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Abstract

Let T be a triangulation on a planar point set S. If
T has bounded dilation, then the shortest path dis-
tance between any two vertices approximates their
Euclidean distance. We examine if such triangula-
tions can be used to design efficient algorithms for
various geometric problems.

First, we show that given a triangulation with
bounded dilation, one can find the closest pair of
points in S in linear time on a pointer machine.

Afterwards, we consider an algorithm by Krznaric
and Levcopoulos to compute a hierarchical clustering
for S in linear time, once the EMST of S is known.
We study how their result can be generalized to MSTs
of triangulations with bounded dilation. It turns out
that their algorithm remains (almost) correct for any
such MST. In general, however, the resulting running
time might be superlinear. We identify a sufficient
condition for a linear time bound and construct a tri-
angulation without this condition as counterexample.

It remains open to identify interesting classes of
bounded-dilation triangulations with this property.

1 Introduction

Delaunay triangulations (DT) constitute perhaps the
most famous and most well-studied proximity struc-
ture. Given a planar point set S, the DT of S encodes
many aspects of the distances between the points in
S, and it enables us to compute in linear time many
other structures on S, such as the Euclidean mini-
mum spanning tree (EMST) and thus the closest pair
of points in S, the Gabriel graph, the nearest-neighbor
graph, a quadtree, or a well-separated pair decompo-
sition (see, e.g., [5] and the references therein). But
what exactly is it that makes DTs so powerful? How
much structure is needed in order to represent the
proximity information in S?

A very general family of triangulations that in-
cludes the DT is given by triangulations of bounded
dilation. In these triangulations, the shortest path
distance between any two vertices approximates their
Euclidean distance by a constant factor. Examples of
other triangulations with bounded dilation are given
by the minimum weight and the greedy triangula-
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tion [2]. We would like to explore how strong this
information is, compared to the DT, and if it can be
exploited algorithmically.

As an introductory example we show that the clos-
est pair of points in S can be found in linear time,
once a triangulation with bounded dilation is known.

Afterwards, we consider an algorithm by Krznaric
and Levcopoulos (KL) for computing a hierarchical
clustering for a planar point set S in linear time, given
the Euclidean minimum spanning tree EMST(S) [3].
In particular, KL use the c-clustering : a subset U ⊆ S
is called a c-cluster for some constant c ≥ 1 if the dis-
tance d(U, S \ U) is greater than c · rdiam(U), where
rdiam(U) is the diameter of the axis-parallel bounding
rectangle for U . The set of all c-clusters for S consti-
tutes a laminar family, i.e., two distinct c-clusters are
either disjoint or one is a proper subset of the other.
Thus, the set of all c-clusters can be naturally rep-
resented as a c-cluster tree whose nodes correspond
to the c-clusters and whose leaves correspond to the
points in S. A relaxed version of these trees that
is more flexible, but retains the essential properties,
are (c1, c2)-cluster trees, introduced by Mulzer and
Löffler [5]: let 1 ≤ c1 ≤ c2 be constants. We require
that every c2-cluster is represented in the tree, but
allow other clusters to be inserted in the hierarchy, as
long as they are at least c1-clusters.

KL presented an algorithm to compute a c-cluster
tree for S from EMST(S) in linear time and showed
that c-cluster trees can be used to speed up the com-
putation of various structures for S, e.g. a quadtree
for S and the (approximated) single and complete
linkage clustering [3,4]. The correctness proof is based
on a characterization of c-clusters in terms of the
EMST of S. We show that a similar characterization
holds for MSTs of triangulations with bounded dila-
tion. This enables us to argue that the KL-algorithm
is also correct for such triangulations. To achieve lin-
ear running time, KL need a property of the EMST,
which unfortunately does not hold for MSTs of gen-
eral bounded-dilation triangulations. We construct a
counterexample to illustrate this issue.

2 Preliminaries and Notation

Let G = (V,E) be a graph and U ⊆ V . The
induced subgraph G[U ] on U is the graph on ver-
tex set U that contains exactly those edges from G
with both endpoints in U . Furthermore, we define
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IG(U) := {uv ∈ E(G) | u ∈ U and v /∈ U} as all
edges with exactly one endpoint in U .

