Sn. Then the graph theoretic dilation of Kn can be estimated by

0.471π
sin (0.471π)

≈ 1.48586.

In particular, this implies an upper bound of 1.48586 on the graph theoretic dilation of the
minimum dilation triangulation of Sn.

4.3 An Upper Bound for n = 3 · 2i
Intuitively, it seems clear that the minimum dilation triangulation should be very regular, and
this expectation is also corroborated by the structure of the minimum dilation triangulations
for small values of n which we saw in chapter 3. In appendix A.2 we will use this idea in order to
design a simple heuristic. In this section we will give a simple symmetric triangulation for those
Sn where n = 3 · 2i with i ∈ N0. The triangulation is as follows: we start with an equilateral
triangle and continue by adding line segments to the points that lie exactly halfway between
the endpoints of the existing line segments until the triangulation is complete. We will call
this triangulation the star triangulation of Sn and denote it by Rn. In figure 4.7 we show star
triangulations R12 and R24 as an example, and table 4.1 shows the values of the graph theoretic
dilation of the star triangulations for some small values of n. The figure also shows the two
vertices of a maximum detour pair. We see that these two vertices are nearly diametrically
opposite, and that one vertex is close to a vertex of the central triangle, while the other vertex
is close to a vertex of the opposite second largest triangle (see also figure A.3 on page 70).

Unfortunately, it is not clear how to compute the graph theoretic dilation of the star tri-
angulation of Sn for n = 2 · 3i explicitly. However, with a simple trick it is possible to bound
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Figure 4.7: Star triangulations R12 and R24 for S12 and S24. We have δ (R12) ≈ 1.38367 and
δ (R24) ≈ 1.40134

Table 4.1: Graph theoretic dilation of the star triangulation for some values of n
n 6 12 24 48 96
δ (T ) 1.36603 1.38367 1.40134 1.45442 1.45474

n 192 384 768 1536 3072
δ (T ) 1.45474 1.45474 1.45672 1.45812 1.45815

the dilation for any star triangulation: Observe that the value of the graph theoretic dilation
of the star triangulation is monotonically increasing. This is clear, because as n increases, we
add nodes outside the existing triangulation and connect them to the existing nodes. Thus, the
detour between the existing nodes cannot change, and hence the graph theoretic dilation can
only increase.

Let Rn be the star triangulation for an n > 3072. We have

δ (Rn) = max
a′,b′∈V (Sn)

π (a′, b′)
2 sin (∠ (a′, b′) /2)

, (4.1)

where ∠ (a′, b′) denotes the angle between a′ and b′.
It now follows that

max
a′,b′∈V (Sn)

π (a′, b′)
2 sin (∠ (a′, b′) /2)

≤ max
a,b∈V (S3072)

π (a, b) + 2 2π
6144

2 sin
(
∠ (a, b) /2− 2π

6144

) .

To see why this inequality holds, consider a pair of vertices a′, b′ ∈ Sn, and let a, b ∈ S3072 be
the vertices in S3072 that are closest to a′ and b′, respectively. We will assume that a′ and b′

are far enough apart such that a 6= b, an assumption that is justified later. It follows that the
shortest path distance between a′ and b′ is at most 2 2π

6144 units longer than the shortest path
between a and b, since a′ can be reached from a by a path of length at most 2π

6144 , which is half
the length of an arc of radius 1 between two successive points in S3072, and the same holds for
b. Similarly, the Euclidean distance between a and b is at least 2 sin

(
∠ (a, b) /2− 2π

6144

)
, since

∠ (a′, b′) ≥ ∠ (a, b)− 2 2π
6144 (see figure 4.8).
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Figure 4.8: The shortest path distance between a′ and b′ is at most 2π/3072 units larger than
the shortest path distance between a and b and the angle between a′ and b′ is at most 2π/3072
units smaller than the angle between a and b.

≤ π
3072

b′

b
a

a′

≤ π
3072

By means of a computer program we can calculate that δ (R3072) < 1.45815, and conse-
quently for any a, b ∈ S3072, we have π (a, b) < 1.45815 |ab| = 1.45815 · 2 sin (∠(a, b)/2).

Thus, we have that

max
a,b∈V (S3072)

π (a, b) + 2 2π
6144

2 sin
(
∠ (a, b) /2− 2π

6044

) ≤ max
a,b∈V (S3072)

1.45815 sin (∠ (a, b) /2) + π
3072

sin
(
∠ (a, b) /2− π

3072

) .

We will show that this function of ∠ (a, b) is monotonically decreasing. To do this, consider
the function f : R→ R which is given by

f (γ) =
a sin γ + b

sin (γ − c) ,

for certain a, b, c > 0.
The derivative of f can be computed as follows:

f ′ (γ) =
sin (γ − c) a cos γ − cos (γ − c) (a sin γ + b)

sin2 (γ − c)

= a

(
sin γ cos γ cos c− cos2 γ sin c

)

sin2 (γ − c)

+a

(− sin γ cos γ cos c− sin2 γ sin c
)

sin2 (γ − c)
−b cos (γ − c)

sin2 (γ − c)
=
−a sin c− b cos (γ − c)

sin2 (γ − c) ,

and for the values of a, b, c, and γ that we are interested in (i.e., a = 1.45815, b = π/3072,
c = π/3072, 0 < γ < π/2), this derivative is negative.

In chapter 6 we will show that for any maximum detour pair a, b ∈ Sn we have ∠ (a, b) /2 >
5
12π. This justifies our assumption that a 6= b and implies that equation (4.1) can be strength-
ened to
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δ (Rn) = max
a′,b′∈V (Sn)

\(a′,b′)/2> 5
12
π

π (a′, b′)
2 sin (∠ (a′, b′) /2)

,

and hence

δ (Rn) ≤ max
a,b∈V (S3072)

\(a,b)/2> 5
12
π− π

1536

1.45815 sin (∠ (a, b) /2) + π
3072

sin
(
∠ (a, b) /2− π

3072

) .

Since the function on the right hand side is monotonically decreasing as we have seen, it
follows that

δ (Rn) ≤ 1.45815 sin
(

5
12π − π

1536

)
+ π

3072

sin
(

5
12π − π

1536 − π
3072

) < 1.4597.

In conclusion, we have shown the following

Theorem 4.5 Let n = 3 · 2i for i ∈ N0. Then the graph theoretic dilation of Sn is at most
1.4597.

In chapter 7 we will use a similar analysis when we compute the approximation factor of our
approximation algorithm.
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Chapter 5

Lower Bounds for the Regular n-Gon

Once again, let Sn = {s0, s1, . . . , sn−1} be the set of nodes of a regular n-gon in counter-clockwise
order. Let T be any triangulation of Sn. In this section we are going to determine lower bounds
on the graph theoretic dilation δ(T ) of T . The main strategy will be to look at a distinguished
pair of vertices and to determine the minimum detour between this pair of vertices that any
triangulation can achieve.

How can we find such a distinguished pair? The starting point for us will be the following
lemma which reveals a simple property of any triangulation of Sn.

Lemma 5.1 Let Sn be the set of nodes of a regular n-gon with radius 1, and let T be any
triangulation of Sn. Then the longest line segment in T has length at least

√
3.

Proof: Let x = sαsa be a longest line segment in T . Without loss of generality, we may
assume that α = 0 and a ≤ n

2 . There has to be another line segment y 6= x that has a common
endpoint with x and whose other endpoint sb has the property that b > a. We may assume that
y = sasb. Furthermore, let y be chosen in such a way that there are no further line segments
sasc with c > b. Since T is a triangulation, it follows that s0sb also is a line segment in T (see
figure 5.1).

Therefore, as x is a longest line segment and since the triangle defined by s0, sa and sb
contains the center, we can conclude that a ≥ n

3 and that the length of x is |x| = 2 sin
(
πa
n

) ≥
2 sin

(
π
3

)
=
√

3.

Now, let x be a longest line segment in T . x divides Sn into two parts X and Y such that
all the points to the left of x lie in X and all the points to the right of x lie in Y and the
endpoints of x are contained in both X and Y . Without loss of generality, let us assume that
that |X| ≥ |Y |. It is clear that x participates in exactly two different triangles in T , one of
which lies in X and one of which lies in Y . Let D be the triangle whose vertices lie in X. In the
following, we will refer to this triangle quite frequently. Thus, we will call it the central triangle
of triangulation T (see figure 5.1).

There are two things to remark about this definition. First, the definition is ambiguous
for the case that |X| = |Y |. If this happens, we break the tie by defining the central triangle
as the one of the two triangles whose third vertex has the smaller index in Sn. Second, we
need to convince ourselves that the notion of a central triangle is well-defined, i.e., that the
central triangle is still unique in the case that there is more than one longest line segment in
T . However, it is easy to see that all the longest line segments in T have to participate in a
common triangle, since if x is a longest line segment, then the edges of the two triangles D1

and D2 in which x participates cannot be longer than x. Therefore, any edge that lies inside
the circular segments that are defined by the edges 6= x of D1 and D2 must be shorter than x.
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Figure 5.1: The central triangle in a triangulation of S16. The central triangle has vertices
s0, sa, sb, the longest line segment is s0sa

X

s0

sa

sb

x

y

Y

Thus, any longest line segment must lie either in D1 or in D2. However, it cannot happen that
there are two longest line segments y, z 6= x such that y is in D1 and z is in D2, because then
y and z could not lie on a common triangle, while the argument we just gave shows that any
two longest line segments must lie on a common triangle. Hence, it follows that all longest line
segments lie on a common triangle. In particular, we can conclude that there are at most three
of them.

Now, obviously, the central triangle constitutes an obstacle that a shortest path between any
two vertices that lie in different circular segments of the central triangle must pass. Therefore,
in a first attempt, we will look at the middle points of the circular segments that are defined by
the central triangle and compute a lower bound on the detour between them. We will follow this
approach in section 5.1. However, it turns out that this approach only yields a relatively weak
lower bound. The problem is that the points we consider vary as the central triangle varies. A
more successful approach will be to consider points that are at a fixed distance of a fixed vertex
of the central triangle. We will do this in section 5.2 and achieve a pretty strong lower bound,
from which we will be able to deduce some interesting properties of the graph theoretic dilation
of Sn.

5.1 A Weak Lower Bound

Let T be any triangulation of Sn, and let s0, sa, and sb be the vertices of the central triangle of
T such that a < b, a ≥ n

3 and |sasb| ≥ |sbs0|. Note that in this section we do not require that
|s0sa| ≥ |sasb|. This makes the calculations more convenient.

Hence, a and b must fulfill the constraints

n

3
≤ a ≤ n

2
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Figure 5.2: We consider the detour between sa′ and sb′ as well as the detour between sa′ and
sb. The thin dashed line shows the Euclidean distance between sa′ and sb′ , and the bold dashed
line shows the path between sa′ and sb′ , which we use in order to bound πT (sa′ , sb′). Similarly,
the thin and the bold dotted lines visualize the Euclidean distance and the lower bound on the
shortest path length for sa′ and sb.

s0

sb′

sa′

sb

sa

and
a+

n− a
2

=
n+ a

2
≤ b ≤ n− 1.

In this section we shall consider the middle points of the circular segment between s0 and
sa and the circular segment between sa and sb. Thus, let a′ def= a

2 and b′ def= a + b−a
2 = a+b

2 (see
figure 5.2). In the following we will give a lower bound on the maximum of the detour between
sa′ and sb′ and the detour between sa′ and sb. It is necessary to look at these two detour values
simultaneously, since otherwise we would always end up with a degenerate configuration of the
central triangle that does not give any meaningful lower bound at all.

Now, let us set up the equations for the two detours we are interested in. Of course, we do
not know anything about T except for the position of the central triangle. Thus, we cannot
exactly say how long the shortest paths between sa′ and sb′ and the vertices of the central
triangle actually are. However, we can lower-bound these lengths by the Euclidean distance
between the respective points. Therefore, basic trigonometry yields the following estimates

δT (sa′ , sb′) ≥
2 sin

(
a′
n π
)

+ 2 sin
(
b′−a
n π

)

2 sin
(
a′+b′−a

n π
) , (5.1)

and

δT (sa′ , sb) ≥
2 sin

(
a′
n π
)

+ 2 sin
(
n−b
n π

)

2 sin
(
n−b+a′

n π
) . (5.2)

To make equations (5.2) and (5.1) more legible let us substitute λdef= a′π
n = aπ

2n and β def= b′−a
n π,

i.e., α is half the angle between s0 and sa′ and β is half the angle between sa and s′b. The
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constraints on a and b tell us that
π

6
≤ λ ≤ π

4
, (5.3)

as well as
π

n
≤ n− b

n
π ≤ n− n+a

2

n
π =

n− a
2n

π =
π

2
− λ,

and
π

4
− λ

2
=
n− a

4n
π

(1)

≤ b′ − a
n

π = β =
b− a
2n

π ≤ n− 1− a
2n

π ≤ π

2
− λ, (5.4)

where (1) holds because b′ − a = (b− a) /2 and b− a ≥ (n− a) /2.
The substitution has the effect that our detours take a much more handy form, namely

δT (sa′ , sb′) ≥ sinλ+ sinβ
sin (λ+ β)

, (5.5)

and

δT (sa′ , sb) ≥ sinλ+ sin (π − 2λ− 2β)
sin (π − λ− 2β)

, (5.6)

because
n− b
n

π = π

(
1− 2b′ − a

n

)
= π

(
1− a

n
− 2b′ − 2a

n

)
= π − 2λ− 2β.

