Dynamic Planar Voronoi Diagrams for General Distance Functions
and their Algorithmic Applications*

Haim Kaplant ~ Wolfgang Mulzer*  Liam Roditty?  Paul Seiferth ~ Micha Sharir!

April 12, 2016

Abstract

We describe a new data structure for dynamic nearest neighbor queries in the plane with
respect to a general family of distance functions that includes L,-norms and additively weighted
Euclidean distances, and for general (convex, pairwise disjoint) sites that have constant descrip-
tion complexity (line segments, disks, etc.). Our data structure has a polylogarithmic update
and query time, improving an earlier data structure of Agarwal, Efrat and Sharir that required
O(n®) time for an update and O(logn) time for a query [3]. Our data structure has numerous
applications, and in all of them it gives faster algorithms, typically reducing an O(n®) factor in
the bounds to polylogarithmic. To further demonstrate its power, we give here two new appli-
cations: an efficient construction of a spanner in a disk intersection graph, and a data structure
for efficient connectivity queries in a dynamic disk graph.

To obtain this data structure, we combine and extend various techniques and obtain several
side results that are of independent interest. Our data structure depends on the existence and
an efficient construction of “vertical” shallow cuttings in arrangements of bivariate algebraic
functions. We prove that an appropriate level in an arrangement of a random sample of an
appropriate size provides such a cutting. To compute it efficiently, we develop a randomized
incremental construction algorithm for computing the lowest k levels in an arrangement of bi-
variate algebraic functions (we mostly consider here collections of functions whose lower envelope
has linear complexity, as is the case in the dynamic nearest-neighbor context). To analyze this
algorithm, we improve a longstanding bound on the combinatorial complexity of the vertical
decomposition of these levels. Finally, to obtain our structure, we combine our vertical shallow
cutting construction with Chan’s algorithm for efficiently maintaining the lower envelope of a
dynamic set of planes in R3. While doing this, we also revisit Chan’s technique and present
a variant that uses a single binary counter, with a simpler analysis and improved amortized
deletion time.
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1 Introduction

Nearest neighbor searching in the plane is one of the most fundamental problems in computational
geometry, and it has been studied since the very beginning of the field [8]. Given a set S of sites
in the plane, we would like to construct a data structure that allows us to find the “closest” site
for any given query object. If the set of sites is fixed, Voronoi diagrams and their many variants
provide a simple and well-understood solution to this problem [8]. However, in many applications,
the sites may change dynamically, while we keep inserting and deleting sites into/from S, and we
want to answer nearest-neighbor queries interleaved with the updates. This setting is much less
understood.

If S consists of points and distances are measured in the Euclidean metric, it is known how to
achieve polylogarihmic update and query time [13]. However, there are many geometric problems
in which dynamic nearest neighbor searching forms a key component in an efficient solution, and in
these applications it is often crucial to perform nearest neighbor queries for more general distance
functions (e.g., Ly,-norms or additively weighted Euclidean distances). These applications include
the problems of dynamically maintaining a bichromatic closest pair of sites, a minimum-weight
Euclidean red-blue matching, a Euclidean minimum spanning tree, the intersection of unit balls in
three dimensions, and the smallest stabbing disk of a family of simply shaped compact strictly-
convex sets in the plane. Another recent application is an algorithm for computing shortest path
trees in unit-disk graphs (see Section 9 for more details and references). Despite the wide range
of applications, there has been virtually no progress on dynamic nearest neighbor search in the
plane for general distance functions since the last millennium. The state of the art solution dates
from 1999 and provides O(n®) update time with O(logn) time queries [3]. We describe a new data
structure that improves this bound to polylogarithmic update and query time for a wide range of
distance functions. For this, we need to bring together a diverse set of techniques such as randomized
incremental construction, relative (p, €)-approximations, shallow cuttings for zy-monotone surfaces
in R3, and data structuring tricks.

We now give a more detailed description of the setting. Let S C R? be a set of n pairwise
disjoint sites, each being a simply-shaped compact convex region in the plane (such as points, line
segments, disks, etc.), and let ¢ be some given continuous distance function between points in the
plane. For a site s € S, define fs(x,y) = §((z,y),s), namely, fs(z,y) = min{o((x,y),p) | p € s}
(compactness of the objects in S, and continuity of 4, ensure that the minimum exists). We assume
that § and the sites in S have constant description complexity, i.e., they are defined by a constant
number of polynomial equations and inequalities of constant maximum degree. Let F' denote the
collection of the bivariate functions { fs}scs. The lower envelope Er of F' is the pointwise minimum
Er(x,y) = mingegs fs(x,y), and its zy-projection is called the minimization diagram of F, and is
denoted as Mp. The combinatorial complexity of £ or of M is the number of their vertices,
edges and faces. See [42] for a comprehensive treatment of these concepts.