Let T be a planar triangulation. The dilation of
two vertices u, v of T is the ratio of the shortest path
distance dT (u, v) between u and v in T and their Eu-
clidean distance. When considering the maximum of
these ratios we obtain the dilation δ(T ) of T , i.e.,
δ(T ) := maxu6=v∈V (T ) dT (u, v)/|u, v|.

3 Finding the Closest Pair in Linear Time

To get familiar with the bounded dilation property,
we show how to use it to speed up the computation
of the closest pair CP(S) of a point set S. Let T
be a triangulation on S and d := δ(T ). Note that
the shortest edge xy of T approximates |CP(S)| by a
multiplicative factor of d, and thus we know |xy|/d ≤
|CP(S)| ≤ |xy|. In order to find CP(S), we examine
all paths of length at most d|xy|. This can be done
by using Dijkstra’s shortest path algorithm for each
vertex v of T , but stopping if a path exceeds length
d|xy|.

Algorithm 1 Computing CP(S)

1: Closest-pair(T ,d)
2: Find the shortest edge xy in E(T ).
3: Delete all edges in E(T ) with length > d · |xy|.
4: Closest pair {p, q} ← {x, y}
5: for all w ∈ V (T ) do
6: Use Dijkstra’s algorithm to find the set of ver-

tices C that are connected with w through a path
of length at most d · |xy|.

7: for all v ∈ C do
8: if |wv| < |pq| then
9: {p, q} ← {w, v}

10: end if
11: end for
12: end for
13: return {p, q}

Theorem 1 Given a bounded-dilation triangulation
T , Algorithm 1 computes CP(S) in linear time.

Proof. Let xy be the shortest edge of T . The correct-
ness follows from the fact that we examine for each
vertex v all paths of length less than d · |xy|. By the
dilation property we must encounter the closest pair.

For the running time we argue that there are only a
constant number of edges with length less than d · |xy|
incident to any vertex. Let v ∈ S and let Dv be the
disk centered at v with radius |xy|/d. Observe that
there is no vertex w ∈ S lying in Dv or otherwise, by
the dilation property, there must be a path between
w and v of length less than |xy|. But this would con-
tradict the minimality of xy.

Now, let u be an arbitrary vertex and let A be the
annulus centered at u with inner radius |xy| and outer

radius d|xy|. The area of A is O(|xy|). Since every
vertex v inside A has an empty disk Dv that covers a
constant fraction of A, there can be only a constant
number of such v’s.

Finally, consider the shortest path tree with root u
obtained by the execution Dijkstra’s algorithm. Let P
be path from the the root in the tree. When stopping
the computation of P once its length exceeds d|xy|,
the tree has depth at most d + 1. By the above dis-
cussion every inner node has constant degree. Thus,
the time spend for every vertex is some constant de-
pendent on d only and the overall running time is
O(n). �

4 Bounded-Dilation Triangulations and (c1, c2)-
cluster Trees

Let S be a planar point set. As mentioned in the in-
troduction, KL describe an algorithm for computing
a c-cluster tree for S from EMST(S) in linear time.
We explain how to extend this algorithm to triangula-
tions with bounded dilation. However, we will only be
able to obtain a (c1, c2)-cluster tree, which is slightly
weaker, though sufficient for all practical purposes.
But first, we give some idea of how the KL-algorithm
works: the key insight lies in the following characteri-
zation of c-clusters in terms of the EMST [3, Obs. 5].

Observation 2 Let S be a planar point set and G =
EMST(S). A subset U ⊆ S is a c-cluster if and only if
G[U ] is connected and all edges in IG(U) have length
greater than c · rdiam(U).

We explain how KL use Observation 2 to find for a
given vertex v the smallest c-cluster U that contains
it, i.e., the parent of v in the c-cluster tree. For this,
we start at v and explore the EMST until we find an
appropriate subgraph that fulfills Observation 2.

Algorithm 2 Computing the parent c-cluster for v.

