EuroCG 2017, Malmo, Sweden, April 5-7, 2017

Delta-Fast Tries: Local Searches in Bounded Universes with Linear Space*

Marcel Ehrhardt?

Abstract

Let U = {0,1,...,2" — 1} be a bounded universe.
We present a dynamic data structure for predecessor
searching in U that needs O(loglog A) time for queries
and O(loglog A) expected time for updates, where A
is the difference between the query element and its
nearest neighbor in the structure. Our data structure
requires linear space, improving a result by Bose et al..
It can be applied for answering approximate nearest
neighbor queries in low dimensions.

1 Introduction

Predecessor searching is one of the oldest problems
in theoretical computer science [3]. Let U be a to-
tally ordered universe. The goal is to maintain a set
S C U, |S| = n, while supporting predecessor and
successor queries: given ¢ € U, find the largest el-
ement in S smaller than ¢ (¢’s predecessor), or the
smallest element in S larger than ¢ (¢’s successor).
In the dynamic version of the problem, we also want
to be able to modify S by inserting and/or deleting
elements.

In the word-RAM model of computation, all input
elements are w-bit words, where w > logn is a pa-
rameter, and we are allowed to manipulate the input
elements at the bit level. In this case, we may assume
that the universe is U = {0,...,2¥ — 1}. A classic
solution for predecessor searching on the word-RAM
is due to van Emde Boas, who described a dynamic
data structure that requires space O(n) and supports
insertions and deletions in O(loglogU) time [6,7].

In 2013, Bose et al. [2] described a word-RAM data
structure for the predecessor problem that is local in
the following sense. Let ¢ := min{s € S| s > ¢} and
¢~ :=max{s € S| s < ¢} be the successor and prede-
cessor of q. The structure by Bose et al. can answer
predecessor and successor queries in O(log log A) time
with A = min{|g — ¢~ |,|¢ — ¢™|}. Their solution re-
quires O(nlogloglog|U|) words of space. Bose et al.
apply their structure to obtain a fast data structure
for approximate nearest neighbor queries in low di-
mensions.

We show how to reduce the space requirement to
O(n), while keeping the guarantees for the query

*Supported by DFG project MU/3501-1.
TInstitut fiir Informatik, Freie Universitit Berlin, Germany
{marehr,mulzer}@inf.fu-berlin.de

Wolfgang Mulzer!

times. This solves an open problem from [2], and
also improves the space requirement for their nearest
neighbor data structure. The full details can be found
in the Master’s thesis of the first author [5].

2 Preliminaries

Compressed Tries. Our data structure is based on
compressed tries [3]. We interpret the elements from
S as bitstrings of length w. The trie T’ for S is a
binary tree of height w. Each node v € T” corresponds
to a bitstring p,, € {0,1}*. The root r has p, = . For
each inner node v, the left child u of v has p, = p,0,
and the right child w of v has p,, = p, 1 (one of the two
children may not exist). The bitstrings of the leaves
correspond to the elements of S, and the bitstrings of
the inner nodes are prefixes for the elements in S.

The compressed trie T for S is obtained from T
by contracting each maximal path of nodes with only
one child into a single edge. Each inner node in T has
exactly two children, and T has O(n) nodes.

Let ¢ be a bitstring of length at most w. The longest
common prefiz of ¢ with S, lepg(q), is the longest
prefix that ¢ shares with an element in S. We say
that ¢ lies on an edge e = (u,v) of T if p, is a prefix
of ¢ and ¢ is a proper prefix of p,. If ¢ lies on the
edge (u,v), we call u the least common ancestor of q
in T, denoted by lcar(gq). One can show that lcar(q)
is uniquely defined.

Associated Keys. Our algorithm uses the notion of
associated keys. This notion was introduced for z-fast
tries [1,10], and it is also useful in our data structure.