Finding the é-nearest neighbor in S of a query point ¢ € R? calls for identifying the site s for
which Ep(q) = fs(q). Such a query translates to a vertical ray shooting query in £, where we seek
the intersection point of the z-vertical line through ¢ with £g, or, alternatively, we want to locate
q in Mp, where each face ¢ of this planar map is labeled with the site s for which f, attains the
minimum over .

The structure and complexity of £ and of Mp, as well as algorithms for their construction and
manipulation, have been studied extensively for several decades (again, see [42]). Briefly, under the
assumptions made above, the combinatorial complexity of £, measured in terms of the number of



vertices, edges, and faces of this surface (or of its corresponding minimization diagram) is O(n?*),
for any € > 0 (where the constant of proportionality depends on €). But in many interesting special
cases, the most ubiquitous of which is the case where the functions fs are all linear (i.e., their graphs
are non-vertical planes), the complexity of Ep is only linear in n. The case of planes arises, after
some trivial algebraic manipulations, for point sites under the Euclidean distance. Then, Mg is the
Fuclidean Voronoi diagram of S. There are many variants of Voronoi diagrams, for other classes
of sites and other distance functions, for which the complexity of £f remains linear; see, e.g., the
recent book by Aurenhammer, Klein, and Lee [5].

Assuming linear complexity of £, and the availability of an efficient algorithm for constructing
it, all we need to do, in the so-called “static” case, is to preprocess Mg for fast planar point
location, and then locate each query point in Mg, in O(logn) time.

However, when the sites in S can be inserted or deleted, this corresponds to the setup in
which F' changes dynamically, by insertions and deletions of functions. The main issue in this
situation is that, upon an insertion or a deletion of a function, £¢ might change rather drastically,
and maintaining an explicit representation of Mp after each update might be overwhelmingly
expensive. The goal, pursued in this paper, as well as in several earlier works (reviewed below)
is to store some implicit representation of £r that still supports efficient execution of vertical ray
shooting queries into the current envelope (or point location queries in the current Mp).

In all applications of dynamic nearest neighbor searching mentioned above, the lower envelope
of the corresponding set F' of bivariate functions has linear complexity. The distance functions that
arise are typically L,-metrics, for some 1 < p < oo, or additively weighted Euclidean metrics, where
each (say, point) site s € S has an associated weight ws € R, and d(q, s) = |¢s|+ws, where |gs| is the
Euclidean distance between ¢ and s. See, e.g., [5,33] for details concerning the linear complexity of
the envelope in these cases. This property of having lower envelope of linear complexity also holds
for general classes of pairwise-disjoint compact convex sites of constant description complexity.

Our main result is an efficient data structure that dynamically maintains a set I’ of bivariate
functions, of the kind assumed above, under insertions and deletions of functions, and supports
efficient vertical ray shooting queries into the lower envelope of F. Assuming, as above, that the
complexity of the lower envelope is linear, the worst-case cost of a query, as well as the amortized
cost of an update, is polylogarithmic in our data structure. Applying this data structure, we obtain
faster solutions to all the applications mentioned above, essentially replacing an O(n®) factor in the
complexity of earlier solutions by a polylogarithmic factor.

A brief context. Consider first the case where the graphs of the bivariate functions in F' are
planes. (As already noted, this case corresponds to the dynamic nearest neighbor problem for a set
S of point sites with respect to the Euclidean metric.) A classic solution for this special case is due
to Agarwal and Matousek [4]. They show how to maintain dynamically, in an implicit manner, the
lower envelope of a set F' of at most n planes, with amortized update time O(n®), where € > 0 can
be made arbitrarily small (and where the constant of proportionality depends on ¢); vertical ray
shooting queries take O(log n) worst-case time. The case of more general bivariate functions, of the
sort considered in this paper, was studied by Agarwal et al. [3]. In cases where the complexity of
the lower envelope is linear (such as those reviewed above), the technique of Agarwal et al. [3] has
amortized update (insertion or deletion) time O(n¢), and worst-case query time O(logn), matching
the known bounds for planes by Agarwal and Matousek [4].

For more than ten years after the work of Agarwal and Matousek [4], it was open whether the



O(n®) update time can be improved. In SODA 2006, Chan [13] presented an ingenious construction,
in which both the (amortized) update time and the (worst-case) query time are polylogarithmic, for
the case of planes. More precisely, Chan’s data structure (combined with the recent deterministic
construction of shallow cuttings by Chan and Tsakalidis [15]) supports insertions in O(log3n)
amortized time, deletions in O(log®n) amortized time, and queries in O(log? n) worst-case time.
However, so far it has still been unknown whether a similar result (with polylogarithmic update
time) is possible for arbitrary bivariate functions of constant description complexity with linear
envelope complexity. In this paper we settle this question, by providing an algorithm that meets
all these performance goals. Along the way, we also improve the deletion time for Chan’s data
structure for the case of planes by a logarithmic factor and the bound of Agarwal et al. [3] for the
complexity of the vertical decomposition of the (< k) level in an arrangement of surfaces in R? by
a factor of k°.