Given the constraints on λ and β, we can now immediately see that the two lower bounds
(5.5) and (5.6) are equal if β = π − 2λ − 2β, i.e., β = 1

3π − 2
3λ. We shall denote this latter

quantity by β∗ (λ). As a sanity check, let us briefly verify that

π

4
− λ

2
≤ β∗ (λ)⇔ 1

6
λ ≤ 1

12
π ⇔ λ ≤ π

2

and that

β∗ (λ) ≤ π

2
− λ⇔ 1

3
λ ≤ 1

6
π ⇔ λ ≤ π

2
.

Hence, β∗ (λ) fulfills the constraints (5.4) imposed on β.
Of course, it does not help us much to know a point in which the two lower bounds intersect

without any further information about the behavior of these functions. Ultimately, we are going
to follow the same general strategy which we used in section 4.2 in order to compute the graph
theoretic dilation of the canonical triangulation. That is, we are going to show that one of the
two functions is monotonically increasing, while the other function monotonically decreases,
and hence the y-coordinate of the point in which their graphs intersect (of which we then know
that it is unique) will be our lower bound on the graph theoretic dilation of Sn for a fixed value
of λ. In a second step we will need to determine the value of λ for which this lower bound is
minimal. This eventually yields our desired lower bound.

In order to obtain the required monotonicity properties we need to explore the behavior
of the lower bounds (5.5) and (5.6) as β varies. To that end we will consider a slightly more
general function whose properties will also be useful later on. This function is given by

f (α, β) def=
sinα+ sinβ
sin (α+ β)

,

and its properties are explored in the following
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Claim 5.2 The function f :
{

(α, β) ∈ (0, π)2 |0 < α+ β < π
}
→ R given by

f (α, β) =
sinα+ sinβ
sin (α+ β)

has derivative

f ′ (α, β) =
1− cos (α+ β)

sin2 (α+ β)
(sinβ, sinα) (5.7)

and grows as one argument increases and the other argument remains fixed.

Proof: We can compute the partial derivative of f as follows:

∂f (α, β)
∂β

=
sin (α+ β) cosβ − (sinα+ sinβ) cos (α+ β)

sin2 (α+ β)

=
(sinα cosβ + cosα sinβ) cosβ

sin2 (α+ β)

+
− (sinα+ sinβ) (cosα cosβ − sinα sinβ)

sin2 (α+ β)

=
sinα cos2 β + cosα sinβ cosβ

sin2 (α+ β)

+
− sinα cosα cosβ + sin2 α sinβ

sin2 (α+ β)

+
− cosα sinβ cosβ + sinα sin2 β

sin2 (α+ β)

=
sinα (1− cosα cosβ + sinα sinβ)

sin2 (α+ β)

=
sinα (1− cos (α+ β))

sin2 (α+ β)
.

∂f(α,β)
∂α can be computed in a similar fashion. Now the rest of the claim follows immediately,

since |cos (α+ β)| ≤ 1 and sinα ≥ 0 for the values of α at consideration.

In particular, the lower bound for δT (sa′ , sb′) (5.1) is monotonically increasing as b′ grows
and a′ remains fixed, while the lower bound for δT (sa′ , sb) (5.2) decreases as b grows and
a′ remains fixed. Hence, the maximum of the two lower bounds is minimal for fixed a if
π
nb = 2λ+ 2β∗ (λ) = 2

3λ+ 2
3π, i.e., if b = a

3 + 2
3n. Thus, we have successfully eliminated β from

consideration.
In order to get the desired lower bound we now need to find out for which value of λ (or

equivalently for which value of a) this lower bound reaches its minimum.
Thus, let us substitute the value of β∗ into the lower bounds for δT (sa′ , sb′) (5.5) and

δT (sa′ , sb) (5.6). We thus obtain a function that solely depends on λ, which we will denote by
δ (λ):

δ (λ) def=
sinλ+ sin

(
π
3 − 2

3λ
)

sin
(
π
3 + λ

3

)

Since δ (λ) = f
(
λ, π3 − 2

3λ
)
, the chain rule and equation (5.7) in claim 5.2 help us compute
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the derivative of δ (λ) as follows:

δ′ (λ) = f ′
(
λ,
π

3
− 2

3
λ

)(
1
−2

3

)

=
1− cos

(
π
3 + λ

3

)
(
sin
(
π
3 + λ

3

))2
(

sin
(
π

3
− 2

3
λ

)
− 2

3
sinλ

)

≥ 0,

since

sin
(
π

3
− 2

3
λ

)
≥ sin

(π
3
− π

6

)
= sin

(π
6

)
=

1
2
>

√
2

3
=

2
3

sin
(π

4

)
≥ 2

3
sinλ.

Therefore, δ (λ) increases as λ grows, and thus constraint (5.3) on λ tells us that δ (λ) takes
on its minimum value for λ = π

6 . Hence, the maximum of the detours between (sa′ , sb) and
(sa′ , sb′) in any triangulation of Sn is at least

δ
(π

6

)
=

sin
(
π
6

)
+ sin

(
2
9π
)

sin
(

7
18π
) ≈ 1.2161.

Thus, we have obtained a lower bound on the graph theoretic dilation of Sn. However,
throughout our calculations we have always assumed that a′ and b′ are integral, which does not
always have to be the case. Therefore, a rigorous treatment would now necessitate a detailed
analysis of the error we have introduced through this assumption. Nonetheless, we will omit
these calculations, as a slightly different approach yields a much more powerful lower bound,
which we will derive in the next section.

5.2 A Better Lower Bound

As the experimental results in table 3.1 on page 14 suggest, the lower bound that we obtained
in the previous section is pretty weak. In this section we will derive a better bound by using a
slightly modified approach. The basic idea remains the same: we are going to look at a pair of
distinguished vertices in Sn. The problem in the previous section seems to be that the vertices
which we considered there could vary as the central triangle varies. In this section we shall
consider a pair of vertices that lie diametrically opposed to each other such that each vertex is
one quarter of a circle away from a fixed endpoint of the central triangle. If you think about it,
this approach is very natural and intuitively promising, since the configuration we consider is
very similar to a square, which is the simplest example that is used to show that in general the
graph theoretic dilation of a point set cannot be arbitrarily close to 1. Indeed, it will turn out
that this approach yields a quite powerful lower bound.

In subsection 5.2.1 we will first derive the bound for the case that n is divisible by 4. Since
it is clear that the lower bound cannot be valid for all possible values of n (obviously, the graph
theoretic dilation of S3 is 1), we will analyze for which n the lower bound holds in subsection
5.2.2, where we show that the lower bound is valid if n is large enough.

5.2.1 A Lower Bound for n ≡ 0 (mod 4)

Let T be an arbitrary triangulation of Sn. We already know that in T there is a longest line
segment ` = sγsa such that the convex hull distance ∆Sn (sγ , sa) between sγ and ss is at least
n
3 . Furthermore, the proof of lemma 5.1 on page 29 about the central triangle implies that `
is adjacent to another line segment `′ = sγsb such that the convex hull distance ∆Sn (sγ , sb)
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Figure 5.3: We are looking at the detour between x and y. The shortest path between x and y
either includes s0 (dashed line) or it uses line segment sasb (bold dotted line).

sa

y

x

sb

s0

between sγ and sb is at least half of n−∆Sn (sγ , sa). For the sake of simplicity we will assume
that γ = 0. Furthermore, throughout this subsection we will assume that n ≡ 0 (mod 4), i.e.,
that n is a multiple of 4. We will drop this assumption in the next subsection. Now let x = sn

4

and y = s 3n
4

. In the following we shall compute a lower bound the detour between x and y (see
figure 5.3).

As before, let us introduce some shorthand notation in order to simplify our formulae. Thus,
let αdef= aπ

n and β def= (n−b)π
n . This means that α denotes half the angle between s0 and sa, while β

represents half the angle between s0 and sb. By our assumptions it follows that dn3 e ≤ a ≤ bn2 c
and dn−a2 e ≤ n− b ≤ a, since a is a longest line segment. This implies the following bounds on
α and β:

π

3
≤ α ≤ π

2
, (5.8)

and
π − α

2
≤ β ≤ α.

Note that these bounds imply in particular that x always lies between s0 and sa and that y
always lies between s0 and sb, as shown in figure 5.3. This is so because from the bounds it
follows that β ≥ π

4 .
Now let us compute the detour between x and y. Clearly, the Euclidean distance between x

and y is 2. The shortest path between the two points either passes s0 or it uses line segment sasb.
In the former case the length of the shortest path has to be at least 2 sin

(
π
4

)
+ 2 sin

(
π
4

)
, in the

latter case the length is bounded from below by 2 sin
(
α− π

4

)
+2 sin

(
β − π

4

)
+2 sin (π − (α+ β)),

since the shortest path length can never be less than the Euclidean distance (see figure 5.3).
Thus, we have

δT (x, y) ≥ min
{

2 sin
(
π
4

)
, sin

(
α− π

4

)
+ sin

(
β − π

4

)
+ sin (π − (α+ β))

}

sin
(
π
2

)

= min
{√

2, sin
(
α− π

4

)
+ sin

(
β − π

4

)
+ sin (α+ β)

}
. (5.9)
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In order to compute the minimum (5.9) we need to examine the function

f (α, β) def= sin
(
α− π

4

)
+ sin

(
β − π

4

)
+ sin (α+ β) . (5.10)

We will first figure out for which value of β f(α, β) is minimal when α is fixed. Therefore,
we compute the partial derivative ∂f(α,β)

∂β as follows:

∂f (α, β)
∂β

= cos
(
β − π

4

)
+ cos (α+ β) . (5.11)

Now let us compute the zeros of (5.11). We know that cos ξ = − cosφ ⇔ φ = (2k + 1)π −
ξ ∨ φ = (2k + 1)π + ξ, k ∈ Z, and since we are only interested in the case that φ, ξ ∈ [0, π], the
only values of interest in which the derivative vanishes are

β − π

4
= α+ β − π ⇔ α =

3
4
π (5.12)

and
β − π

4
= π − α− β ⇔ β =

5
8
π − α

2
. (5.13)

The first case (5.12) cannot occur due to the constraints on α (5.8). The second case (5.13)
occurs if and only if α ≥ 5

12π, since

5
8
π − α

2
≤ α⇔ α ≥ 5

12
π.

Let us first assume that α < 5
12π. In this case ∂f(α,β)

∂β does not vanish for β ∈ [π−α2 , α
]
, and

we have

∂f

∂β

(
α,
π − α

2

)
= cos

(
π − α

2
− π

4

)
+ cos

(
π − α

2
+ α

)

= cos
(π

4
− α

2

)
+ cos

(π
2

+
α

2

)

= cos
(π

4
− α

2

)
− sin

(α
2

)

> 0,
(5.14)

since α/2 ranges from π
6 to π

4 and hence we have cos
(
π
4 − α

2

)
>
√

2/2 and sin
(
α
2

)
<
√

2/2.
Consequently, f(α, β) is monotonically increasing if α < 5

12π remains fixed and β ∈ [π−α2 , α
]

and hence f(α, β) takes on its minimum value for β = π−α
2 .

Now let α ≥ 5
12π. We will now show that in this case it is still true that f(α, β) takes on its

minimum value for β = π−α
2 . To that end let us consider the function g(x)def= f

(
α, 5

8π − α
2 + x

)
.

We get

g (x) = sin
(
α− π

4

)
+ sin

(
3
8
π − α

2
+ x

)
+ sin

(
5
8
π +

α

2
+ x

)

= sin
(
α− π

4

)
+ sin

(
3
8
π − α

2
+ x

)
− sin

(
−
(

3
8
π − α

2

)
+ x

)
,

since sin (λ+ π) = − sin (λ).
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It is now easy to see that g is an even function, because

g (−x) = sin
(
α− π

4

)
+ sin

(
3
8
π − α

2
− x
)
− sin

(
−
(

3
8
π − α

2

)
− x
)

= sin
(
α− π

4

)
− sin

(
−
(

3
8
π − α

2

)
+ x

)
+ sin

(
3
8
π − α

2
+ x

)

= g (x) .