Associated keys provide a quick way to compute
lecar(q), for any element ¢ € U. A natural way to
find lcar(q) is to do binary search on the depth of
lcar(q): we initialize (I,7) = [0,w] and let m = (I +
r)/2. We denote by g,, the first m bits of ¢, and we
check whether 7" has an edge e = (u,v) such that ¢,
lies on e. If not, we set r = m — 1 and continue.
Otherwise, we check if u is lcar(q), by inspecting the
other endpoint of e. If w is not lcar(q), we set | =
m + 1 and continue. In order to perform this search
quickly, we need to find the edge e that contains a
given prefix ¢,,. For this, we precompute for each edge
e of T the first time that the binary search encounters
a prefix that lies on e, and we let a. be this prefix.
We call a, the associated key for e = (u,v).

This is an extended abstract of a presentation given at EuroCG 2017. It has been made public for the benefit of the community and should be considered a
preprint rather than a formally reviewed paper. Thus, this work is expected to appear in a conference with formal proceedings and/or in a journal.

33rd European Workshop on Computational Geometry, 2017

The associated key can be computed in O(1) as
follows: consider the log w-bit binary expansions ¢,, =
|pul2 and €, = |py|2 of the lengths of the prefixes p,
and p,, and let ¢’ be the longest common prefix of £,
and £,. Let £ be obtained by taking ¢, followed by 1
and enough 0’s to make a log w-bit word. Let [be the
number encoded by ¢, and set a, to the first [bits of
Dy, see [5] for a detailed explanation.

Hash Maps. Our data structure also makes exten-
sive use of hashing. In particular, we will maintain
several succinct hashtables that store additional in-
formation for supporting fast queries. We will need
the following theorem due to Demaine et al. [4].

Theorem 1 For any r > 1, there exists a dynamic
dictionary that stores entries with keys from U and
with associated values of r bits each. The dictio-
nary supports updates and queries in O(1) time, using
O(nloglog(|U|/n)+mnr) bits of space. The bounds for
the space and the queries are worst-case, the bounds
for the updates hold with high probability.

3 Static A-fast Tries

We begin by describing our data structure for the
static case. The dynamic version will be discussed
in the next section.

3.1 The Data Structure

Our data structure is organized as follows: We store
S in a compressed trie T. The leaves of T' are linked
in sorted order. Furthermore, each node v of T stores
pointers to the minimum and the maximum element
in the subtree T, of v. In addition to 7', we maintain
three hash maps Ha, H,, and Hp.

We first describe the hash map Ha. Set m =
loglogw. For i = 0,...,m, we let h; = 22 and
d; = w — h;. The hash map Ha stores the following
information: for each s € S and each d;, i =1,...,m,
let s;, = sg...8q4,—1 be the first d;-bits of s and let
e = (u,v) be the edge of T such that s; lies on e.
Then, Ha stores the entry Ha[s;] = u.

Next, we describe the hash map H,. It is defined
similarly as the hash map used for z-fast tries [1,10].
For each edge e of T, let a be the associated key of e
(see Section 2). Then, H, stores the entry H, [a.] = e.

Finally, the hash map Hj is used to obtain linear
space. It will be described below.

3.2 The Predecessor Query

Let ¢ € U be the query, and let ¢~ and ¢* be the
predecessor and the successor of ¢q. We first show how
to get a running time of O(loglog A) for the queries,
with A = |¢ — ¢*|. In Theorem 3, we will improve
this to A = min{|¢ — ¢~ |,|¢ — ¢}

The predecessor search works in several iterations.
In iteration ¢, we let g; be the first d; bits of ¢.

First, we check whether Ha contains an entry for g;.
If so, we know that T' contains an edge e such that g;
lies on e, and that g; is a prefix of Icpg(g). We consider
the two edges emanating from the lower endpoint of
e, finding the ¢’ that lies on the path to ¢ (if the lower
endpoint of e is lcar(q), we are done). We take the
associated key a, of €/, and we use it to continue the
binary search for lcar(q), as described in Section 2.
Since |¢;] = d;, this binary search takes O(log(w —
d;)) = O(logh;) steps to complete. Once the lowest
common ancestor v = lcar(q) is available, we can
find the predecessor of ¢ in O(1) additional time by
inspecting the minimum and maximum elements in
the subtrees for the two children of v and by using
the pointers between the leaves in T'. Details can be
found in [5].