2  Our results and techniques

As already mentioned in the introduction, our dynamic nearest neighbor structure for general
distance functions requires a multitude of techniques that need to be combined carefully. We now
first give an broad overview of how these techniques play together, and then we provide a more
detailed description on how we use them. See Figure 1 for an illustration, the various concepts that
appear in the figure will be explained in the subsequent text.
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Figure 1: An overview of how our techniques relate to each other.

Maybe the most crucial observation is that all the geometry required in Chan’s data structure
for dynamic lower envelopes of planes in R? lies in the construction of small-sized shallow cuttings
for planes (of a certain special type). Thus, once we have small-sized shallow cuttings for surfaces,
we are able to maintain dynamically the lower envelope of surfaces, or equivalently, solve the
generalized dynamic nearest neighbor problem in the plane. It turns out that using relative (p,¢)-
approximations, we can find the required cutting quite easily. However, at this point we do not
know how to obtain the conflict lists for such a cutting in an efficient manner. To solve this issue,
we give an algorithm that is based on randomized incremental construction (RIC) to compute the
(< k)-level in an arrangement of surfaces. This algorithm can be used to efficiently compute the
required shallow cutting and its conflict lists. Together with an improved version of Chan’s dynamic
lower envelope structure, this gives the generalized nearest neighbor data structure. We show the
impact of this structure by providing several applications (with new bounds), old and new. In what



follows, we describe the specific parts in more detail.

As mentioned above, the geometric core of Chan’s data structure consists of an efficient con-
struction of small-size shallow cuttings of a particularly favorable kind, which we refer to as vertical
shallow cuttings [12,15]. To define these constructs, we first recall the notion of a level in an
arrangement of n function graphs in three dimensions. For a parameter 0 < k < n — 1, the k-level
in the arrangement is the closure of the set of points ¢ such that g lies on some function graph and
exactly k of the graphs pass strictly below q.

Roughly speaking (precise definitions and further discussion are given below), for suitably chosen
parameters k and r ~ n/k, a vertical k-shallow (1/r)-cutting consists of pairwise openly disjoint
semi-unbounded vertical prisms, where each prism consists of all points that lie vertically below
some triangle, such that (i) these top triangles form a polyhedral terrain that lies above the k-level
of the arrangement A(F), and below a level &’ that is close to k, (ii) the number of prisms is close
to O(r), and (iii) each of them is crossed by approximately k of the function graphs.

Essentially, once a fast construction of vertical shallow cuttings of sufficiently small size is
available, we can combine it with the machinery developed by Chan [13] for the case of planes,
in an almost black-box fashion, to obtain a fast data structure for dynamic maintenance of £ in
the general setting. Agarwal et al. [3] prove the existence of shallow cuttings of optimal size for
general functions, but their cuttings are not “vertical”, in the above sense, and a direct algorithmic
implementation of their construction yields an additional O(n®) factor for both the size of the
cutting and the time required to construct it. When applied to the dynamic maintenance problem,
this makes the (amortized) cost of an update O(n®) rather than polylogarithmic, and refining this
bound is one of the main goals of the present paper.

We handle these issues by designing a different algorithm for computing a vertical shallow
cutting. To obtain this algorithm, we first prove several technical results that we believe to be of
independent interest.

We first use the notion of relative approximation, as in Har-Peled and Sharir [28], to conclude
that, by choosing a random sample S, of 57 logn of the functions in F, and by constructing level ¢

of A(Sy) where t is in the range [(1+ £)A, (1+ 5)A], for A = Cl;’# and ¢ being a suitable absolute
constant, we get an e-approximation of level k of A(F'), with high probability. This means that
any such level t of A(Sy) lies between levels k and (1 + )k of A(F’). Furthermore, we show that if
we choose t uniformly at random in the above range, the expected complexity of the corresponding
level is O (s%k log? n)

Having computed such a level, we project it onto the xy-plane, compute the standard planar
vertical decomposition of the projection, lift each trapezoid ¢ of this decomposition back to a
trapezoidal-like subface ¢* on the original level, and associate with it the semi-unbounded vertical
prism consisting of all points that lie vertically below ¢*. We show that this collection of prisms
is a vertical k-shallow (1/r)-cutting in A(F') (with parameters k and r as above), and we denote it
by Ag.

The last hurdle that we face is how to efficiently compute Ag, together with the conflict lists of
its prisms, where, for a prism 7, the conflict list CL(7) of 7 is the set of all functions f € F' that
cross the interior of 7. (Note that, although the construction of Ay is performed with respect to
the sample Sk, the conflict lists of its prisms are defined with respect to the entire collection F'.)