1: ParentCluster(G, v):
2: Set U ← {v}
3: Queue Q← {shortest edge incident to v}
4: Set P ← {edges incident to v that are not in Q}
5: Set D ← {v}
6: while Q 6= ∅ do
7: remove the first edge uw from Q (with u ∈ U)
8: add w to U
9: update the xy-extremes in D

10: add each edge wz (except for wu) to P
11: move edges in P of length < c · rdiam(U) to Q
12: end while
13: return c-cluster U

Initially, the set U contains only the vertex v, and
the algorithm adds to U the closest neighbor w of v
in the EMST G. Then, as long as IG(U) contains



EuroCG 2013, Braunschweig, Germany, March 17–20, 2013

an edge uw with |uw| < c · rdiam(U) (and u ∈ U),
the endpoint w is added to U . Afterwards, all edges
in IG(U) have length at least c · rdiam(U), so Obser-
vation 2 guarantees that U is a c-cluster. Note that
IG(U) is represented by P and Q, where Q contains
the short edges in IG(U) and P the long edges.

By extending Algorithm 2, we can obtain the whole
c-cluster tree: every time we find a c-cluster U , the in-
duced subgraph G[U ] is contracted to obtain a smaller
graph G′. Algorithm 2 is then applied to G′. We
must make sure that all child clusters of U are iden-
tified before the contraction. This is achieved by an
appropriate recursion whenever we try to extend U
by a vertex that belongs to some child cluster of U
(this can be detected efficiently). See [3] for details.

We now show that Observation 2 also holds for gen-
eral triangulations with bounded dilation, albeit with
a slightly weaker conclusion. More precisely, the KL-
algorithm produces a (c1, c2)-cluster tree when ap-
plied to such triangulations (see [6] for details).

Lemma 3 Let T be a triangulation on a planar point
set S with constant dilation d. Let G = MST(T ) and
c2 > d. Furthermore, let U ⊆ S be a subset of S
such that G[U ] is connected. If every edge in IG(U)
has length greater than c2 · rdiam(U), then U is a
c1-cluster for c1 = 2(c2 − 1)/(d+ 1).

Proof. Let A := {b ∈ R2 | d(U, b) < (c2 −
1)rdiam(U)} be the region with distance less than
(c2 − 1)rdiam(U) from U (marked by the dashed line
in Fig. 1). We will show that all vertices in S∩A have
distance at least c1 · rdiam(U) from U . Let a ∈ S \U
be a vertex inside A. We claim that a is not incident
to U :

Claim 4 The triangulation T contains no edge be-
tween a and U .

Proof. Suppose there is an edge va ∈ E(T ) with v ∈
U . As d(U, a) < (c2 − 1)rdiam(U), the edge va has
length less than c2 · rdiam(U). Thus, va is not an
edge of G, since we assumed that all edges in IG(U)
are longer than c2 ·rdiam(U). Since G is connected, it
contains a path from v to a in G. This path must use
an edge e ∈ IG(U). Replacing e by va yields a shorter
spanning tree, contradicting the minimality of G. �

The vertex a is not incident to U in T , so the shortest
path P from v to a in T uses an edge of IT (U). This
implies that P must leave A at some point. Since
a ∈ A, the path P must reenter A. Let h be the
distance between the point where P reenters A and a
(see Figure 1). So,

dT (v, a) ≥ (c2 − 1) rdiam(U) + h. (1)

By the triangle inequality, we have
(c2 − 1) rdiam(U) ≤ h + |va| and therefore
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Figure 1: The shortest path from v to a has length at
least 2(c2 − 1) rdiam(U)− |va|.

h ≥ (c2 − 1) rdiam(U) − |va|. Plugging this
into (1), we get dT (v, a) ≥ 2(c2 − 1) rdiam(U)− |va|.
Since T has dilation d, it follows that

d · |va| ≥ 2(c2 − 1) rdiam(U)− |va|
⇒ |va| ≥ (2(c2 − 1)/(d+ 1)) rdiam(U).

Thus, for every a ∈ S \ U , we have d(U, a) ≥ (2(c2 −
1)/(d + 1)) rdiam(U) = c1 · rdiam(U), so U is a c1-
cluster. �

5 Running Time

To argue that their algorithm has linear running time
KL used the following generalization of the fact that
the EMST of a point set S has constant degree [3]:

Lemma 5 Let G = EMST(S), U ⊆ S, and c ≥ 1. If
G[U ] is connected, then the number of edges in IG(U)
with length greater than c · rdiam(U) is constant.

