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Abstract
Let S C R? be a set of n sites in the plane, so that every site s € S has an associated radius rs > 0. Let
D(S) be the disk intersection graph defined by S, i.e., the graph with vertex set S and an edge between two
distinct sites s,t € S if and only if the disks with centers s, ¢ and radii 75, 7 intersect. Our goal is to design
data structures that maintain the connectivity structure of D(S) as S changes dynamically over time.
We consider the incremental case, where new sites can be inserted into S. While previous work focuses on
data structures whose running time depends on the ratio between the smallest and the largest site in S, we

present a data structure with O(a(n)) amortized query time and O(log® n) expected amortized insertion time.
We also show that the same approach can be used for arbitrary intersection graphs.

1 Introduction

The question if two vertices in a given graph are connected is crucial for many applications. If multiple such
connectivity queries need to be answered, it makes sense to preprocess the graph into a suitable data structure.
In the static case, where the graph does not change, we get an optimal answer by using a graph search to determine
the connected components and by labeling the vertices with their respective components. In the dynamic case,
where the graph can change over time, things get more interesting, and many variants of the problem have been
studied (see, e.g., [Il 2 [7, 12], and the references therein).

We construct an insertion-only dynamic connectivity data structure for disk graphs. Later we show in
Corollary how, by replacing only one data structure that is used as a black box, the result can be generalized
to intersection graphs of other shapes.

Given a set S C R? of n sites in the plane with associated radii r, for each site s, the disk graph D(S) for
S is the intersection graph of the disks D induced by the sites and their radii. Even though disk graphs are
often motivated as a simple model for wireless networks [6], the study of their properties has developed into an
independent field. The goal in this field often is to use the geometry or other properties inherent to the graph
class, to develop faster algorithms than those know for general graphs or even find polynomial time algorithms
for problems that are known to be NP-complete in general graphs (e.g., [3, 5] [8, 10, [14]). Disk graphs are often
seen as a special case of the more general intersection graphs. An intersection graph is defined to have one vertex
for each element from a set of objects O and two objects are connected with an edge, if and only if they intersect.
While an intersection graph is represented by n objects, it might have ©(n?) edges.

We focus on general disk graphs, with no assumption on the radius ratio. As a disk can be represented with
constant space, the input size for the problem is O(n). Thus, when we start with an empty disk graph and
successively insert sites, up to Q(n?) edges may be created. We describe a data structure whose overall running
time for any sequence of n site insertions is o(n?), while allowing for efficient connectivity queries. For unit disk
graphs (i.e., all associated radii rs = 1), a fully dynamic data structure with a similar performance guarantee
is already given by Kaplan et al. [7]. In the same paper, Kaplan et al. present an incremental data structure
whose running time depends on the ratio ¥ of the smallest and the largest radius in S. In this setting, they
achieve O(a(n)) amortized query time and O(log(¥)log® n) expected amortized insertion time. For general radii
the currently best know result that covers the incremental case is due to Chan et al.[2]. They achieve O(n'/7+¢)
update and O(nQO/ 21+2) query time. In this work we significantly improve their results.
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Figure 1: Overview of the data structure (Theorem [2.1J).
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Figure 2: Disk graph with associated component tree and queue @ (tiling of a component corresponds to the
tiling of nodes storing its disks).

Our approach has two main ingredients. First, we simply represent the connected components in a data
structure for the disjoint set union problem [4]. This allows for fast queries, in O(a(n)) amortized time, also
mentioned by Reif [I2]. The second ingredient is an efficient data structure to find all components in D(S) that
are intersected by any given disk (and hence tells us which components need to be merged after an insertion
of a new site). Apart from one complicated data structure, that however can be used as a black box without
considering its inner workings, our data structure is composed only of a slightly adapted binary search tree and
a queue. A schematic overview of the data structure is given in Fig.

2 The Data Structure

As in the incremental data structure for disk graphs with bounded radius ratio by Kaplan et al. [7], we use a
disjoint set union data structure to represent the connected components of D(S) and to perform the connectivity
queries. To insert a new site s into S, we first find the set Cs of components in D(S) that are intersected by Ds.
Then, once Cy is known, we can simply update the disjoint set union structure to support further queries.

In order to identify C; efficiently, we use a component tree Te. This is a binary tree whose leaves store the
connected components of D(S). The idea is illustrated in Fig. Showing a disk graph and its associated component
tree. We require that Ty is a complete binary tree, and some of its leaves may not have a connected component
assigned to them, like /3 in Fig. [2l Those leaves are empty. Typically, we will not distinguish the leaf storing a
connected component and the component itself. Also when suitable, we will treat a connected component as a set
of sites. Every node of T¢ stores a fully dynamic additively weighted nearest neighbor data structure (AWNN).
An AWNN stores a set P of n points, each associated with a weight w,. On a nearest neighbor query with a point
q € R? it returns the point p € P that minimizes ||pq|| + w,. For this data structure, we use the following result
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Figure 3: If the tree has no empty leaves before the insertion of an isolated component, a new root and an empty
subtree are added (second tree is an intermediate state before actual insertion).

by Kaplan et al. [9] with an improvement by Liu [I1].