For this we consider the classical problem of computing the ¢ shallowest levels in an arrange-
ment of n bivariate functions of constant description complexity, as above. A standard approach
to performing this construction is via randomized incremental construction (RIC, in short); see,



e.g., [8,37]. In this approach, one adds the functions one by one, in a random order, and maintains
some representation of the desired structure (the first ¢ levels in our case) of the subset of functions
inserted so far. Following one of the standard ways of performing a RIC, we maintain a decompo-
sition of the region below the t-level of the arrangement of the current subset of the functions, and
associate with each of its cells a conflict list, of all the functions not yet inserted that cross that cell.
If we run this process to completion, we get a suitable decomposition of the ¢ shallowest levels of
the “final” A(F'), but if we stop after inserting the first 5 logn functions, which can be regarded
as constituting the desired random sample Sk, we obtain, in addition to (a suitable decomposition
of) the t shallowest levels of A(S}), the conflict lists (with respect to the whole F') of its cells.

We note that the decomposition that we use is (a suitable shallow portion of) the standard
vertical decomposition of an arrangement of surfaces in 3-space (see [18,42] for details). Each prism
in this decomposition extends between two consecutive levels of the present arrangement, so the
prisms cannot be used to form a vertical shallow cutting. Nevertheless, as we show, it is possible
to transform our decomposition into a vertical shallow cutting, including the new conflict lists of
its semi-unbounded prisms. The resulting shallow cutting is of expected complexity O (% log? n)
(where we use an e-approzimation of the k-level of A(F) for some constant value of ¢).

The implementation of such a randomized incremental construction of the shallowest ¢ levels of
A(F) is far from trivial. This problem has been considered before for the case where the function
graphs are planes. Mulmuley [36] described a randomized incremental construction of the first
t levels, when the lower envelope of the planes corresponds to the Voronoi diagram of a set of
points in the xy-plane (under the standard algebraic manipulations alluded to above). Mulmuley’s
procedure runs in O(nt?log(n/t)) expected time.! Agarwal et al. [2] used a somewhat less standard
randomized incremental algorithm, and obtained a bound of O(n log? n+nt?) expected time. Their
algorithm works for any set of planes. It maintains a point p in each prism, whose level in A(F)
is known, and uses this information to prune away prisms that can be ascertained not to intersect
the shallowest ¢ levels of A(F). Finally, Chan [11] obtained a bound of O(nlogn + nt?) expected
time with an algorithm that can be viewed as a batched randomized incremental construction.
Unfortunately, it is not clear how to extend some crucial components of these algorithms when F
is a set of nonlinear functions.

We present and analyze a standard randomized incremental construction algorithm for the shal-
lowest t levels of an arrangement of a set F' of n bivariate functions of constant description com-
plexity with linear envelope complexity. Our algorithm runs in expected O(ntAsy2(t) log(n/t)logn)
time, where s is a constant that depends on the surfaces and As;2(¢) is the function which bounds
the maximum length of a Davenport-Schinzel sequence of order s + 2 [42].2 To get this result,
we improve a bound of Agarwal et al. [3] on the complexity of the vertical decomposition of the ¢
shallowest levels in such an arrangement. Agarwal et al. proved that this complexity is O(nt>*¢),
for any € > 0, using a fairly complicated charging scheme, and we improve this to O(ntAs;2(t)),
using a simpler argument, where s is some constant that depends on the algebraic complexity of
the functions of F.

Using our randomized incremental algorithm, we construct a vertical shallow cutting of the
first k levels in A(F), consisting of O (% log? n) prisms, each with a conflict list of size O(k). The
construction time is O(nlog® n),y2(logn)).

1O(nt?) is a tight bound on the complexity of the ¢ shallowest levels in an arrangement of n planes.
2As is well known [42], the function Asy2(t) is “almost” linear, i.e., Asy2(t) = tBs42(t) for some extremely slow-
growing function Ssy2(t) inverse-Ackermann type.



Once we have available an efficient mechanism for constructing vertical shallow cuttings, we
apply it, following and adapting the technique of Chan for the case of planes , to obtain our
dynamic data structure. Before doing so, we re-examine Chan’s data structure, for the case of
planes, and revise it into a structure that (in our opinion) is easier to understand an at the same
time is slightly faster. Our variant follows a standard route: we begin with a static data structure,
then extend it to support insertions, using a variant of the well-known Bentley-Saxe binary counter
technique [7], and finally show how to perform deletions via re-insertions of planes, using a so-
called deletion lookahead mechanism, the major innovation in Chan’s work. We believe that this
new perspective sheds additional light on the inner workings of Chan’s structure. Furthermore,
we were able to improve the amortized cost of a deletion, by a logarithmic factor, to O(log5 n).
Deletions are the costliest operations in Chan’s technique, and are therefore the bottleneck in most
applications.