Therefore, it follows that f (α, β) is symmetric with respect to the line β = 5
8π − α

2 , and
furthermore, since 5

8π − α
2 ≥ 1

2

(
α+ π−α

2

) ⇔ α ≤ π
2 , we know that this line lies to the right of

the center of the interval at consideration. Consequently, since we saw in (5.14) that

∂f

∂β

(
α,
π − α

2

)
≥ 0

and since the partial derivative only vanishes once in the critical interval, we can conclude that
if α is fixed, then f (α, β) is minimal for β = π−α

2 .
Thus, we have successfully eliminated β from consideration. By substituting β = π−α

2 into
the lower bound (5.10) we obtain a function that solely depends on α, which we shall denote
by h (α). We have

h (α) = f

(
α,
π − α

2

)

= sin
(
α− π

4

)
+ sin

(π
2
− α

2
− π

4

)
+ sin

(π
2
− α

2
+ α

)

= sin
(
α− π

4

)
− sin

(α
2
− π

4

)
+ cos

(α
2

)
,

for α ∈ [π3 , π2
]
.

In order to obtain the desired lower bound we need to find the value of α for which h (α) is
minimal. Thus, let us compute the first and the second derivative of h (α). We get

h′ (α) = cos
(
α− π

4

)
− 1

2
cos
(α

2
− π

4

)
− 1

2
sin
(α

2

)
,

and
h′′ (α) = − sin

(
α− π

4

)
+

1
4

sin
(α

2
− π

4

)
− 1

4
cos
(α

2

)
.

Elementary properties of the sine and cosine function imply that h′′ (α) < 0 for α ∈ [π3 , π2
]
,

because α− π
4 ∈

[
π
12 ,

π
4

]
and α

2 − π
4 ∈

[− 1
12π, 0

]
, hence − sin

(
α− π

4

)
< 0 and 1

4 sin
(
α
2 − π

4

) ≤ 0.
It follows that h′ (α) strictly decreases for α ∈ [π3 , π2

]
, and as

h′
(π

3

)
=

1
2

cos(
π

12
)− 1

4
=

√
2 +
√

3− 1
4

> 0

and

h′
(π

2

)
=
√

2
4
− 1

2
< 0,

we can conclude that h (α) first grows monotonically and then decreases monotonically. This
implies that the only candidate points for a minimum of h (α) are the endpoints of the interval[
π
3 ,

π
2

]
. By plugging those candidate points into h we obtain

h
(π

3

)
= 2 sin

( π
12

)
+
√

3
2

=
√

2−
√

3 +
√

3
2
≈ 1.3836
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Figure 5.4: x and y are rounded towards s0. The Euclidean distance |xy| (length of the thin
dotted line) and the length of the path from x to y via s0 (bold dashed line) decrease, whereas
the length of the path from x to y that uses line segment sasb increases (bold dotted line).

sa

s0

sasb

y x

sb

y x

s0

and
h
(π

2

)
=
√

2 ≈ 1.4142,

and hence we have proved the following

Theorem 5.3 Let Sn be the set of vertices of a regular n-gon, and let n ≡ 0 (mod 4). Then
any triangulation of Sn has graph theoretic dilation at least

√
2−√3 +

√
3

2 ≈ 1.3836.

5.2.2 A Lower Bound for Arbitrary n

Naturally, we would like to generalize the result of the previous section for arbitrary n. Unfor-
tunately, a glance at table 3.1 on page 14 reveals that the lower bound does not hold for any
possible value of n (for instance, it does not hold for n = 5). However, it is obvious that if n
is large enough, there should not be a large difference between the cases n ≡ 0 (mod 4) and
n 6≡ 0 (mod 4). Thus, our strategy will be to look at a pair of points that is very close to the
pair of points that we considered in the previous subsection. We will obtain this pair of points
by rounding the indices we used in the previous subsection, n

4 and 3
4n. We then consider the

detour between the points we have thus obtained, and in particular we will compute a value n0

such that the lower bound from the previous section holds for all n ≥ n0.
It is clear that there are several ways to perform this rounding. To be precise, there are

exactly four different ways, since we can round each index either up or down. The simplest
method, which we shall explore first, is to move both points towards the distinguished vertex
s0 of the central triangle. This approach yields a relatively low value for n0. Of the other three
methods only one can be used to improve the bound on n0 a little bit, which we will do in the
second paragraph of this subsection. The reader is invited to verify (or to take it on faith) that
the other rounding methods do not yield any substantial improvements.

A Simple Rounding Method

In this paragraph we are going to find out what happens if we move both distinguished points
towards the distinguished vertex of the central triangle s0 (see figure 5.4).
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Thus, let x = sbn
4
c and y = sn−bn

4
c. As in the last subsection, we would like to bound the

detour between x and y from below. Just as before in any triangulation T of Sn, the shortest
path between x and y either passes s0 or it uses line segment sasb, where sa and sb denote
the two other vertices of the central triangle. In the latter case the lower bound on the detour
between x and y can only increase compared to the lower bound we computed in the previous
subsection. This is so because x and y are now further away from sa and sb, respectively, and
thus the lower bound on the shortest path length can only become larger, whereas the Euclidean
distance between x and y decreases (see figure 5.4).

Consequently, we only need to consider the case that the shortest path from x to y includes
s0. By the standard argument which relates the shortest path length to the Euclidean distance
and since the Euclidean distance between y and s0 and the Euclidean distance between x and
s0 both equal 2 sin

(bn4 cπn
)
, we can conclude that the length of such a shortest path is at least

4 sin
(bn4 cπn

)
, which we write as 4 sin

(
π
4 −

(
n
4 − bn4 c

)
π
n

)
, since that form will be more convenient

for our analysis. Similarly, the Euclidean distance between x and y equals 2 sin
(
2bn4 cπn

)
, which

we will write as 2 sin
(
π
2 −

(
n
2 − 2bn4 c

)
π
n

)
. Hence, for the case that the shortest path between

x and y passes s0 the detour between x and y can be bounded from below by the following
function which we will denote by f (n):

f (n) def=
4 sin

(
π
4 −

(
n
4 − bn4 c

)
π
n

)

2 sin
(
π
2 −

(
n
2 − 2bn4 c

)
π
n

) .

Thus, we can obtain a lower bound on the graph theoretic dilation δ (T ) of triangulation
T by taking the minimum of f(n) and

√
2−√3 +

√
3

2 ≈ 1.3836, i.e., the lower bound on the
detour between x and y if the shortest path between x and y uses line segment sasb. We will
now show that in a certain sense f (n) is monotonically increasing. As soon as this claim is
established, it will be easy to compute a n0 such that the lower bound from the previous section
holds for all n ≥ n0.

In claim 5.2 on page 33 we already showed that the function

z (α, β) =
sinα+ sinβ
sin (α+ β)

is monotonically increasing in each of its arguments as long as the other parameter remains
fixed for α, β ∈ (0, π) and α + β ∈ (0, π). Thus, if we take into consideration that n

4 − bn4 c =
n+4

4 − bn+4
4 c, it follows that

f (n) =
sin
(
π
4 −

(
n
4 − bn4 c

)
π
n

)
+ sin

(
π
4 −

(
n
4 − bn4 c

)
π
n

)

sin
(
π
2 −

(
n
2 − 2bn4 c

)
π
n

)

<
sin
(
π
4 −

(
n+4

4 − bn+4
4 c
)

π
n+4

)
+ sin

(
π
4 −

(
n
4 − bn4 c

)
π
n

)

sin
(
π
2 −

(
n
4 − bn4 c

)
π
n −

(
n
4 − bn4 c

)
π
n+4

)

<
2 sin

(
π
4 −

(
n
4 − bn4 c

)
π
n+4

)

sin
(
π
2 −

(
n
2 − 2bn4 c

)
π
n+4

)

= f (n+ 4) .

Thus, f grows as n increases in steps of 4, and all that remains to be done is to determine
for each congruence class (mod 4) the value of n for which f(n) ≥

√
2−√3 +

√
3

2 ≈ 1.3836.
This is easily done by dint of a pocket calculator which readily yields the results that are shown
in table 5.1.
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Table 5.1: Validity of the Lower Bound
n (mod 4) Lower bound holds for n ≥
0 4
1 37
2 74
3 107, can be improved to 39

Figure 5.5: x is moved towards sa, y is moved towards s0. A priori, it is not clear how the
detours change.

s0
s0

sasb

y x

y

x

sb sa

A More Complicated Rounding Method

A natural question that arises at this point is whether the threshold values for n which are shown
in table 5.1 can be improved if we choose a different rounding method. In general, the answer
to this question is that different rounding methods do not yield any significant improvements.
Nonetheless, there is one exception which we will describe in this paragraph.

Thus, let us consider the detour between x and y where x is given by sdn
4
e and y is given by

sn−bn
4
c. This means that we move x closer to sa and y closer to s0 (see figure 5.5). For this pair

of points (x, y) we will show that the lower bound holds for n ≥ 39 given that n ≡ 3 (mod 4).
The analysis is very similar to the previous one. However, it is rendered more cumbersome by
the fact that we now also need to consider the case that the shortest path between x and y uses
line segment sasb.

Recall our previous definition of α def= aπ
n and β def= (n−b)π

n , where α is half the angle between
s0 and sa, while β is half the angle between s0 and sb. In the previous subsection we found that
α and β fulfill the constraints

π

3
≤ α ≤ π

2
and

π − α
2
≤ β ≤ α.

Please keep in mind that we are only interested in the case n ≡ 3 (mod 4). By the standard
argument the length of any shortest path between x and y that employs line segment sasb is at
least 2 sin (α+ β)+2 sin

(
α− π

4 − π
4n

)
+2 sin

(
β − π

4 + 3π
4n

)
, and the Euclidean distance between

x and y equals 2 sin
(
π
2 − π

2n

)
(these are the same expressions we used in subsection 5.2.1 with
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the only difference that we added some “rounding terms”). Thus, the function g (α, β, n) given
by

g (α, β, n) def=
sin (α+ β) + sin

(
α− π

4 − π
4n

)
+ sin

(
β − π

4 + 3π
4n

)

sin
(
π
2 − π

2n

)

bounds the ratio between the length of any x-y-path that includes line segment sa, sb and the
Euclidean distance between x and y from below. By considering the partial derivative ∂g(α,β,n)

∂n ,
we can see that g decreases as n grows. Indeed, elementary calculus yields

∂g (α, β, n)
∂n

=
sin
(
π
2 − π

2n

) (
π

4n2 cos
(
α− π

4 − π
4n

)− 3π
4n2 cos

(
β − π

4n + 3π
4n

))

sin2
(
π
2 − π

2n

)

−
π

2n2 cos
(
π
2 − π

2n

) (
sin (α+ β) + sin

(
α− π

4 − π
4n

)
+ sin

(
β − π

4 + 3π
4n

))

sin2
(
π
2 − π

2n

)

Now obviously the term
π

2n2 cos(π2− π
2n)(sin(α+β)+sin(α−π4− π

4n)+sin(β−π4 + 3π
4n))

sin2(π2− π
2n) is positive for the

values of α and β we are interested in, since α ≥ π
3 , β ≥ π

4 , and n ≥ 3. Furthermore, since
α ∈ [π3 , π2

]
and α > β, we can choose n ≥ 7 in order to get

1
4

cos
(
α− π

4
− π

4n

)
<

3
4

cos
(
β − π

4
+

3π
4n

)
,

because the left hand side decreases as n grows, while the right hand side becomes larger, and
cos
(
σ − π

28

)
< 3 cos

(
σ + 3π

28

)
for σ ∈ [ π12 ,

π
4

]
. Hence, for n ≥ 4, the first term of ∂g(α,β,n)

∂n is
negative.

In conclusion, we have just convinced ourselves that ∂g(α,β,n)
∂n is negative for n ≥ 7, and

therefore g (α, β, n) falls as n approaches infinity. However, limn→∞ g (α, β, n) is nothing but
the function f (α, β) we already defined in equation (5.10) on page 36 in section 5.2.1. There,
we found out that this function is bounded from below by

√
2−√3+

√
3

2 ≈ 1.3836. Thus, if the
shortest path from x to y uses line segment sasb, the lower bound remains valid after rounding
as long as n ≥ 7.

But what happens if the shortest path uses s0? The Euclidean distance between x and s0

is 2 sin
(
π
4 + π

4n

)
, while the Euclidean distance between y and s0 equals 2 sin

(
π
4 − 3π

4n

)
. Thus,

any shortest path from x to y has length at least 2 sin
(
π
4 − 3π

4n

)
+ 2 sin

(
π
4 + π

4n

)
. Therefore, the

detour quotient is at least as large as

f (n) =
sin
(
π
4 − 3π

4n

)
+ sin

(
π
4 + π

4n

)

sin
(
π
2 − π

2n

) (5.15)

For the sake of readability let us substitute τ = π
n into equation (5.15). This leads us to the

function h (τ) which looks like this:

h (τ) def=
sin
(
π
4 − 3

4τ
)

+ sin
(
π
4 + τ

4

)

sin
(
π
2 − τ

2

) .