LEMMA 2.1. (KAPLAN ET AL. [9, THEOREM 8.3, SECTION 9], Liu [I1, COROLLARY 4.3]) There is a fully dy-
namic AWNN data structure that allows insertions in O(log® n) amortized expected time and deletions in O(log* n)
amortized expected time. Furthermore, a nearest neighbor query takes O(log2 n) worst case time. The data struc-
ture requires O(nlogn) space.

The component tree maintains the following invariants. Invariant 2 allows us to use a query to the AWNN to find
the disk whose boundary is closest to a query point.

Invariant 1: Every connected component of D(.S) is stored in exactly one leaf of T¢, and

Invariant 2: The AWNN of a node u € T contains the sites of all connected components that lie in the subtree
rooted at u, where a site s € S has assigned weight —r;.

In addition to T¢, we store a queue Q¢ that contains exactly the empty leaves in T¢.

We now describe how to update Tz when a new site s is inserted. We maintain T¢ in such a way that the
structure of Ty changes only when s creates a new isolated component in D(S). In the following lemma, we
consider the slightly more general case of inserting a new connected component C' that does not intersect any
connected component already stored in 7T¢.

LEMMA 2.2. Let T¢ be a component tree of height h with n sites and let C' be an isolated connected component.
We can insert C into Te in amortized time O(h - |C| - log®n).

Proof. The insertion performs two basic steps: first, we find or create an empty leaf [; into which C' can be
inserted. Second, the AWNN structures along the path from [; to the root of Ty are updated.

For the first step, we check if Q¢ is non-empty. If so, we extract the first element from Q¢ to obtain our
empty leaf [;. If Q¢ is empty, there are no empty leaves, and we have to expand the component tree. For this,
we create a new root for T¢, and we attach the old tree as one child. The other child is an empty complete tree
of the same size as the old tree. This creates a complete binary tree, see intermediate state in Fig. [3l We copy
the AWNN of the former root to the new root, we add all new empty leaves to QJ¢, and we extract [; from Qc.

For the second step, we insert C' into [;, and we store an AWNN structure with the sites from C' in [;. Then,
the AWNN structures on all ancestors of /; are updated by inserting the sites of C', see Fig[d| and Fig. [3|in case of
tree extension respectively.

This procedure maintains both invariants: since an isolated component does not affect the remaining
connected components of D(S), it has to be inserted into a new leaf, maintaining the first invariant. The second
invariant is taken care of in the second step, by construction. Afterwards, the queue has the correct state, since
we extract the leaf used in the insertion.
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Figure 4: Inserting a component (potentially isolated disk D;) into an empty leaf (C; stored in I;): The isolated
component C, yellow disk Dy, is inserted in the empty leaf [; and all its ancestors (indicated by coloring).

The running time for finding or creating an empty leaf is amortized O(1). This is immediate if Q¢ # @, and
otherwise, we can charge the cost of building the empty tree, inserting the empty leaves into Q¢, and producing
an AWNN structure for the new root to the previous insertions. The most expensive step consists in updating
the AWNN structures for the new component. In each of the h AWNN structures of the ancestors of [;, we must
insert |C| disks. By Lemma this results into an expected amortized time of O(h - |C| - log® n). o

Next, we describe how to find the set Cs of connected components that are intersected by a disk Dsy.

LEMMA 2.3. Let T¢ be a component tree of height h that stores n disks. We can find Cs in worst case time
O(max{|C,| - h,1} - log®n}).

Proof. First, observe that if the site returned by a query to an AWNN structure with s does not intersect Dy, then
D, does not intersect any disk for the sites stored in this AWNN. Thus, the case where C; = () can be identified
by a query to the AWNN structure in the root of T, in O(log? n) time.

In any other case, we perform a top down traversal of T¢. Let u be the current node. We query the AWNN
structures of both children of v with s, and we recurse only into the children where the nearest neighbor intersects
Dg. The set Cs then contains exactly the connected components of all leaves where Dy intersects its weighted
nearest neighbor. Since every leaf found corresponds to one connected component intersecting Dy and we recurse
into all subtrees whose union of sites have a non-empty intersection with s, we do not miss any connected
components.

For every connected component, there are at most h queries to AWNN structures along the path from the
root to the components. A query takes O(log2 n) amortized time by Lemma giving an amortized time of
O(|Cs| - h-1og® n), if s is not isolated. The overall time follows from taking the maximum of both cases. |

Using Lemma [2.2] and Lemma [2.3] we can now describe how to insert a single disk into a component tree.

LEMMA 2.4. Let Te be a component tree that stores n sites. A new site s can be inserted into Te in O(log®n)
amortized expected time.

Proof. First, we use the algorithm from Lemma to find Cs. If |Cs| = 0, we use Lemma to insert s as a
singleton isolated connected component.