We finally combine our shallow cutting construction with our improved version of Chan’s data
structure, to obtain a dynamic data structure for vertical ray shooting into the lower envelope
of a dynamically changing set of bivariate functions of the type that we consider. Our (worst-
case, deterministic) query time is O(log®n), the (amortized, expected) time for an insertion is
O(log® nAsi2(logn)), and the (amortized, expected) time for a deletion is O(log? n\s;2(logn)).

As mentioned, plugging our new bounds into the applications described in Agarwal et al. [3]
and in Chan [13] immediately improves numerous running time bounds by a factor of n°. Some
prominent examples are shown in following table, details can be found in Section 9.

Problem Old Bound New Bound ‘

D . . h . 1 10 . .

ynamic bichromatic ¢ os§st n® update [3] log11 nAsy2(logn) 1nsertmon,
pair in general planar metric log™* nAs+2(logn) deletion
Minimum Euclidean planar | o, _ 91 11
bichromatic matching " 13] n”log nAsta(logn)
D . . .

YHAMIC IOintmum Spanning | . update [3] log!® ns,2(logn) update

tree in general planar metric

log® nAs 2(logn) insertion,
log® nAs 2(logn) deletion,
queries in log? n and log® n

Dynamic intersection of unit | n° update [3]
balls in R3 queries in logn and log* n

One particularly fruitful application domain for our data structure can be found in disk inter-
section graphs. These are defined as follows: Let S C R? be a finite set of point sites, each with
an associated weight w, > 0, p € S. The disk intersection graph for S, D(S), has the sites in S as
vertices, and there is an edge between two sites pg in S if and only if |pg| < wy, + wy, i.e., if the
disk around p with radius w, intersects the disk around ¢ with radius w,. If all weights are 1, we
call D(S) the unit disk graph for S. Disk intersection graphs are a popular model for geometrically
defined graphs and enjoy an increasing interest in the research community, in particular due to
applications in wireless sensor networks [10,14,25,40]. The following table gives an overview of our
results.



’ Problem \ Old Bound New Bound

Shortest path tree in a unit

1+e 11
disk graph n e [10] nlog " nAsi2(logn)
Dynamic connectivity in disk | n29/2! ypdate U2 log? nAsi2(logn) update
intersection graphs n'/7 query [14] logn/loglogn query
BFS tree in a disk intersection nl+e [40] n1og? nAssa(log n)

graph

(1 + p)-spanner for a disk in-

tersection graph nt/3tep=4/310g/3 @ [25] (n/p?)1og” nAsi2(logn)

Two applications concern finding shortest path trees in unit disk graphs and BFS-trees in disk
intersection graphs. Here, our new structures give improved bounds almost in a black-box fashion
using the techniques of Cabello and Jejéi¢ [10], and of Roditty and Segal [40]. The other two
applications are a bit more involved. The first application consists of a data structure for the
dynamic maintenance of the connected components in a disk intersection graph, as disks are inserted
or deleted. We assume that all disks that are inserted or deleted have weights that lie in the interval
[1, ¥]. Then, we can leverage our data structure in a novel grid-based approach that gives an update
time that depends on ¥ and is polylogarithmic if ¥ is constant. The previous bound of Chan,
Patragcu, and Roditty [14] is only slightly sublinear, but independent of W. Finally, we give an
algorithm for computing a (14 p)-spanner in a disk intersection graph, for p > 0. A (1+ p)-spanner
for D(S) is a subgraph H of D(S) such that the shortest path distances in H approximate the
shortest path distances in D(S) up to a factor of (1 + ¢). The previous construction by Fiirer and
Kasiviswanathan [25] has a running time that depends on the radius ratio ¥, as defined above.
Our new algorithm is independent of ¥ and achieves almost linear running time, improving the
previous algorithm by a factor of at least n!/3.

Paper outline. Section 3 gives further background and precise definitions. In Section 4 we
describe how to obtain a terrain that approximates level k of A(F') by random sampling, via the
notion of relative (p,e)-approzimations (see [28] and later in this paper). In Section 5, we define
a vertical shallow cutting based on our level approximation and show how to compute it via a
randomized incremental construction of the shallowest ¢ levels in A(F). In Section 6, we describe
the randomized incremental construction and analyze it. Section 7 gives our variant of Chan’s
structure. Combining our cuttings with Chan’s machinery as presented in Section 7, we obtain,
in Section 8, an efficient procedure for dynamically maintaining the lower envelope of a collection
of algebraic surfaces of constant description complexity (with linear lower envelope complexity).
Finally, in Section 9, we describe a few known applications, for which we obtain better bounds,
and our new applications for disk graphs.