Using claim 5.2 (page 33) and the chain rule to compute the derivative of h (τ), we will now
show that h (τ) decreases for τ ∈ [0, π4

]
and hence f (n) grows as n approaches infinity. Indeed,

we get

h′ (τ) =
1− cos

(
π
2 − τ

2

)
(
sin
(
π
2 − τ

2

))2
(

sin
(π

4
+
τ

4

)
, sin

(
π

4
− 3

4
τ

))( −3
4

1
4

)

=
1− cos

(
π
2 − x

2

)
(
sin
(
π
2 − x

2

))2
(
−3

4
sin
(π

4
+
τ

4

)
+

1
4

sin
(
π

4
− 3

4
τ

))

< 0,
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since sin
(
π
4 + τ

4

)
> sin

(
π
4 − 3

4τ
)

for 0 ≤ τ ≤ π
4 .

Consequently, just like in the previous paragraph all that is left to do now is to determine
the value of n for which f(n) >

√
2−√3 +

√
3

2 ≈ 1.3836. A pocket calculator shows that this
happens for n = 39.

Hence, all in all, we have eventually proved the following

Theorem 5.4 Let Sn be the set of vertices of a regular n-gon, and let n ≥ 74. Then any
triangulation of Sn has graph theoretic dilation at least

√
2−√3 +

√
3

2 ≈ 1.3836.

5.3 More on Lower Bounds

It is clear that we cannot expect to get any nontrivial lower bounds (i.e., any lower bound > 1)
for the graph theoretic dilation of an arbitrary point set. For example, if we arrange n points on
a line, then the graph theoretic dilation of the resulting point set is 1. Naturally, this example
is not very convincing since such a point set is not in general position. In this section, however,
we will give a simple example which shows that even for n points that lie on the unit circle we
cannot hope for any nontrivial lower bounds on the graph theoretic dilation.

Let ε > 0 and n ≥ 3 ∈ N be given. Without loss of generality, we may assume that ε < 1.
Now consider the set X = {x0, . . . , xn−1} of n points which are given by

x0 = (1, 0) , x1 =
(

cos
(

2
3
π

)
, sin

(
2
3
π

))
, x2 =

(
cos
(

4
3
π

)
, sin

(
4
3
π

))
,

and
xi =

(
cos
(
i
ε

n

)
, sin

(
i
ε

n

))
, for 3 < i ≤ n− 1.

Obviously, all the points in X lie on a unit circle whose center is the origin. We will show that
the graph theoretic dilation of X is at most 1+O (ε). To that end we consider the triangulation
T of X in which all the xi are adjacent to x1 (see figure 5.6).

Let us now compute the graph theoretic dilation of T . It is clear that the maximum detour
can only occur between two nodes xi, xj with i, j > 2 or between an xi and x2 for i > 2.

First, let us look at a pair of nodes (xi, xj) with i, j > 2. Let µ be the angle ∠(xiOxj),
where O denotes the origin. Naturally, the length of a shortest path between xi and xj is at
most µ. Furthermore, the Euclidean distance between xi and xj is 2 sin (µ/2). Hence, we have

δT (xi, xj) ≤ µ

2 sin
(µ

2

) ≤ 1 + µ2,

since µ/ sin (µ/2) ≤ µ/
(
µ− µ3

24

)
and

µ

µ− µ3

24

− 1 =
µ3

24µ− µ3
≤ µ2,

because of our choice of µ. Hence, it follows that for any i, j > 2 we have δT (i, j) ≤ 1 + ε2,
since µ ≤ ε.

Now let us look at δT (x2, xi) for i > 2. Let µ be the angle ∠(x0Oxi). Then the shortest
path between xi and x2 has length at most

√
3 +µ, since the length of line segment x0x2 is

√
3.
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Figure 5.6: A triangulation of X that has graph theoretic dilation 1 + O (ε). All vertices are
adjacent to x1.
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The Euclidean distance between xi and x2 is 2 sin
((

2
3π + µ

)
/2
)
. Consequently,

δT (x2, xi) ≤
√

3 + µ

2 sin
(
π
3 + µ

2

) =
√

3 + µ

2
(
sin
(
π
3

)
cos
(µ

2

)
+ cos

(
π
3

)
sin
(µ

2

))

=
√

3 + µ√
3 cos

(µ
2

)
+ sin

(µ
2

)

≤
√

3 + µ
√

3
(

1− µ2

4

)
+ µ

2 − µ3

12

≤ 1 + 4µ,

because of our choice of µ. Once again, since µ ≤ ε, it follows that for any i > 2 we have
δT (x2, xi) ≤ 1 +O (ε), and hence δ(T ) ≤ 1 +O (ε). Hence, we have just proved

Theorem 5.5 Let n ∈ N and ε > 0. It is possible to arrange n points on the unit circle in such
a way that the graph theoretic dilation of the resulting point set is at most 1 +O (ε).
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Chapter 6

Implications of the Lower Bound

As usual, let Sn = {s0, s1, . . . , sn−1} be the set of nodes of a regular n-gon in counter-clockwise
order, and let T be any triangulation of Sn. In the previous chapters we have gone through
some long and cumbersome calculations in order to prove some bounds on the graph theoretic
dilation of Sn. In this chapter we are going to use these bounds in order to establish some
structural properties of T . In particular, we are interested in the properties of any pair of nodes
(sa, sb) ∈ S2

n such that δ (T ) = δT (sa, sb). We shall call such a pair a maximum detour pair ,
since the detour between sa and sb is maximal. It is trivial that such a pair always exists, but
it does not have to be unique.

In section 6.1 we will prove that the Euclidean distance between the vertices of a maximum
detour pair has to be at least 1.93185 if the radius of the regular n-gon is 1. If the radius of
the n-gon is not 1, it is still true that the convex hull distance between the two vertices of a
maximum detour pair is at least 5

12n.
Another interesting property that we will derive in section 6.2 is that the shortest path

between the two nodes of a maximum detour pair always includes at least one vertex of the
central triangle, i.e., in any triangulation T of Sn there are three distinguished vertices such
that the shortest path between the vertices of any maximum detour pair for T has to include
at least one of them.

The proofs of these two properties rely heavily on the lower bound which we have proved in
the previous chapter. Therefore, we can only be sure that they are valid if we can be sure that
the lower bound is valid, i.e., for n ≥ 74 or n ≡ 0 (mod 4).

Finally, in section 6.3 we will outline a possible algorithmic use of the results that we obtain
in this chapter.

6.1 A Bound on the Euclidean Distance of a Maximum Dilation
Pair

In this section we shall prove that the Euclidean distance between the two vertices of a maximum
detour pair is bounded from below by a pretty large constant. The main idea is that the fact
that between any two vertices in Sn there is a path that goes along the convex hull of Sn gives
us an upper bound on the detour between these two vertices. This upper bound can then be
compared with the lower bound on δ (T ) to obtain the desired property of a maximum detour
pair.

More precisely, in section 4.1 we saw that an upper bound for the detour between any two

45



distinct points sa and sb in Sn that have convex hull distance ∆ = ∆Sn (sa, sb) is given by

δT (sa, sb) ≤
∆ sin

(
π
n

)

sin
(
∆π
n

) . (6.1)

On the other hand, theorem 5.4 from the previous chapter tells us that

δ (T ) ≥
√

2−
√

3 +
√

3
2
.

This means in particular that for any two points sx, sy ∈ Sn with δ (T ) = δT (sx, sy), i.e.,
for any maximum dilation pair (sx, sy), we have

δT (sx, sy) ≥
√

2−
√

3 +
√

3
2
.

From this we can show that the convex hull distance ∆ between sx and sy has to be more
than 5

12n. Indeed, in section 4.1, claim 4.1 on page 18 we have already seen that the upper
bound defined in equation (6.1) grows monotonically with ∆ and hence for 1 ≤ ∆ ≤ 5

12n we
have

∆ sin
(
π
n

)

sin
(
∆π
n

) ≤
5
12n sin

(
π
n

)

sin
(

5
12n

π
n

)

(1)

≤
5
12π

sin
(

5
12π
)

<

√
2−
√

3 +
√

3
2
,

where (1) is due to the fact that 5
12n sin

(
π
n

)↗ 5
12π, a variation of the limit n

2 sin
(
π
n

)↗ π
2 which

we computed in section 4.1.
Consequently, the Euclidean distance between sx and sy is larger than 2 sin

(
5
12π
)
, which

can be computed as

2 sin
(

5
12
π

)
=

1
2

(√
6 + 3

√
3 +

√
2−
√

3
)
≈ 1.93185.

Let us state this result as a corollary:

Corollary 6.1 Let n ≥ 74 and Sn be the set of vertices of a regular n-gon. For any triangulation
T of Sn and any sx, sy ∈ Sn such that δT (sx, sy) = δ (T ), the convex hull distance ∆Sn(sa, sb)
between sa and sb is larger than 5

12n. Furthermore, if the radius of Sn is 1, the Euclidean

distance |sxsy| is more than 1
2

(√
6 + 3

√
3 +

√
2−√3

)
≈ 1.93185.

There are two things to remark about this corollary. First, it is interesting to note that this
corollary implies that the vertices of maximum detour pairs are nearly diametrically opposite,
which is also what one might expect intuitively. Furthermore, let us mention that obviously
these estimates are not tight. The bound of 5

12n on the convex hull distance can definitely
be strengthened. However, we have chosen to state the corollary as above, because this value
gives a clean statement of the corollary above and turns out to be sufficient to prove the central
triangle property of the next subsection.
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Figure 6.1: Line segment l divides Sn into two sets S1 and S2.
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6.2 The Shortest Path Crosses the Central Triangle

Let sx, sy ∈ Sn such that δT (sx, sy) = δT (Sn). Furthermore, let l = sasb be a line segment of
T . l divides Sn into two parts which we will call S1 and S2, where S1 contains all the points in
Sn that lie to the left of l and the endpoints of l and S2 contains all the points that lie to the
right of l and the endpoints of l (see figure 6.1). Without loss of generality, we may assume that
|S1| ≤ |S2|. The goal of this section is to show that it is not possible that both sx and sy lie
in the smaller part S1. The main idea behind the proof is as follows: Due to the results of the
previous chapter it is not possible that the convex hull distance between sx and sy is too small.
Therefore, sx and sy have to be pretty close to l. However, this gives us a path between sx and
sy that achieves a detour that is below the detour that is necessitated by the lower bound of
the previous chapter.

Therefore, let ∆ = ∆Sn (sa, sb) be the convex hull distance between sa and sb. If ∆ ≤ 5
12n,

it is obvious that the claim follows immediately from corollary 6.1. Otherwise, some more work
is required.

Thus, let us assume that ∆ > 5
12n, and for the sake of contradiction, we will suppose that

both sx and sy lie in S1. We may assume that sa is closer to sx than sb and that sb is closer
to sy than sa (see figure 6.2). By corollary 6.1 the convex hull distance between sx and sy is
larger than 5

12n. We will now derive a contradiction to theorem 5.4 by showing that the detour
between sx and sy is less than

√
2−√3 +

√
3

2 ≈ 1.3836.

First, let us define λ def= ∆Sn (sa, sx) + ∆Sn (sb, sy) and µ def= ∆Sn (sa, sx). With this notation,
the Euclidean distance between sx and sy is 2 sin

(
(∆− λ) πn

)
. Furthermore, there is a path

between sx and sy that follows the convex hull from sx to sa, then uses line segment sasb
and finally goes along the convex hull from sb to sy (see figure 6.2). The length of this path
is 2 sin

(
∆π
n

)
+ 2µ sin

(
π
n

)
+ 2 (λ− µ) sin

(
π
n

)
= 2 sin

(
∆π
n

)
+ 2λ sin

(
π
n

)
. Consequently, we can
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Figure 6.2: We assume that both sx and sy lie in S1, where sx is closer to sa and sy is closer to
sb. The bold dashed line shows a path from sx to sy that uses the convex hull and line segment
l.
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bound the detour between sx and sy from above as follows:

δT (sx, sy) ≤
sin
(
∆π
n

)
+ λ sin

(
π
n

)

sin
(
(∆− λ) πn

) ,

where 5
12n ≤ ∆ ≤ bn2 c and 0 ≤ λ ≤ ∆ − 5

12n. Clearly, this upper bound grows as λ increases.
As λ ≤ ∆− 5

12n, we can conclude that

δT (sx, sy) ≤
sin
(
∆π
n

)
+
(
∆− 5

12n
)

sin
(
π
n

)

sin
(

5
12π
) ,

and this obviously grows with ∆. Thus, by substituting the upper bound for ∆ we get

δT (sx, sy) ≤
sin
(
π
2

)
+ n

12 sin
(
π
n

)

sin
(

5
12π
)

≤ 1 + π
12

sin
(

5
12π
) ≈ 1.306

<

√
2−
√

3 +
√

3
2
.

Since we assumed that the detour between sx and sy is maximal, we have thus reached a
contradiction to theorem 5.4.