If Ha contains no entry for ¢; and if ¢; does not
consist of all 1’s, we check if Ha contains an entry
for ¢; + 1. Notice that ¢; + 1 is the successor of ¢;,
e.g., if ¢; = 0000, then ¢; +1 = 0001. If such an entry
exists, first obtain u = Ha[g; + 1], and the child v of u
such that ¢; lies on the edge e = (u,v). Then, we find
the minimum element in the subtree T,,. This is the
successor ¢+ of gq. The predecessor ¢~ can be found
by following the leaf pointers. This takes O(1) time
overall.

Finally, if both entries do not exist, we continue
with iteration ¢ + 1.

The total time for the predecessor query is O(k +
log hy,), where k is the number of iterations and log hy
is the worst-case time for the predecessor search once
one of the lookups in an iteration succeeds. By our
predecessor algorithm, we know that S contains no
element with prefix gx_1 or gx_1 + 1, but an element
with prefix q; or ¢ + 1. Thus, we have A > 2/+-1 =

k—
22” 1, so k < O(logloglog A). Furthermore, since
hy = (hx_1)?, it follows that hj, = O(log® A).

3.3 Obtaining Linear Space

We now analyze the space requirement for our data
structure. Clearly, the trie T and the hash map H, re-
quire O(n) words of space. Furthermore, as described
so far, the space needed for Ha is O(nloglogw)
words, since we store at most n entries for each height
hi,i:O7...,m.

Using a trick due to Patragcu [9], we can reduce
the space requirement to linear. The idea is to store
in Ha the depth d, of each branch node w in Th,
instead of storing u itself. We then use an additional
hash map H to obtain u.

This is done as follows: when trying to find the
branch node u for a given prefix g;, we first get the
depth d,, = |u| of u from Ha. After that, we look up
the branch node u = Hp|qo .. - qq,—1] from the hash

EuroCG 2017, Malmo, Sweden, April 5-7, 2017

map Hp. Finally, we check whether u is actually the
lowest branch node of ¢;. If any of those steps fails,
we return L.

Let us analyze the needed space: clearly, H; needs
O(n) space, since it stores O(n) entries. Furthermore,
we have to store O(nloglogw) entries in Ha, each
mapping a prefix ¢; to the depth of its lowest branch
node. This depth requires [logw] bits.

By Theorem 1, a retrieval only hash map for n’
items and r bits of data is O(n'loglog ‘ni,l + n'r) bits
Therefore, the space for Ha is proportional to

Ul

————— + nloglogw - [log w]
nloglogw

nloglogw - loglog
= O(nloglogw - logw) = o(n - w) bits,

where n’ = nloglogw, r = [logw] and w = log|U]|.
Thus, we can store Ha in O(n) words of w bits each.
The following lemma summarizes the discussion

Lemma 2 The A-fast trie needs O(n) words space.

3.4 Putting it Together

We can now obtain our result for the static predeces-
sor problem.

Theorem 3 The static A-fast trie solves the static
predecessor problem with each operation in time
O(loglogmin{|¢—q~|,|¢—¢"|}) and linear space. The
preprocessing time is O(nlogloglog |U|) on sorted in-
put.

Proof. The normal search for ¢ € S can be done in
O(1) time by a lookup in H,. We have seen that the
predecessor of ¢ can be found in O(loglog|q — q*|)
time, and a symmetric result also holds for successor
queries.

Similarly, we can achieve query time O(loglog|q —
q~|) by exchanging Ha[g; — 1] with Ha[g; + 1] in the
query algorithm.

Therefore, by interleaving both searches, we obtain
the desired running time of O(log log min{|¢g—q~|, |g—
q"|}). Of course, the pragmatic solution would be to
add the case Ha[g; — 1] # L to the query algorithm.