3 Preliminaries

Let F be a family of bivariate functions in R3, and let F be a finite subset of 7. Throughout
the paper, we assume that the functions in F are continuous, totally defined, and algebraic, and
that they have constant description complexity, formally meaning that the graph of each function



is a semialgebraic set, defined by a constant number of polynomial equalities and inequalities of
constant maximum degree. The lower envelope Er of F is the graph of the pointwise minimum of
the functions of F'. The xy-projection of £ is a subdivision of the xy-plane called the minimization
diagram Mg of F. It can be represented by a standard doubly connected edge list (DCEL) structure
(see, e.g., [8]). Each of its faces corresponds to (and is labeled by) the function in F' that attains
Er over that face.

When My consists of O(|F|) faces, vertices, and edges, for any finite F' C F, we say that F has
lower envelopes of linear complexity, and we assume this to be the case for the families F that we
are going to consider. In particular, this holds when F is the family of all nonvertical planes, and
when F is a family of distance functions under some metric (or so-called convex distance function),
each of which measures the distance of a point in the zy-plane to some given site (cf. Section 9).

For simplicity, we also assume that F' is in general position, i.e., no more than three function
graphs meet at a common point, no more than two function graphs meet in a one-dimensional
curve, and no pair of graphs are tangent to each other. (This holds if, say, the coefficients of the
polynomials defining the functions in F' are algebraically independent over the reals [42].) Further-
more, we assume that the coordinate frame is generic, so that the xy-projections of the intersection
curves of pairs of the function graphs are also in general position, defined in an analogous sense.

Model of Computation. We assume a (by now fairly standard) algebraic model of computation,
in which primitive operations that involve a constant number of functions of F take constant time.
Such operations include: computing the intersection point of a triple of function graphs, computing
the intersection curve of a pair of graphs, decomposing it into connected components, finding a
representative point on each such component, computing the points of intersection between the xy-
projections of two intersection curves, testing whether a point lies below, on, or above a function
graph, and so on. This model is reasonable, because there are standard techniques in computational
algebra (see, e.g., [6,41]), and actual packages (such as the one described in [9]), that perform such
operations exactly in constant time. (Technically, these methods and packages determine exactly
the truth value of any Boolean predicate of constant description complexity. That is, they are not
expected to provide exact values of roots of polynomial equations, but they can determine, exactly
and in constant time, any algebraic relation between such roots and/or similar entities, expressed
by a constant number of polynomial equations and inequalities of constant maximum degree.)

Shallow cuttings. Let A(F) be the arrangement of a set of n bivariate functions F' C F in R3.
The level of a point ¢ € R? in A(F) is the number of functions of F whose graphs pass strictly
below ¢q. For k € {0,...,n — 1}, the k-level Ly(F) of A(F) is the closure of the set of points at
level k that lie on the union of the graphs of the functions in F'. We denote by L<y(F') the union
of the first k levels of A(F). For given parameters k, r < n, a k-shallow (1/r)-cutting in A(F')
is a collection A of pairwise openly disjoint regions 7, each of constant description complexity, so
that the union of these regions covers L<(F'), and so that the interior of each region 7 € A is
intersected by at most n/r graphs of functions of F. The size of A is the number of regions in A.

A wertical k-shallow (1/r)-cutting in A(F) is a collection A of pairwise openly disjoint vertical
semi-unbounded pseudo-prisms, a notion to be defined momentarily, so that, as above, the union
of these pseudo-prisms covers L<(F), and so that the interior of each pseudo-prism 7 € A is
intersected by at most n/r graphs of functions of F. Note that, for both conditions to hold
simultaneously, we must have k£ < n/r. In our setting, we will always have r = ©(n/k), which is



the case most relevant for applications.

A pseudo-prism 7 consists of all points that lie vertically below some portion 7 of a graph of
a function in F, so that 7 has constant description complexity. In our application, 7 will be a
pseudo-trapezoid, defined as the portion of a function graph consisting of points (x,y, z) satisfying
z” <z <zt ¢ (z) <y < ¢Pt(z), for real numbers 2~ < 2t and for (semi-)algebraic functions
™, 9T of constant description complexity. In the case of planes, 7 will simply be a triangle, and
we do not insist that 7 be contained in one of the input planes.

In his seminal paper on reporting points in halfspaces [35], Matousek proved the existence of a
k-shallow (1/7)-cutting, for n hyperplanes in R?, whose size is O(q(%?17l4/2]) where ¢ = k(r/n)+1.
For the interesting special case where k = ©(n/r), we have ¢ = O(1) and the size of the cutting
is O (r Ld/ 2J), a significant improvement over the general bound O(r?) for a cutting that covers the
whole arrangement (rather than just L<y(F')) [16]. For example, in three dimensions, we get (for
arrangements of planes) O(r) simplices, instead of O(r3) simplices for the whole arrangement. This
has led to improved solutions of many range searching and related problems (see, e.g., [15] and the
references therein).