We can recapitulate the result of this section in the following

Corollary 6.2 Let n ≥ 74 and let T be an arbitrary triangulation of Sn, the set of vertices of
a regular n-gon. Then for any sx, sy ∈ S such that δT (sx, sy) = δT (S) and any line segment
sasb in E(T ) that divides S into two subsets S1 and S2 with |S1| ≤ |S2| and S1 ∩ S2 = {sa, sb},
it cannot be the case that both sx ∈ S1 and sy ∈ S1.
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Figure 6.3: The central triangle sa, sb, sc divides Sn into three circular segments S1, S2, and S3.
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In particular, this corollary implies a very interesting property of maximum detour pairs which
we state in the following corollary:

Corollary 6.3 Let n ≥ 74, let T be an arbitrary triangulation of Sn, the set of vertices of a
regular n-gon, and let sa, sb, and sc be the vertices of the central triangle of T . Then, for any
sx, sy ∈ S such that δT (sx, sy) = δT (S), the shortest path in T between sx and sy contains at
least one vertex in {sa, sb, sc}.

6.3 Possible Algorithmic Use

The results of this chapter suggest the following strategy for approximating the detour of a
regular n-gon: Corollary 6.1 tells us that if we disregard the Euclidean distance in the definition
of detour and merely optimize shortest path distances in a triangulation, we will still get a
triangulation whose dilation is a constant factor approximation of the minimum graph theoretic
dilation. Corollary 6.3 even tells us that we do not need to minimize all shortest path distances,
but only the maximum length of any shortest path that crosses the central triangle.

In the following we will make this intuition more precise. Let Tn be the set of all triangu-
lations of Sn and let T ∈ Tn be any triangulation of Sn with central triangle D. Furthermore,
let us call the vertices of D sa, sb, and sc. Obviously, D divides Sn into three circular segments
which we will denote by S1, S2, and S3 (see figure 6.3). Let

NT def=
{

(sx, sy) ∈ S2
n |sx ∈ Si, sy ∈ Sj such that i 6= j

}

denote the set of all pairs of nodes that lie in different circular segments. The shortest path
between any pair of nodes in NT has to pass a vertex of the central triangle.

Now assume that we have an algorithm that computes a triangulation T ∗ of Sn which
minimizes the function f : Tn → R given by

f (T ) = max
(sa,sb)∈NT

πT (sa, sb) .
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Then it follows that T ∗ is an 25
24 approximation for δ (Sn). To see why this is true let TOPT

be a minimum dilation triangulation for Sn. Then by corollary 6.3 it follows that

δ (TOPT) = max
(sa,sb)∈NTOPT

πTOPT
(sa, sb)

|sasb|
(1)

≥ 1
2

max
(sa,sb)∈NTOPT

πTOPT
(sa, sb)

(2)

≥ 1
2

max
(sa,sb)∈NT∗

πT ∗ (sa, sb)

(3)

≥ 24
25
δ (T ∗) ,

where inequality (1) follows from the fact that the Euclidean distance between any two points
in Sn is at most 2 and inequality (2) follows from the fact that T ∗ minimizes f (T ). Finally,
inequality (3) follows from the fact that 1.93185

2 ≥ 24
25 and corollary 6.1, which implies that in

any triangulation T of Sn a maximum detour pair (sa, sb) fulfills

δT (sa, sb) =
πT (sa, sb)
|sasb| ≤ πT (sa, sb)

1.93185
.

Thus, we have

δ (T ∗) ≤ 25
24
δ (TOPT) .

It seems plausible that a technique that uses dynamic programming could be used in order
to compute a triangulation which minimizes f (T ). Unfortunately, we could not figure out how
to do this. We will report the results of some of our attempts in appendix A.1. Based on
the ideas of this section, we have implemented a very crude heuristic which we also present in
appendix A.1. The description of the algorithm is accompanied by some experimental results
on the performance of this heuristics which suggest that the approximation obtained is not too
bad.
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Chapter 7

A 1 + 1√
log n

Approximation Algorithm

Let Sn = {s0, s1, . . . , sn−1} be a planar point set in convex position. This chapter is devoted to
the description of a fast approximation algorithm for the graph theoretic dilation of Sn. The
underlying idea is very simple: If there are a lot of points on the convex hull of Sn, then it
is likely that the detour will not change too much if we just throw away some of these points.
Taking this idea to an extreme, if we could throw away all but logarithmically many points
of Sn without affecting the graph theoretic dilation of Sn too much, we could use exhaustive
search in order to find a minimum dilation triangulation for the logarithmic sample. Then we
add the vertices we discarded before and add edges in an arbitrary manner until we obtain
a triangulation T ∗ of Sn. This triangulation T ∗ will be our approximation of a triangulation
that achieves the optimal graph theoretic dilation. In this chapter we are going to show that
the graph theoretic dilation δ (T ∗) of triangulation T ∗ approximates δ(Sn) up to a factor of
1+O

(
1√

logn

)
if Sn is the set of vertices of a regular n-gon. This means that the approximation

is arbitrarily close as n approaches infinity.
We will give a detailed description of the algorithm and an analysis of its running time in

section 7.1.
The proof of correctness has two parts. The first part, which is presented in section 7.2,

examines how the graph theoretic dilation of the sample changes when the remaining vertices
of Sn are added. This step is necessary in order to relate the graph theoretic dilation of the
sample to the graph theoretic dilation of Sn. In the second part of the proof in section 7.3
we compute how much larger the graph theoretic dilation of T ∗ can be compared to the graph
theoretic dilation of the sample. Eventually, we will sandwich the graph theoretic dilation of
Sn between two terms that approach the graph theoretic dilation of the logarithmic sample as
n approaches infinity, which then proves the desired approximation.

7.1 Description of the Algorithm

In this section we will give a detailed description of the algorithm. As mentioned above, the
algorithm takes a logarithmic sample A of Sn for which it computes a minimum dilation trian-
gulation TA and then extends this triangulation to a triangulation T ∗ of Sn.

The first step of the algorithm is to compute the total length of the convex hull of Sn, which
we will denote by l. It is clear that l can be computed in linear time.

Using l, the algorithm then computes a distance d that is given by

d =
2l

log n
.
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The distance d is used in order to compute the logarithmic sample A of Sn. This is done
as follows: The algorithm picks an arbitrary start vertex, say s0, and then proceeds counter-
clockwise along the convex hull of Sn. During this process it picks the first vertex that has
distance at least d from s0 along the convex hull, say sα, and includes it in the sample. Then it
picks the first vertex that has distance at least d from sα, say sβ, and includes it in the sample,
and so on. This process continues until the whole convex hull of Sn has been processed.

To formalize the process we just described, let us define inductively

a0 = s0,

A0 =

{
sj

∣∣∣∣∣
j−1∑

k=0

|sksk+1| < d

}
.

(7.1)

and

ai+1 = sλi+1 ,where λi+1 = min

{
α ≥ 0

∣∣∣∣∣sα 6∈
i⋃

k=0

Ak

}
,

Ai+1 =



sj

∣∣∣∣∣∣
j ≥ λi+1,

j−1∑

k=λi+1

|sksk+1| < d



 ,

(7.2)

as long as λi+1 6= −∞. Then our sample is given by

A = {a0, a1, . . . , ak} , (7.3)

where k is the number of sets that have been defined by equations (7.1) and (7.2) (see figure
7.1 for an illustration). Note that this process can be performed on any arbitrary convex set.

It is clear that this sampling process can be carried out in linear time by a single walk along
the convex hull of Sn and that the size of the sample A is at most logn

2 .
Now the algorithm determines a triangulation TA of A such that δ(A) = δ(TA). This is done

by brute force by enumerating all possible triangulations of A and choosing one that achieves
the minimum graph theoretic dilation. As we mentioned already in chapter 3, for a convex set
X with m points there are exactly Cm−2 = 1

m−1

(
2m−4
m−2

)
different triangulations of X, where Cm

is called the m-th Catalan number. From Stirling’s Formula m! ∼ (me
)m√2πm (see, e.g.,

[AE99]), it follows that

Cm =
1

m+ 1
(2m)!
(m!)2

∼ 1
m+ 1

(
2m
e

)2m√4πm
(
m
e

)2m 2πm

=
22m

(m+ 1)
√
πm

.

Hence, the number of different triangulations of A is at most

C(logn)/2 =
2logn

((logn) /2 + 1)
√
π (logn) /2

= O

(
n

log
3
2 n

)
.
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Figure 7.1: Computing the logarithmic sample: Each set Ai is represented by the respective
vertex ai. In this example, we have k = 3.
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It is possible to enumerate all these triangulations with very small overhead (see appendix B),
and the graph theoretic dilation of a given triangulation of A can be computed in time O

(
|A|2

)

[RKRS97]. Thus, it is possible to compute TA in time O
(
n
√

logn
)
.

Finally, the algorithm proceeds to extend TA to a triangulation T ∗ of Sn. To do this we
connect any point in Sn\A with the vertex in A that is closest to it and add edges in an arbitrary
manner as long as the graph remains planar. It is clear that this step can be carried out in O (n)
time, since the maximum number of edges in a planar graph is linear in the number of vertices.
The resulting triangulation T ∗ is our approximation of a minimum dilation triangulation. We
shall examine the quality of this approximation in the ensuing two sections.

Table 7.1 summarizes the main steps of the algorithm. Note that the algorithm is stated
in such a way that Sn can be an arbitrary set of n points in convex position. In our analysis,
however, we will require that Sn be the vertices of a regular n-gon.

Before we proceed, let us state the running time of the algorithm in the following:

Theorem 7.1 The number of steps the algorithm described in table 7.1 needs in order to com-
pute its result is at most O

(
n
√

log n
)
, where n = |Sn| denotes the number of points in the

input.

7.2 A Bound on the Dilation of the Sample

In this section we will relate the graph theoretic dilation of the sample A to the detour between
any pair of points in A when the points from Sn\A are added. The experimental results from
chapter 3 show that it is possible that the graph theoretic dilation of A decreases when points
are added outside the convex hull of A. We are going to show that this decrease cannot be
arbitrarily large.
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Table 7.1: Pseudo-code for the Approximation Algorithm
Input: A convex, finite planar point set Sn = {s0, . . . , sn−1} in counter-clockwise order.
Output: A triangulation T of Sn that approximates δ(Sn).

1. COMPUTE THE LENGTH l OF THE CONVEX HULL OF Sn.

2. d← 2l
logn

3. INDUCTIVELY COMPUTE A SAMPLE SET A ⊆ Sn AS GIVEN BY EQUATION (7.3)

4. COMPUTE THE MINIMUM DILATION TRIANGULATION TA FOR A.

5. ADD THE POINTS OF Sn\A TO TA AS DESCRIBED ABOVE IN ORDER TO OB-
TAIN A TRIANGULATION T ∗ OF Sn.

6. OUTPUT T ∗.

We start by considering a shortest path P between two points a and b in an arbitrary
triangulation T of a finite, and planar point set X in convex position. The line segment ab
divides X into two sets Y, Z ⊆ X such that Y ∩Z = {a, b} and Y is the set of points to the left
of ab and Z is the set of points to the right of ab. Let us order the vertices in Y = {y1, y2, . . . , yσ}
and Z = {z1, z2, . . . , zτ} in increasing convex hull distance from a, i.e., yi ≤ yj ⇔ ∆X (a, yi) ≤
∆X (a, yj) and zi ≤ zj ⇔ ∆X (a, zi) ≤ ∆X (a, zj). Furthermore, assume that Y and Z are
numbered in that order. Now, let

a = p1 → p2 → · · · → pm−1 → pm = b

be the sequence of nodes along P . Then the two sub-sequences

P ∩ Y =
(
a = yi0 , yi1 , yi2 , . . . , yiα−1 , yiα = b

)

and
P ∩ Z =

(
a = zj0 , zj1 , zj2 , . . . , ziβ−1

, ziβ = b
)

are strictly monotonically increasing (see figure 7.2).
To see why this claim holds observe that obviously no vertex in X can appear twice on a

shortest path from a to b. Now suppose that there is a pair of consecutive vertices (yiλ , yiλ+1
) in,

say, P ∩Y such that yiλ+1
< yiλ and that λ is the smallest index with that property (obviously,

we have yiλ+1
6= a). This means that up to λ the sequence P ∩ Y is strictly monotonically

increasing, and therefore there is a µ < λ + 1 such that yiµ−1 < yiλ+1
< yiµ . Again, we have

yiµ 6= a. Now, let p be the vertex on P that immediately precedes yiµ . It follows that yiλ+1
lies

to the left of line segment pyiµ , while b lies to the right of line segment pyiµ . Since T is planar,
every path from yiλ+1

to b must pass p or yiµ , which contradicts the fact that P is a shortest
path from a to b and that yiλ+1

appears on P after p and yiµ . P ∩Z is handled in an analogous
manner.