Otherwise, if |Cs| > 1, let C = argmaxcec, |C| be a largest connected component in C;. We insert s into
Cr, and into the AWNN structures of all ancestors of Cr. Then, if |C5| = 1, we are done, see Fig. p| If |Cs| > 1,
all components in C; now form a new, larger, component in D(S). We perform the following clean-up step in T¢.

For each component C; € C; \ {CL}, all sites from C; are inserted into Cp. Let Ica be the lowest common
ancestor of the leaves for C; and C, in T¢. Then all sites from C; are deleted from the AWNN structures along
the path from Cj to Ica, and reinserted along the path from Cp, to Ica. Finally, all newly empty leaves are inserted
into Q¢. For an illustration of the insertion of s and the clean-up step, see Fig. [6]

To show correctness, we again argue that the invariants are maintained. If |Cs| = 0 this follows by Lemma
In the other case, we directly insert s into a connected component intersected by s and update all AWNN structures
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Figure 5: Inserting a site if |C5| = 1 (C; stored in I;): The yellow disk D, intersects Cy (dashed edge). Site s is
added to the AWNN of the associated leaf [y and its ancestors.
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Figure 6: Inserting a site if |Cs| > 1 (C; stored in I;): D, intesects Cy and Co. Since |Cy| = 3 and |Cs| = 2, the
largest component Cp, is Cy. Thus, Ds and Cs are merged into Cy and C5 is removed from Iy up to the Ica, the
root. The empty leave I3 is enqueued.
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along the way. As Lemma[2.3|correctly finds all relevant connected components, and we explicitly move the sites in
these components to Cf, during clean-up, Invariant 1 is fulfilled. In a similar vein, we update all AWNN structures
of sites that move to a new connected component, satisfying Invariant 2. Moreover, we keep Q¢ updated by
inserting or removing empty leaves when needed during the algorithm.

To complete the proof, it remains to analyze the running time. In the worst case, where all components are
singletons, a component tree that stores n sites has height O(logn). If |Cs] = 0 the running time for finding
Cs is O(log2 n) by Lemma The insertion and restructuring is done with Lemma yielding an expected
amortized time of O(log®n). In the case |Cs| = 1, with h = O(logn) a running time of O(log®n) for finding C,
follows by Lemma Following similar arguments to the case |Cs| = 0, the time needed for the insertion and
restructuring is expected amortized O(log® n).

Finally, we consider the case |Cs|] > 1. By Lemma finding C, takes worst case time O(|Cs| - log®n).
Then the insertion of s can be done in expected amortized time O(log®n), as in the cases above. It remains
to analyze the running time of the clean-up step. We know that the first common ancestor might be the root
of T¢. Hence, in the worst case, we have to perform . e\ {CLh) |C;| - O(logn) insertions and deletions for a
single clean-up step. As the time for the deletions in the AWNN structures dominates, this is expected amortized
>ciecnicgy OUCH - log® n) worst case time. Note that since |C;| > 1 and we have to insert s, the running time
of Lemma is dominated by the clean-up step.

The overall time spent on all clean-up steps over all insertions is then wupper bounded by
> oses 2ocieeanjorh OUCH - log”n). During the lifetime of the component tree every disk can only be merged
into O(logn) connected components. This is due to the fact that smaller components are merged into the larger
ones. Thus, the size of the connected components containing a disk at least doubles every time the disk is moved
to a new connected component. The O(logn) bound follows. Thus, we have

Z Z |C;| = O(nlogn),

sES C;eC\{CL}

and the overall expected time spent on clean-up steps is O(nlog®n). As the case |Cs| > 1 turned out to be the
most complex case, the overall running time follows. |

THEOREM 2.1. There is an incremental data structure for connectivity queries in disk graphs with O(a(n))
amortized query time and O(log6 n) expected amortized update time.

Proof. We use a component tree as described above to maintain the connected components. Additionally, we
maintain a disjoint set data structure H, where each connected component forms a set, see Fig. Queries are
performed directly in H in O(a(n)) amortized time.

When inserting an isolated component during the update, this component is added to . When merging
several connected components in the clean-up step, this change is reflected in H by suitable union operations.
Each union operation takes O(1) amortized time [I3]. The time for updates in the component tree dominates the
updates in H, leading to an expected amortized update time of O(log®n). d

COROLLARY 2.1. Let T be a class of intersection graphs. Furthermore let DS be a fully dynamic data structure
that allows the insertion of an object in amortized fr(n) time, the deletion in amortized fp(n) and answers queries
of the form “Given a set of objects O and a query object ¢, does ¢ intersect at least one object in O7” in fg(n)
time.

Then there is an insertion only connectivity data structure for T with O(a(n)) amortized query time and
O(log*(n) - fp(n) +log(n) - (f1(n) + fo(n))) amortized update time.

Proof. The result follows from the technique of Theorem [2.1] by replacing the AWNN by DS. O

3 Conclusion

We introduced a data structure that solves the incremental connectivity problem in general disk graphs with
O(a(n)) amortized query and O(log® n) amortized expected update time. The question of finding efficient fully-
dynamic data structures for both the general and the bounded case remains open.
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