Given the same property for the MSTs of bounded-
dilation triangulations, the analysis of the complete
adapted algorithm would follow the one for the KL-
algorithm. Unfortunately, Lemma 5 does not hold
for for such MSTs in general: for every m ∈ N, we
construct a triangulation Tm such that (i) Tm has di-
lation at most 2; and (ii) the MST of Tm has a vertex
of degree m. Since a single vertex can have arbitrarily
high degree, this holds also for each subgraph.

Let w be a vertex and set α := π/6. Choose
m vertices v1, . . . , vm in clockwise order such that
∠viwvi+1 = α/m and |wvi| = 3i−1. We add the
edges wv1, wv2, . . . , wvm to Tm. In order to ensure
that these edges belong to G = MST(Tm), we need
some edges that intersect the line segments vivi+1.
Otherwise, these segments would have to be in Tm and
also in G. Thus, we place m−1 vertices u1, . . . , um−1
on the circle with center w and radius r = 3m such
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Figure 2: A triangulation with bounded dilation that
produces a MST (blue edges) with a vertex of arbi-
trarily high degree.

that for each i the line wui bisects the angle ∠viwvi+1.
To complete Tm, we add the following edges for each
1 ≤ i ≤ m− 1: (i) wui; (ii) viui; (iii) vi+1ui; and (iv)
uiui+1. See Figure 2 shows T5 (not drawn to scale).

By construction, we have |viui−1|, |viui| > |wvi| for
all i, so all edges wvi are in G and w has degree m.
It remains to show that Tm has bounded dilation.
Indeed, any two nonadjacent vertices a, b in Tm are
connected by a path with at most two edges and w
as intermediate vertex. We show that the dilation be-
tween a and b is at most 2. There are three cases:
Case 1: a = ui and b = uj with i < j. Let
β := ∠uiwuj . Then |uiuj | = 2r sin(β/2). The length
of the path ui, ui+1, . . . , uj is bounded by the length
of the arc between ui and uj with center w, i.e.,
dT (ui, uj) ≤ βr. Thus, the dilation between ui and
uj is at most (βr)/(2r sin(β/2)) ≤ 2, as β < π/6.
Case 2: a = vi and b = vj . The largest dilation oc-
curs when vi and vj are consecutive, i.e., j = i + 1.
Then dT (vi, vi+1) = |wvi| + |wvi+1| = 4|wvi|, by
construction. By the triangle inequality |vivi+1| ≥
|wvi+1| − |wvi| = 2|wvi|. The dilation is at most 2.
Case 3: a = ui and b = vj . The largest dilation
occurs for j = m and i = m−2. A calculation similar

to Case 2 shows that the dilation is at most 2.
Thus, Tm has dilation at most 2, as claimed.

6 Conclusion

It remains as an open question, whether there are tri-
angulations with bounded dilation that yield MSTs
fulfilling Lemma 5, besides the Delaunay and the
greedy triangulation (where the MST is just the
EMST). These triangulations can be used to com-
pute a hierarchical clustering of the point set in lin-
ear time. Unfortunately, the third popular bounded-
dilation triangulation, the minimum weight triangu-
lation, is NP-hard to compute and thus cannot be
considered as reasonable input.

A very general candidate would be triangulations
that fulfill the diamond property, i.e., there exists an
angle α > 0 such that for any edge e in the triangu-
lation one of the two isosceles triangles with base e
and base angle α must be empty. On the one hand,
such triangulations have bounded dilation [2], on the
other hand they admit a constant-degree subgraph G′

that still has bounded dilation (though with a slightly
larger constant) and can be found in linear time [1].
Thus, G′ is not concerned by the given counterexam-
ple.

Finally, note that all steps related to the correct-
ness of the adapted KL-algorithm in Section 4 work
with a larger class of, not only triangulations, but even
general planar straight-line graphs with bounded di-
lation. Thus, we can extend our question and ask
what kind of planar straight-line graphs yield span-
ning trees with the necessary properties.
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