From now on, we will consider the case that X = Sn, the set of nodes of a regular n-gon
with radius 1. Let us look at the following sequence

di = |pαpβ| , where α = max {k ≤ i |pk ∈ P ∩ Y } and β = max {k ≤ i |pk ∈ P ∩ Z } ,

for 1 ≤ i ≤ m.
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Figure 7.2: In (a), we see a shortest path from a to b (bold dotted line). The sequences P ∩ Y
and P ∩ Z are strictly monotonically increasing. The thin chords are the lines that define the
values of the di. Figure (b) shows the equivalent arrangements of these chords that is used in
the proof that (di)1≤i≤m is bitonic (claim 7.2).
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Claim 7.2 The sequence (di)1≤i≤m is bitonic, i.e., it is first monotonically increasing and then
monotonically decreasing.

Proof: For each di, let (pαi , pβi) be the corresponding pair of nodes on P . It is clear that the
sequence hi = ∆Sn (pαi , a) + ∆Sn (a, pβi), which counts the “hops” along the convex hull from
pαi to pβi over a, is strictly increasing and that di is the same as |s0shi |. Now the claim follows
immediately, since every circle is unimodal (see figure 7.2).

We will try to describe geometrically what is going in the above proof. It is clear that di is
bitonic as long as P does not change sides, i.e., as long as P does not change from Y to Z or
vice versa. Thus, the only critical situation arises when P changes sides. However, what we do
in the proof is not to let P change sides but to flip Sn. From this point of view, it is obvious
that claim 7.2 holds.

Now let us consider the following set of of indices:

M
def=
{

1 ≤ i ≤ m
∣∣∣∣di ≥ 2 sin

(
l

2
√

logn

)}
, (7.4)

where l denotes the length of the convex hull of Sn. Observe that M is an interval since
(di)1≤i≤m is a bitonic sequence. Furthermore, let us call a node pi on P a jump node, if either
pi ∈ P ∩ Y and pi+1 ∈ P ∩ Z or pi ∈ P ∩ Z and pi+1 ∈ P ∩ Y , i.e., P changes sides between pi
and pi+1. In the following claim we shall bound the number of jump nodes with indices in M .

Claim 7.3 The number of jump nodes with indices in M is O
(√

logn
)
, or, more formally:

|{pi ∈ P |i ∈M and pi is jump node }| = O
(√

logn
)
.

Proof: If pi is a jump node, this means that the edge pipi+1 increases the length of P by di.
However, the length of P can be at most l

2 , while each jump node with index in M increases
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Figure 7.3: An example of a contraction step. x and y are contracted into y, i.e., the line
segment connecting x and y becomes a loop and all the line segments that ended in x now end
in y.

x
y

y

Figure 7.4: A typical step during the contraction that produces T̂ . The xi are all the neighbors
of x, the yi are all the neighbors of y. x and y have exactly one common neighbor.
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the length of P by at least 2 sin
(

l
2
√

logn

)
. Furthermore, we have that 2 sin

(
l

2
√

logn

)
≥ l

2
√

logn

if n is large enough, because sin (x) ≥ x
2 for 0 ≤ x ≤ √3. It follows that the number of jump

nodes with index in M is at most

l

2
· 2
√

logn
l

=
√

logn,

which proves our claim.

After these preparations, let us now come to the heart of the argument. Let T be an arbitrary
triangulation of Sn, and let Ai and ai be the sets and points defined by equations (7.1) and
(7.2). Now let us consider the graph T̂ which we get when we contract all the vertices in Ai into
vertex ai for each i and then delete all the loops and multiple edges. This contraction process
is performed as a series of single contraction steps, in which two vertices of T are contracted
into one vertex. An example of one such contraction step is shown in figure 7.3.

Claim 7.4 T̂ is a planar subdivision with vertex set A.

Proof: What we need to prove is that T̂ is planar, i.e., we need to show that it cannot happen
that two edges cross after all the contraction steps have taken place. Obviously, it suffices to
verify this claim for a single contraction step. Thus, assume that vertices x and y are contracted
into y. Since T is a triangulation and Sn is convex, the situation looks exactly as in figure 7.4,
where the x1, . . . , xσ are the neighbors of x and y1, . . . , yτ are the neighbors of y.

The only line segments that change throughout the contraction step are those incident
with x. The polygon P defined by the vertices x, x1, . . . , xσ = y1, . . . , yτ , y (in that order) is
convex, and no line segment outside this polygon is affected by the contraction step. After the
contraction step P is subdivided such that all vertices are adjacent to y, and since P is convex
this subdivision of P is planar.
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Figure 7.5: Points q2, q3, q4, and q5 are perturbed to q′2, q′3, q′4, and q′5 (note that q4 does not
change). The resulting polygonal chain Q′ is at most O (ε) units longer than Q.
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Let a, b ∈ A be two vertices in A. Now that we have established that T̂ is a planar subdivision
with vertex set A, we would like to know how the length of the shortest path πT (a, b) between
a and b in T relates to the length of the shortest path πT̂ (a, b) between a and b in T̂ .

Let us first consider a very special case.

Claim 7.5 Let q1, q2, . . . , qs be a set of points on a semicircle of radius 1 with center C in
counter-clockwise order and let Q = q1 → q2 → · · · → qs be the polygonal chain along these
points. If we perturb each of the points q2, . . . , qs−1 by an angle of at most ε along the semicircle
in counter-clockwise direction and call the new points q′2, · · · , q′s−1, then the length of polygonal
chain Q′ = q1 → q′2 → . . .→ q′s−1 → qs can be bounded by |Q′| ≤ |Q|+O(ε), where |Q| and |Q′|
denote the length of polygonal chains Q and Q′, respectively.

See figure 7.5 for an illustration of this claim.

Proof: Let li = qiqi+1 and l′i = q′iq
′
i+1 be the line segments of polygonal chains Q and Q′ for

1 ≤ i < s (naturally, we set q′1 = q1 and q′s = qs). Furthermore, for each line segment li = qiqi+1

let α(li) denote the angle ∠ (qiCqi+1). We will prove the following stronger claim:

∣∣Q′∣∣− |Q| ≤ (α (q1, qs))
2 sin

(ε
2

)
. (7.5)

Let us first consider the case that s = 3, and let σ = α(q1, q2) and τ = α(q2, q3). Obviously,
σ and τ fulfill the constraints 0 ≤ σ, τ ≤ α(q1, q3) ≤ π. Furthermore, we have |l1| = 2 sin

(
σ
2

)
and |l2| = 2 sin

(
τ
2

)
, and if we perturb q2 by an angle µ, we get that

f (σ, µ, τ) =
∣∣Q′∣∣− |Q| = 2 sin

(σ
2

+
µ

2

)
+ 2 sin

(τ
2
− µ

2

)
− 2 sin

(σ
2

)
− 2 sin

(τ
2

)
.

Elementary calculus shows that if we fix τ and µ this expression is maximal if σ = 0, since
∂f(σ,µ,τ)

∂σ = cos
(
σ
2 + µ

2

)− cos
(
σ
2

) ≤ 0.
Therefore, we have that

f (σ, µ, τ) ≤ 2 sin
(µ

2

)
+ 2 sin

(τ
2
− µ

2

)
− 2 sin

(τ
2

)
,
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and again simple calculus shows that this upper bound is maximal if τ = α (q1, q3), since
∂f(σ,µ,τ)

∂τ = cos
(
τ
2 − µ

2

)− cos
(
τ
2

) ≥ 0.
Consequently, we can conclude that

∣∣Q′∣∣− |Q| ≤ 2 sin
(µ

2

)
+ 2 sin

(
α(p1, p3)

2
− µ

2

)
− 2 sin

(
α (p1, p3)

2

)

= 2 sin
(µ

2

)
+ 2 sin

(
α (p1, p3)

2

)
cos
(µ

2

)

−2 cos
(
α (p1, p3)

2

)
sin
(µ

2

)
− 2 sin

(
α (p1, p3)

2

)

≤ 2
(

1− cos
(
α (p1, p3)

2

))
sin
(µ

2

)

≤ (α(p1, p3))2

4
sin
(µ

2

)
, (7.6)

as cos (x) ≥ 1− x2

2 . Since µ ≤ ε, claim (7.5) follows.
Now let us look at the case s > 3. Let βi denote the angle ∠(qiCqi+2) for 1 ≤ i ≤ s− 2. We

perturb the qi as follows: in the first step, we fix q1, q3, . . . , qs and perturb q2 to get q′2. In the
second step, we fix q1, q

′
2, q4, . . . , qs and perturb q3 to get q′3. We continue in this fashion, until

all the qi have been moved. From (7.6) it follows that in the i-th step the length of the polygonal
chain increases by at most β2

i sin
(
ε
2

)
/4, since all the points are perturbed in counter-clockwise

direction and hence we have ∠ (q′iCqi+2) ≤ βi. Thus, the total increase in length is at most

1
4

sin
(ε

2

) s−2∑

i=1

β2
i .

Now claim (7.5) follows from the fact that

s−2∑

i=1

βi ≤ 2α (q1, qs) ,

and hence
s−2∑

i=1

β2
i ≤ 4α (q1, qs)

2 ,

since all the βi are positive.
Thus, claim 7.5 follows, since sin

(
ε
2

) ≤ ε.

Now let us consider a shortest path P between two points a and b in Sn. First, we look at
P ∩M , the sub-path of P whose vertices are those whose indices lie in M , where M is the index
set defined in equation (7.4). We have already seen that the shortest path P ∩M changes sides
at most O

(√
log n

)
times. The perturbation of each of these jump nodes can increase the length

of P by at most O (l/ logn), and between the jump nodes we have the situation we examined in
the last claim, where we saw that the length of the shortest path between the jump nodes can
increase by at most O (l/ logn), since the perturbation angle is larger than the perturbation
distance (see figure 7.6). Thus, the total length of the sub-path P ∩M increases by at most
O
(
l
√

logn/ logn
)

= O
(
l/
√

logn
)
. We do not know what happens to the shortest path outside

M , but by our choice of M we do know that the increase in length is O
(
l/
√

logn
)
, since the

shortest path outside M consists of two paths. each of which is restricted to a circular segment
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Figure 7.6: A typical shortest path from a to b. Between any two sequential jump nodes, the
length of the shortest path increases by at most O

(
l

logn

)
.
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that is defined by a chord of length at most 2 sin
(
l/2
√

logn
)
, and the length of such a path can

be at most l/
√

log n, which bounds the length of the convex hull.
Therefore, we have proved that the for any a, b ∈ A2 we have πT̂ (a, b) ≤ πT (a, b) +

O
(
l/
√

logn
)
. Furthermore, by corollary 6.1 on page 46 we know that any pair of vertices

in A that achieves maximum detour has a Euclidean distance that is Ω (l). Thus, we have
shown that for any triangulation T of Sn in which the maximum detour between any pair of
points in A is δ, there is a triangulation T̂ of A such that δ

(
T̂
)
≤ δ +O

(
1/
√

logn
)
.

Consequently, by taking the minimum on both sides we can conclude with the following

Lemma 7.6 Let Sn be the set of vertices of a regular n-gon, and let A ⊆ Sn be the subset of
Sn that is defined by equation (7.3). Then we have

δ(Sn) ≥ δ(A)−O
(

1√
logn

)
.

7.3 Computing the Approximation Factor

In this section we will relate the graph theoretic dilation δ (T ∗) of the triangulation T ∗ of the
whole set Sn that is computed by our algorithm to the graph theoretic dilation δ (TA) of the
minimum dilation triangulation TA of the sample A. The argument we use is very similar to
the analysis of the graph theoretic dilation of the regular triangulation which we gave in section
4.3.

In order to get the desired relationship let us compute an upper bound on the detour between
the vertices of a maximum detour pair x, y ∈ Sn\A. Let a, b ∈ A be the points in A that are
closest to x and y, respectively. Since we know that the Euclidean distance between the vertices
of a maximum detour pair is Ω(l), we can assume that a 6= b and |ab| > 4l

logn . By our definition
of A it follows that the distance between x and a as well as y and b along the convex hull (and
hence the Euclidean distance) is at most d = 2l

logn . Thus, we can upperbound the shortest
path length πT ∗ (x, y) between x and y by πT ∗ (x, y) ≤ πTA (a, b) + 2d. Furthermore, we can
lower-bound the Euclidean distance |xy| between x and y by

|xy| ≥ |ab| − 2d. (7.7)
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Thus, the detour δT ∗ (x, y) between x and y in T ∗ is at most

δT ∗ (x, y) ≤ πTA (a, b) + 2d
|xy|

=
πTA (a, b)
|ab| +

(πTA (a, b) + 2d) |ab| − πTA (a, b) |xy|
|ab| |xy|

(1)

≤ πTA (a, b)
|ab| +

(πTA (a, b) + 2d) |ab| − πTA (a, b) (|ab| − 2d)
|ab| |xy|

=
πTA (a, b)
|ab|

(
1 +

2d |ab|+ 2dπTA (a, b)
πTA (a, b) |xy|

)

(2)

≤ πTA (a, b)
|ab|

(
1 +

4d
|xy|

)

(3)
= δ (TA)

(
1 +O

(
1

log n

))
.