Matousek [35] presented a deterministic algorithm to construct a shallow cutting in polyno-
mial time; the running time improves to O(nlogr), for r < n’ for a sufficiently small constant §
(depending on the dimension d). Later, Ramos [39] presented a (rather complicated) randomized
algorithm for d = 2,3, that constructs a hierarchy of shallow cuttings for a geometric sequence
of O(logn) values of r (and k = ©(n/r)), in O(nlogn) overall expected time. Recently, Chan
and Tsakalidis [15] provided a deterministic algorithm for the same task. Their algorithm can be
stopped early to obtain an O(n/r)-shallow (1/r)-cutting in O(nlogr) time. Interestingly, their
analysis uses Matousek’s theorem on the existence of an O(n/r)-shallow (1/r)-cutting of size O(r)
as a black box.

Chan [12] was the first to show the existence of vertical shallow cuttings for planes in three di-
mensions. Such a cutting is associated with a polyhedral triangulated xy-monotone terrain, which
lies entirely above the k-level of the arrangement, so that each triangle 7 of the terrain generates
a semi-unbounded triangular prism with 7 as its top face. Such shallow cuttings have many ap-
plications, in particular in Chan’s dynamic lower envelope data structure [13]. The deterministic
construction of Chan and Tsakalidis [15] constructs vertical shallow cuttings. Recently, Har-Peled,
Kaplan, and Sharir [27] gave an alternative construction with some additional favorable properties.

Things become technically more involved when we consider cuttings in arrangements of algebraic
functions in dimension three and higher. Decomposing cells of the arrangement into subcells of
constant description complexity is easy for hyperplanes (where the subcells are simplices), using,
e.g., the bottom-vertex triangulation [17,20]. For general curves or surfaces, the only known general-
purpose cell decomposition technique is vertical decomposition [18,42]. In the plane, the complexity
of such a decomposition is proportional to the complexity of the undecomposed arrangement, and
in three and four dimensions, near (but not quite) optimal upper bounds are known [18,32], but in
dimension five and higher, the known upper bounds are significantly larger [18]. Regarding shallow
cuttings for general surfaces, we are aware only of the aforementioned result of Agarwal et al. [3],
and of no work that considers vertical shallow cuttings for this general setup.

30ne significant difference is that the “top terrain” in [27] approximates the corresponding level k up to any
specified accuracy, whereas the structure in [15] does not.



4 Approximate k-levels

In this section and the next, we show how to obtain shallow cuttings for surfaces via random
sampling; we address the issue of how to efficiently compute the cuttings and their conflict lists in
a later section.

Let F be a family of continuous, totally-defined bivariate algebraic functions of constant de-
scription complexity, and let F' be a collection of n functions from F. In what follows we will
generally make no distinction between a function f € F and its graph z = f(z,y) in R3, which is
a continuous (zy-monotone) surface, called a terrain, with constant description complexity. Recall
that we also assume that the maximum lower envelope complexity 1(m) of any m functions of F
is O(m).

Agarwal et al. [3] provide a shallow cutting for this setup. For general values of k and r, the
bound in [3] on the size of a k-shallow (1/7)-cutting for A(F) is O(¢>**4(r/q)), where ¢ = kr/n+1,
which is slightly sub-optimal when ¢ is large. However, we are interested in the special case r ~ n/k
and ¢(r) = O(r), so ¢ = O(1) and the bound becomes O(r), which is optimal. Nonetheless,
the cutting in [3] is not “vertical”, that is, it is not composed of vertical pseudo-prisms, and is
therefore useless for our approach to the construction of level approximations and for the dynamic
maintenance of lower envelopes.

Techniques for computing vertical shallow cuttings for planes, and the conflict lists associated
with their prisms [15,27] heavily rely on the fact that if a plane intersects a semi-unbounded prism
T it must intersect a vertical edge of 7. This does not necessarily hold for general functions, and we
therefore need to use a somewhat different approach, that results in cuttings of slightly suboptimal
size, but only by (small) polylogarithmic factors. It is an interesting challenge to tighten the bound,
bringing it down to optimal. For the time being, though, we are not aware of any alternative to
the cuttings constructed here, for the specific applications in this paper.

Let 0 < ¢ < 1/2 be a specified error parameter.* We next present a technique for approximating
a level L(F) of A(F) by a terrain T}, (which will actually be a level in an arrangement of some
subsample of F'), with the following properties.