The preprocessing time is dominated by the time
to fill the hash map Ha, since T and the hash maps
H, and H;, can be computed in linear time. Thus,
the preprocessing time is O(nlogloglog |U|), because
O(nloglog w) nodes have to be inserted into Ha. The
space requirement is linear (Lemma 2). O

4 Dynamic A-fast tries

We will now consider the dynamic case. For this, we
need to explain how the update operations are im-
plemented. Furthermore, we need a way to find and

maintain the minimum and maximum element in each
subtree of T'. In the static case, this could be done by
simply maintaining explicit pointers from each node
v € T to the minimum and maximum element in
T,. In the dynamic case, we need a data structure
which allows finding and updating these elements in
in O(loglog A) time.

4.1 Computing Lowest Common Ancestor

To perform the update operation, we need to be able
to compute lcar(q) for any given element g € U. For
this, we will proceed as in the query algorithm from
Section 3.2, but without the lookups for Hal[g; — 1]
and Ha[g; + 1]. By the analysis in Section 3.2, this
will find lcar(q) in time O(loglog!), where [is height
of lear(q) in T.

Unfortunately, this height [might be as large as w.
To get around this, we use a trick of Bose et al. [2].
Their idea is to perform a random shift of the uni-
verse. More precisely, we pick a random number
r € U, and we add r to all queries and update in
the data structure (modulo |U]).

Lemma 4 (Lemma 4 in [2]) After a random shift
by r of U, the expected height of the lowest common
ancestor of two fixed elements x and y is O(log |z —y|).

Corollary 5 Let ¢ € U, and let T be a randomly
shifted A-fast trie. We can find lcar(q) in expected
time O(loglog A), where the expectation is over the
random choice of the shift r.

Proof. Set z = ¢, y = ¢* and let A = |¢g — ¢T|. We
perform the doubly exponential search on the prefixes
of g, as in Section 3.2 (without checking ¢; 4+ 1) to find
the height hy. After that, we resume the lowest com-
mon ancestor search on the remaining hj bits. Since
the number of remaining bits hy is O(log A) in expec-
tation and by Jensen’s inequality, the number of loop
iterations k is O(logloglog A) in expectation. The ex-
pected running time is k + log by, = O(loglog A). O

4.2 Managing the Minimum and Maximum Ele-
ments of the Subtrees

We also need to maintain the minimum and maximum
elements in each subtree of T'. In the static case, it
suffices to have a pointer from a node to its minimal
and maximal leaf, but in the dynamic case, we need
an additional data structure.

For this, we use the fact that a given minimum (or
maximum) leaf is common to at most w nodes of T
All these nodes form a subpath of a leaf-to-root path
in T'. Hence, if we maintain the nodes of this subpath
in a concatenable queue data structure [8], we can
obtain O(logw) update and query time to find the
minimum (or maximum) element. However, we need

33rd European Workshop on Computational Geometry, 2017

that the update and query time depend on the height
h; (i.e, the remaining bits) of the query. Thus, we par-
tition the heights {0,1,...,w} of a subpath into the
sets T_1 = {0}, T; = [2¢,2¢71), fori =0,...,logw—1,
and Tiogw = {w}. BEach of the sets is managed by a
balanced binary tree, and all roots of those trees are
linked together. The height of the i-th binary search
tree is log |T;| = O(i). Conversely, if a height h is
given, the set T|jog) is responsible for it.

Furthermore, T is a leaf (the depth of that node
is w) in the trie and therefore the minimum of the
whole subpath. Thus, the minimum of a subpath can
be found from a given node v € T; in O(%) time by fol-
lowing the pointers to the root of T; and the pointers
down to T_;.

If a node v has hy = O(logA) remaining bits,
the node is within the tree T|jogp, . Thus, it takes
O(log hy) = O(loglog A) time to find the minimum.
Furthermore, we can split and join the subpaths rep-
resented in this way in O(loghy) time, where hy is
the height of the node where the operation occurs.
Details can be found in [5].