In this chain of inequalities, (1) is due to equation (7.7), (2) is due to the fact that
|ab|

πTA(a,b) = 1
δTA (a,b) ≤ 1, and (3) holds because a maximum detour pair in Sn has detour Ω (l)

and d = 2l/ log n. Since x and y were arbitrary, we can now conclude the following fundamental
inequality

δ (T ∗) ≤ δ (TA)
(

1 +O

(
1

log n

))
. (7.8)

Together with lemma 7.6 this inequality finally yields the desired theorem that proves the
correctness of our algorithm:

Theorem 7.7 Let Sn be the vertex set of a regular n-gon. Then the triangulation T ∗ of Sn that
is computed by the algorithm described in section 7.1 has the property that δ(T ∗) approximates
δ(Sn) up to a factor of 1 +O

(
1/
√

log n
)
, i.e.,

δ(T ∗) ≤
(

1 +O

(
1√

log n

))
δ(Sn).

Proof: Obviously, we have δ (T ∗) ≥ δ (TA) and thus inequality (7.8) yields

δ (TA) ≤ δ (T ∗) ≤ δ (TA)
(

1 +O

(
1

logn

))
.

Furthermore, by definition we have δ(Sn) ≤ δ(T ∗) and thus by lemma 7.6 it follows that

δ(TA)−O
(

1√
logn

)
≤ δ(Sn) ≤ δ(T ∗).

Therefore, we get

δ (TA)
(

1−O
(

1√
logn

))
(1)

≤ δ (TA)−O
(

1√
logn

)
≤ δ (Sn)

(2)

≤ δ (TA)
(

1 +O

(
1√

logn

))
,

where (1) follows from the fact that δ (TA) ≥ 1 and (2) is due to the fact that 1/ log n ≤ 1/
√

log n.
Hence, the approximation factor follows, because

1 + 1√
logn

1− 1√
logn

=
1 + 2√

logn
+ 1

logn

1− 1
logn

= 1 +O

(
1√

logn

)
.
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Chapter 8

Concluding Remarks

Let us conclude this thesis with some reflections on the results we obtained and with some
possible directions for further work.

In the course of this thesis, we have made some progress in the field of minimum dilation tri-
angulations, and we have identified some useful properties of minimum dilation triangulations
of the regular n-gon which we used in order to obtain an efficient approximation algorithm.
In particular, the property that any maximum detour pair must have a large Euclidean dis-
tance has proved very useful. However, the main question how to compute a minimum detour
triangulation for an arbitrary planar point set remains wide open.

A promising direction seems to try to generalize the results of this thesis to arbitrary fat
point sets, i.e., point sets that can bounded by two circles whose radii have a constant ratio.
The approximation algorithm we devised can be applied to arbitrary convex sets, but in order
to prove the approximation factor, we need a lower bound on the minimum Euclidean distance
between the two vertices of a maximum detour pair. If such a bound can be shown for certain
types of convex planar point sets, the approximation algorithm will yield a triangulation whose
graph theoretic dilation approximates the graph theoretic dilation for these point sets.

Another direction might be to look for other local properties that characterize the minimum
dilation triangulation, for example something that has the flavor of the diamond property
mentioned in the introduction. Such properties will extend our understanding of minimum
dilation triangulations and could be useful in devising new efficient approximation or exact
algorithms for the problem.
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Appendix A

Some Heuristics

In this appendix we present two heuristic approaches to the minimum dilation triangulation
problem. One of these heuristics is based on the observation that the Euclidean distance between
the vertices of a maximum detour pair must be large and therefore it suffices to optimize the
shortest path distances in order to get a close approximation. However, we do not know how
to compute explicitly a triangulation which optimizes the shortest path distances. Therefore,
the heuristic only approximates such a triangulation. It is described in section A.1.

The other heuristic uses the intuition that the minimum detour triangulation should be
symmetric. Thus, the heuristic proceeds by recursively constructing a triangulation that is as
symmetric as possible. The details of this algorithm are presented in section A.2.

A.1 A Shortest Path Heuristic

As always, let Sn = {s0, s1, . . . , sn−1} be the nodes of a regular n-gon in counter-clockwise
order. In this section we will describe a crude heuristic that is based on the general idea that
is outlined in section 6.3.

We will describe the basic idea and the detailed steps of the heuristic in subsection A.1.1.
In subsection A.1.2 we will describe some experimental results that show how well the

algorithm performs in practice.
Unfortunately, we cannot prove anything about the quality of approximation that the al-

gorithm in this section achieves. However, the intuition from section 6.3 and the experimental
results suggest that the heuristic will yield triangulations that are not too bad.

A.1.1 Description of the Algorithm

Let us first describe the basic idea of the algorithm. Corollary 6.1 shows that any pair of
nodes which achieves the maximum graph theoretic dilation has a Euclidean distance that is
bounded from below by a constant. Therefore, if we merely optimize the maximum shortest
path distance between any two nodes while we disregard their Euclidean distance, it is still
possible to achieve a triangulation whose graph theoretic dilation is within a constant factor
of the optimum. This in itself is not very spectacular, since we have already seen that any
triangulation of the nodes of a regular n-gon has a graph theoretic dilation that is within a
constant factor of the optimum, but we expect the approximation factor of our heuristic to be
better than that (and indeed in section 6.3 we show that an algorithm that actually computes a
triangulation that minimizes the maximum length of any shortest path that crosses the central
triangle can achieve an approximation factor of 25

24).
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The heuristic consists of two main steps. In the first step the algorithm computes for
every circular segment that consists of at most bn2 c nodes a triangulation that approximates
a triangulation that minimizes the maximum shortest path distance from any node inside the
circular segment to any of the two endpoints of the circular segment. The second step pieces the
circular segments together in order to obtain a triangulation of Sn that minimizes the maximum
length of a shortest path between any point in Sn and any of the vertices of the central triangle.

Now we describe the details of the heuristic. For 1 ≤ k ≤ bn2 c let Sk
def= {s0, . . . , sk} and

let Tk be the set of all triangulations of Sk. In the first step the algorithm approximates a
triangulation that minimizes the functions fk : Tk → R for 1 ≤ k ≤ bn2 c which are given by

fk (T ) def= max
0≤i≤k

max {πT (s0, si) , πT (si, sk)} ,

where πT (x, y) denotes the shortest path distance between x and y in T . This means that
fk (T ) denotes the maximum length of a shortest path from any vertex of the circular segment
Sk to one of its endpoints. The approximation is done using a dynamic programming approach.
For any 1 ≤ k ≤ n

2 we maintain a structure called segment[k] which stores information about
the triangulation of Sk which is supposed to approximate a triangulation that minimizes fk(T ).
The fields of segment[k] consist of two real arrays πa, πb and an integer vertex. The arrays
segment[k].πa[i] and segment[k].πb[i] store the length of the shortest path from si to s0

and sk, respectively, where 0 ≤ i ≤ k. The field segment[k].vertex stores the index of the
third vertex of the triangle in which line segment s0sk participates.

The contents of segment[k] are computed recursively. If k = 1, we obviously have

segment[1].vertex = 0,
segment[1].πa[0] = 0,

segment[1].πa[1] = 2 sin
(π
n

)
,

segment[1].πb[0] = 2 sin
(π
n

)
,

segment[1].πb[1] = 0.
(A.1)

For 2 ≤ k ≤ bn2 c we proceed as follows: Let 0 ≤ vertex ≤ k and 0 ≤ i ≤ k. Furthermore,
let πvertexa [i] denote the length of the shortest path between s0 and si in the triangulation
T vertex
k of Sk that is obtained by using the triangulation that is stored in segment[vertex]

for {s0, . . . , svertex} and the triangulation that is stored in segment[k - vertex] for point set
{svertex, . . . , sk} and by adding line segment s0sk. It is clear that

πvertexa [i] =

{ segment[vertex].πa[i], if i < vertex,
|s0svertex| , if i = vertex,
min{segment[k - vertex].πa[i - k] + |s0svertex| ,

segment[k - vertex].πb[i - k] + |s0sk|}, if i > vertex.

(A.2)

Similarly, the length of the shortest path between si and sk in T vertex
k which we call πvertexb [i]

can be computed by

πvertexb [i] =

{ min{segment[vertex].πa[i] + |s0sk| ,
segment[vertex].πb[i] + |svertexsk|}, if i < vertex,

|svertexsk| , if i = vertex,
segment[k - vertex].πb[i - k], if i > vertex.

(A.3)
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Thus, in order to compute segment[k], the algorithm can go through all the possible values
for 0 ≤ vertex ≤ k and choose the value which minimizes

max
0≤i≤k

max
{
πvertexa [i], πvertexb [i]

}
.

This value is stored in segment[k].vertex, and the corresponding arrays πvertexa and πvertexb

are stored in segment[k].πa and segment[k].πb, respectively. This concludes the description
of the first step of the algorithm. The reason why this step only provides a heuristic and does
not actually compute triangulations that minimize the functions fk is that fk does not exhibit
the optimal substructure property which would be necessary for the algorithm to work, i.e., it is
not necessarily true that there exists an optimal triangulation for fk that contains two optimal
sub-triangulations for fs and ft for some 1 ≤ s, t < k, s+ t = k.

The purpose of the second step of the algorithm is to piece together the triangulations
from the first step in order to obtain a triangulation that approximates a triangulation which
minimizes the maximum length of a shortest path that crosses the central triangle. This is done
as follows: Let s0, sa and sb be the the vertices of the central triangle, where a ≤ b. Sn is
divided into three subsets X = {s0, . . . , sa}, Y = {sa, . . . , sb}, and Z = {sb, . . . , sn−1, s0}. For
each of these sets, we use the appropriate triangulation which we computed in the first step,
and compute the following quantity

max



max
x∈X
y∈Y
{π (x, sa) + π (y, sa)} ,max

x∈X
z∈z
{π (x, s0) + π (z, s0)} ,max

y∈Y
z∈Z

{π (y, sb) + π (z, sb)}


 .

(A.4)
This quantity can be computed quickly by using the values stored in segment[k]. By trying
all possible values for sa and sb we obtain a triangulation T that minimizes (A.4) among all the
triangulations at consideration. Triangulation T is the output of the algorithm. A summary of
the steps can be found in table A.1.1. It is clear that the heuristic can be implemented to run
in time O

(
n3
)
.

A.1.2 Experimental Results

Even though the heuristic described in the previous section is very crude and nothing can be
shown about its quality of approximation, it does not perform too bad in practice. Table A.2
shows the dilation of the triangulations that were computed by the algorithm for some n between
100 and 1000, and figure A.1 shows two of these triangulations for n = 100 and n = 500. The
structure of these triangulations is quite interesting. The requirement that it must be possible
to reach any of the vertices of the central triangle quickly leads to “highways” in the circular
segments, i.e., diagonals which make it possible to get from one end of a circular segment to
the other end.

The results in table A.2 show that the heuristic yields triangulations that have lower graph
theoretic dilations than the canonical triangulation. However, the results are not as good as
the results that can be obtained by the heuristic we present in the next section.

A.1.3 A Possible Dynamic Program

In the first step the algorithm from this section tries to find a triangulation T ∗ of Sk =
{s0, . . . , sk} that minimizes the function fk : Tk → R which is given by

fk (T ) def= max
0≤i≤k

max {πT (s0, si) , πT (si, sk)} ,
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Table A.1: Pseudo-code for the Shortest Path Heuristic
Input: The set Sn = {s0, . . . , sn−1} of vertices of a regular n-gon in counter-clockwise order.
Output: A triangulation T of Sn that approximates δ (Sn).

1. INITIALIZE segment[1] AS GIVEN BY EQUATION (A.1).

2. FOR k← 2 TO bn2 c DO

3. minimum←∞; minVertex← 0

4. FOR vertex← 0 TO k DO

5. COMPUTE πvertexa , πvertexb AS GIVEN BY EQUATIONS (A.2) AND (A.3).

6. maxPath← max0≤i≤k max {πvertexa [i], πvertexb [i]}
7. IF maxPath < minimum THEN

8. minimum← maxPath; minVertex← vertex

9. segment[k].vertex← minVertex

10. segment[k].πa ← πminVertexa ; segment[k].πb ← πminVertexb

11. DETERMINE THE TRIANGULATION T AS DESCRIBED.

12. OUTPUT T.

Table A.2: Graph theoretic dilation of the triangulations computed by the two heuristics for
some values of n. Tsp denotes the triangulations produced by the shortest path heuristic. Tsym
denotes the triangulations computed by the symmetry heuristic.
n δ (Tsp) δ (Tsym)
100 1.46852 1.45737
192 1.47101 1.45474
200 1.47411 1.45743
300 1.47410 1.45416
384 1.47633 1.45474
400 1.47508 1.45981
500 1.47528 1.45823
600 1.47225 1.45720
700 1.47560 1.45769
768 1.47249 1.45672
800 1.47401 1.45930
900 1.47466 1.45806
1000 1.47323 1.45833
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Figure A.1: The triangulations computed by the shortest path heuristic for n = 100 and n = 500.
The graph theoretic dilation of triangulation on the left is about 1.46852, the graph theoretic
dilation of the triangulation on the right is approximately 1.47528.

where πT (x, y) denotes the shortest path distance between x and y in T . However, the algorithm
does not really compute a triangulation that minimizes fk, but merely an approximation for
such a triangulation, since it is not clear how to compute such a triangulation in polynomial
time. In this subsection we shall describe a way to solve this problem exactly by dint of a
dynamic programming approach. Unfortunately, this approach takes exponential time.