4.2.1 Performing an Update

We know from the Lemma 4, that the lowest common
ancestor has expected height hy = O(log A).

Lemma 6 Inserting or deleting an element q into a
A-fast trie takes O(loglog A) expected time, where
the expectation is over the random choice of r.

Proof. Inserting ¢ into T splits an edge (u,v) of T
into two edges (u,b) and (b,v). This creates two
new nodes in T, a branch node and a leaf. The
branch node is lcar(q), and it has expected height
hi = O(log A). So, finding it will take O(loglog A)
expected time, by Corollary 5.

The hash maps H, and H, can be updated in con-
stant time. Now let us consider the update time of
the hash map Ha. Remember that Ha stores the
lowest branch nodes for all prefixes of the elements in
S that have certain lengths. That means that all pre-
fixes on the edge (b,v) which are stored in the hash
map Tha need to be updated. Furthermore, prefixes
at certain depths which are on the edge (b, ¢) need to
be added. Note that for the edge (b,v), we will enu-
merate all prefixes at certain depths, but only select
those that are on the edge. We will argue that a leaf-
to-b path needs O(logloglog A) insertions or updates:
We have to insert Q; :=qo...qq, foralli=1,... un-
til d; < |b|. Since d; = w — hy, |b] = w — O(log A)
and h; = 22, clog A < 22" when i > loglog(clog A).
Thus, i = ©(logloglog A).

After that, the minimum and maximum elements
for the subtrees of T" have to be updated. This may
update a subpath at a node of height h;, = O(log A).

As we have seen, this takes O(loghy) = O(loglog A)
time. Deletions are performed similarly. (]

The following theorem summarizes our result.

Theorem 7 Suppose we perform a random shift of
U by r. Then, the A-fast trie solves the dynamic
predecessor problem such that query operations take
O(loglog A) worst-case time and update operations
take O(loglog A) expected time. Here, A = min{|q—
qt|,lg — g~ |}, where q € U is the argument for the
current operation and ¢t and ¢~ are the predecessor
and successor of q in the current set. At any time, the
data structure needs O(n) words of space, where n is
the size of the current set.

References

[1] D. Belazzougui, P. Boldi, and S. Vigna. Dy-
namic z-fast tries. In Proc. 17th Int. Symp. String
Processing and Information Retrieval (SPIRE),
pages 159-172, 2010.

[2] P. Bose, K. Douieb, V. Dujmovic, J. Howat,
and P. Morin. Fast local searches and updates
in bounded universes. Comput. Geom. Theory
Appl., 46(2):181-189, 2013.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and
C. Stein. Introduction to algorithms. MIT Press,
third edition, 2009.

[4] E. D. Demaine, F. Meyer auf der Heide, R. Pagh,
and M. Patragcu. De dictionariis dynamicis
pauco spatio utentibus. In Proc. 7th LATIN,
pages 349-361, 2006.

[5] M. Ehrhardt. An in-depth analysis of data
structures derived from van-Emde-Boas-trees.
Master’s thesis, Freie Universitat Berlin, 2015.
http://www.mi.fu-berlin.de/inf/groups/
ag-ti/theses/download/Ehrhardt15.pdf.

[6] P. van Emde Boas. Preserving order in a forest
in less than logarithmic time and linear space.
Inform. Process. Lett., 6(3):80-82, 1977.

[7] P. van Emde Boas, R. Kaas, and E. Zijlstra.
Design and implementation of an efficient prior-
ity queue. Math. Systems Theory, 10(2):99-127,
1976.

[8] F. P. Preparata and M. I. Shamos. Compu-
tational geometry. An introduction. Springer-
Verlag, 1985.

[9] M. Patrascu. vEB space: Method 4.

http://infoweekly.blogspot.de/2010/09/
veb-space-method-4.html, 2010.

[10] M. Ruzié. Making deterministic signatures
quickly. TALG, 5(3):26:1-26:26, 2009.