The approach is to solve a more general problem. Instead of minimizing fk, we minimize a
function gk : Tk × R4 → R which is given by

gk (T, α, β, ξ, ζ) = max
0≤i≤k

min
{
πT (s0, si) + ξ, πT (si, sk) + ζ,

max {πT (s0, si) + α, πT (si, sk) + β}}.

Let T ∗ be a triangulation of Sk that minimizes gk for fixed values of α, β, ξ, and ζ. Line
segment s0sk participates in exactly one triangle in T ∗. Let the third vertex of this triangle be
su. We have

gk (T ∗, α, β, ξ, ζ) = max
0≤i≤k

min
{
πT ∗ (s0, si) + ξ, πT ∗ (si, sk) + ζ,

max {πT ∗ (s0, si) + α, πT ∗ (si, sk) + β}},

and we can split up the maximum term according to whether i ≤ u or i ≥ u. Thus, we get

gk (T ∗, α, β, ξ, ζ) = max
{
glk (L∗, α, β, ξ, ζ) , grk (R∗, α, β, ξ, ζ)

}
,

where L∗ is the sub-triangulation of T ∗ on the vertex set {s0, . . . , su}, R∗ is the sub-triangulation
of T ∗ on the vertex set {su, . . . , sk}, and

glk (L∗, α, β, ξ, ζ) = max
0≤i≤u

min
{
πT ∗ (s0, si) + ξ, πT ∗ (si, sk) + ζ,

max{πT ∗ (s0, si) + α, πT ∗ (si, sk) + β}},
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Figure A.2: The shortest path from si to s0 lies completely in L∗. The shortest path from si
to sk either passes s0 or su. In the former case, is has length πL∗ (s0, si) + |s0sk|, in the latter
case it has length πL∗ (si, su) + |susk|.
s0

T ∗

R∗L∗si

sk

su

and

grk (R∗, α, β, ξ, ζ) = max
u≤i≤k

min
{
πT ∗ (s0, si) + ξ, πT ∗ (si, sk) + ζ,

max{πT ∗ (s0, si) + α, πT ∗ (si, sk) + β}}.

Let us now consider the sub-triangulation L∗. If si lies in L∗, i.e., 0 ≤ i ≤ u, then it
is clear that the shortest path between s0 and si lies completely in L∗, and thus we have
πT ∗ (s0, si) = πL∗ (s0, si). The shortest path from si to sk has to pass either s0 or su. In the
former case, it uses line segment s0sk, in the latter case it uses line segment susk. Thus, we get
πT∗(s0, si) = min {πL∗ (s0, si) + |s0sk| , πL∗ (si, su) + |susk|} (see figure A.2). Hence, it follows
that

glk (L∗, α, β, ξ, ζ) = max
0≤i≤u

min
{
πL∗ (s0, si) + ξ, πL∗ (s0, si) + ζ + |s0sk| ,
πL∗ (si, su) + ζ + |susk| ,
max

{
πL∗ (s0, si) + α,min{πL∗ (s0, si) + β + |s0sk| ,

πL∗(si, su) + β + |susk|}
}}
.

Now the lattice structure of (R,min,max) implies that

max {x,min {y, z}} = min {max {x, y} ,max {x, z}} .

Thus, we can conclude that

glk (L∗, α, β, ξ, ζ) = max
0≤i≤u

min
{
πL∗(s0, si) + min {ξ, ζ + |s0sk| ,max {α, β + |s0sk|}} ,
πT ∗ (si, su) + ζ + |susk| ,

max {πL∗ (s0, si) + α, πL∗ (s0, si) + β + |susk|}
}

= gu (L∗, α, β + |susk| ,min {ξ, ζ + |s0sk| ,max {α, β + |s0sk|}} , ζ + |susk|) .
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By an analogous argument we get

grk (R∗, α, β, ξ, ζ) = gk−u
(
R∗, α+ |s0su| , β, ξ + |s0su| ,
min {ζ, ξ + |s0sk| ,max {α+ |s0sk| , β}}

)
.

Since gk (T, α, β, ξ, ζ) is minimal if both glk (L,α, β, ξ, ζ) and grk (R,α, β, ξ, ζ) are minimal for
fixed α, β, ξ, and ζ, it now follows that

OPTk (α, β, ξ, ζ) = min
1≤u<k

max
{

OPTu

(
α, β + |susk| ,min

{
ξ, ζ + |s0sk| ,

max {α, β + |s0sk|}
}
, ζ + |susk|

)
,

OPTk−u
(
α+ |s0su| , β, ξ + |s0su| ,

min
{
ζ, ξ + |s0sk| ,max {α+ |s0sk| , β}

})}
,

where OPTk (α, β, ξ, ζ) denotes the minimum value of gk (T, α, β, ξ, ζ) for α, β, ξ, and ζ fixed.
This is the recursion that can be used for dynamic programming. The optimum of fk is given
by OPTk (0, 0,∞,∞). Unfortunately, this dynamic program needs exponentially many steps,
since exponentially many values for α, β, ξ, and ζ need to be considered.

A.2 A Symmetry Heuristic

Intuitively, we expect that the minimum dilation triangulation for Sn is very regular and sym-
metric. Therefore, it seems very plausible that we get a very good approximation for the
minimum dilation triangulation when we construct a triangulation of Sn that is “as symmetric
as possible”. Indeed, the heuristic we are going to describe yields the best results of all the
algorithms we tried, where our experiments were performed for values of n below 1000.

In section A.2.1 we shall describe the details of the heuristic. In section A.2.2 we present
some experimental results that show that the heuristic performs very well in practice (at least
for small values of n).

A.2.1 Description of the Algorithm

As mentioned above, the goal of the heuristic is to produce a triangulation that is as symmetric
as possible. Thus, we proceed as follows: We pick an arbitrary start vertex, say s0. Then we
take the two vertices sa and sb that have convex hull distance bn3 c from s0, i.e., ∆Sn(s0, sa) =
∆Sn(s0, sb) = bn3 c. The triangle s0, sa, sb divides Sn into three subsets X = {s0, . . . , sa}, Y =
{sa, . . . , sb} and Z = {sb, . . . , sn−1, s0}. Now each of these subsets is triangulated separately.
These triangulations for X,Y, and Z will be called TX , TY , and TZ , respectively. In order to
obtain a triangulation T of Sn, triangulations TX , TY and TZ are simply glued together, i.e.,
T = TX ∪ TY ∪ TZ .

It remains to describe how TX , TY , and TZ are computed. We just describe TX , since TY
and TZ are produced in the same manner. TX is computed recursively. If X consists of three
or fewer points, then TX is the unique triangulation of X, i.e., a triangle or a line segment
(or just a single point, if X is a singleton). Otherwise, let X = {x0, x1, . . . , xq} with q ≥ 4,

and let a = xb q
2
c. Furthermore, let Xl = {x0, x1, . . . , a}, and let Xr =

{
a, xb q

2
c+1, . . . , xq

}
.

Recursively we triangulate Xl and Xr in order to get triangulations TXl and TXr . From these
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Figure A.3: The triangulations computed by the symmetry heuristic for n = 100 and n = 500.
The graph theoretic dilation of the triangulation on the left is approximately 1.45737. The
triangulation on the right achieves a graph theoretic dilation that is about 1.45823.

triangulations we construct TX by putting TXl and TXr together and adding line segment x0xq,
i.e., Tx = TXl ∪ TXr ∪ {x0xq}. This concludes the construction of TX . It is clear that the
algorithm needs O(n) steps.

The triangulation produced by the heuristic is very regular. It contains a large regular
triangle in the middle, and the sub-triangulations of subsets X,Y, and Z are chosen such that
the paths to the vertices of the central triangle are relatively short. The minimum dilation
triangulations shown in chapter 3 suggest that this is not too far from the structure of the
actual minimum dilation triangulation.

A.2.2 Experimental Results

The symmetry heuristic yields the best results of all the heuristics we tried. This is also what we
expect intuitively, since regularity seems to favor a small detour. Table A.2 shows the dilation
of the triangulation that was computed by the algorithm for some n between 100 and 1000, and
figure A.3 shows two of these triangulations for n = 100 and n = 500.
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Appendix B

Enumerating Triangulations

Let X = {x0, . . . , xn−1} be a planar convex set of points in counter-clockwise order. In this
appendix we are going to describe an efficient way to enumerate all the triangulations of X.
The algorithm we present is fairly standard, but for the sake of completeness we decided to
include it in this appendix.

Before we describe the algorithm, let us mention how a triangulation is represented: We use
an adjacency matrix representation, i.e., a triangulation T is represented by an n × n-matrix
A = (aij)0≤i,j<n such that aij 6= 0 if and only if there is an edge between xi and xj in T . Since
T is undirected, it follows that A is symmetric.

The idea of the enumeration algorithm is very simple. It is clear that line segment x0xn−1

participates in exactly one triangle in a given triangulation T . Let the third vertex of this trian-
gle be xp. Triangle x0, xp, xn−1 dividesX into two sets L = {x0, . . . , xp} andR = {xp, . . . , xn−1}.
And T is divided into two sub-triangulations TL = T ∩L and TR = T ∩R. In order to find the
successor T ′ of T , we first try to find the successor T ′L of TL recursively. If T ′L exists, we take
T ′ = T ′L ∪ TR ∪ {x0, xn−1}. Otherwise, we try to find the successor T ′R of TR. If T ′R exists, we
take T ′ = KL∪T ′R∪{x0, xn−1}, where KL denotes the canonical triangulation of L in which all
nodes of L are adjacent to xp (see section 4.2). Finally, when neither TL nor TR has a successor,
we need to advance xp by one node. That is, we take T ′ to be the triangulation in which the
third vertex of the triangle in which line segment x0xn−1 participates is xp+1 and in which the
set {x0, . . . , xp+1} is triangulated by a canonical triangulation such that all nodes are adjacent
to xp+1 and the set {xp+1, . . . , xn−1} is triangulated in such a way that all nodes are adjacent
to xn−1 (see figure B.1). The base of the recursion occurs when T is a triangle. In this case T
does not have a successor. We can continue this enumeration process until xp = xn−1. In this
case there does not exist any successor for T .

In order to implement the algorithm efficiently it is necessary to be able to retrieve the third
vertex of the triangle in which line segment x0xp−1 participates efficiently. The obvious way to
do this is to store the index of this vertex in the entries of the adjacency matrix a0(n−1) and
a(n−1)0 that correspond to line segment x0xp−1. Care has to be taken to initialize these values
properly, but this is easily done.

This concludes our description of the enumeration algorithm. Obviously, the worst case
running time of the algorithm in order to determine a successor triangulation is linear in the
number of nodes in X. This is sufficient for our purposes, since this linear term is dominated by
the time we need in order to compute the graph theoretic dilation of the successor triangulation.
However, the algorithm is very similar to increasing a binary counter, and hence it is very likely
that a more detailed analysis will yield better bounds on the amortized running time of the
enumeration algorithm.
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Figure B.1: The next triangulation immediately after the third vertex was moved to xp+1.
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Cn, see Catalan number
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Rn, see triangulation, star
Wn, see triangulation, worst case
∆Sn (sa, sb), see distance, convex hull
∠ (a, b), 26
δ (G), see dilation, graph theoretic, graph
δ (S), see dilation, graph theoretic, point set
δG (u, v), see detour
|uv|, see distance, Euclidean
NT , 49
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and maximum detour pairs, 49
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contraction step, 56
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graph theoretic, 7
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Euclidean, 11
shortest path, 11
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fat point set, 10
floating point arithmetic, 13

general position, 11, 42
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shortest path, 63
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running time, 65

symmetry, 69
running time, 70

highway, 65

jump node, 55

logarithmic sample, 52
lower bound

between circular segments, 34
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general, 42
validity of, 40

maximum detour pair, 45
and line segments, 49
and the central triangle, 49
minimum distance, 46

network
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planar embedding, 11
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minimum dilation, 8
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Stirling’s formula, 52

triangulation
canonical, 21
definition, 12
Delaunay, 8
enumeration of, 71
minimum dilation, 8
minimum weight, 8
number of, 13, 52
star, 25
worst case, 20

upper bound
for δ (Sn), 25
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