1. T fully lies above Li(F) and below L., (F) of A(F).

_ _ log?
2. The complexity |T| (that is, number of vertices, edges, and faces) of T is O <W)
€
Relative (p, c)-approximation. We construct T, via the notion of relative (p, )-approzimation
(see Har-Peled and Sharir [28] for more details): For a range space (X, R) of finite VC-dimension,
and for given parameters 0 < p,e < 1, a set A C X is called a relative (p, €)-approximation, if, for
each range R € R, we have

B8R > p|X

|X| |4 ep,  if |R| < p|X|.

“If the ¢ that we use is not too close to 0 (say, ¢ = 1/2), the dependence of the bounds derived below on ¢ can
be suppressed. We include it, though, in the interest of precision, and in the hope that these bounds might be useful
for future applications that would require closer level approximations.
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As shown in [28] (following Li et al. [34], see also Har-Peled’s book [26]), a random sample of size

1 1 1
0] <2 <log+log)>,
e'p p q

with a suitable constant of proportionality that depends (linearly) on the VC-dimension, is a relative
(p, e)-approximation with probability at least 1 — q.

We apply this general machinery to the range space (F,R) defined as follows. Each range
R € R is the set of functions of F whose graphs intersect an object o, which is either a straight
line, segment, or ray, or an edge in the arrangement of the graphs of a constant number of functions
of F, or a face in such an arrangement, or a connected portion of such a face cut off by vertical
planes orthogonal to the z-axis, or a connected component of the intersection of such a face with
a plane orthogonal to the z-axis. The fact that (F,R) has finite VC-dimension, for a collection F
of bivariate algebraic functions of constant description complexity, follows by standard arguments
(see, e.g., [42]).

Fix a parameter k < n, and let S C F' be a random sample of size

con n 1
e = |Sk| = gg—k <logk+logq>,

where ¢g is a suitable constant (that depends on the VC-dimension of (F,R), but is independent
of €), and g = 1/n’, for some sufficiently large constant exponent b. By what has just been noted,
with an appropriate choice of ¢, Sy is a relative (%, %)—approximation for (F,R), with probability
at least 1 — ¢g. With the above choice of ¢, we can simplify the expression, and put

ri =[Sl = 57 logn,
for another suitable absolute constant ¢ > 0. Note that for this choice of r; to make sense, k£ has
to be (8% log n) The case of smaller k is simpler, and will be treated below.

Set Ty to be a random level in A(Sy), of index t chosen uniformly at random in the range
[(A+5)A (1+5)A], for A = Slogn. We refer to Ty as an e-approzimation to level Li(F) in
A(F), and justify this terminology in the following lemmas.

In the lemmas, we assume, without stating it explicitly, that the random sample S is indeed a
relative (%, %)—approximation. Nevertheless, the bounds in Lemmas 4.2 and 4.3 also hold without
this assumption, since Sy, fails to be a relative (%, 5
which is polynomially small in n.

)—approximation with probability at most 1/n?,

Lemma 4.1. The level T}, lies between levels k and (1 + )k of A(F).

Proof. Let p be a point of level k of A(F'), and let R®) denote the range of those functions that
pass below p, i.e., that cross the downward-directed vertical ray emanating from p. By assumption,

Sy is a relative (%, %)—approximation, for a range space that includes R®). Since
k k| R®)|
2n n on

we can conclude (using the first case in (1)) that



That is, at most (1 + %) A functions of Sy lie or on below p, or, in other words, p must lie on or
below T'. Similarly, let p be a point of level (1 4 €)k of A(F'). By a symmetric argument, using
the fact that ¢ < 1/2, at least (1 —£) (1 + E)%Tk > (14 £) A planes of S, cross the vertical ray
emanating downwards from p. Hence p must lie on or above T, and the lemma then follows. [

Lemma 4.2. The expected number of vertices p of A(Sk) whose level g, (p) in A(Sk) is between
. n 3
(1+5)Xand (1+5)A st(ﬁlog n)

Proof. As argued in the proof of Lemma 4.1, since S}, is a relative approximation, only vertices p of
A(F) whose level at this arrangement lies between k and (1 + )k can satisfy (1+ 5) A < £g,(p) <
(1+ 5) A. The probability of any vertex of A(F) to show up in A(S}) is®

(%;‘;é) ~ (%’“)3 ) <561k3 log? n> .

Tk

As shown in Clarkson and Shor [21] and noted in the introduction, the number of vertices of A(F)
at level at most (1 + &)k is O(n((1 + ¢)k)?) = O(nk?). (This bound holds because (m) = O(m);
in general, the bound is O(k3y(n/k)).) Hence, the expected number of vertices p of A(Sg) with
(1+35) A<l (p) < (1+5)Ais at most

LR P
@) <56k log n) , (2)
as claimed. O

Lemma 4.3. The expected complexity of T}, is
) (} log? n) . (3)

Proof. The bound in (2) is proportional to the sum of the complexities of all the j-levels of A(Sk),

£

for j € [(1 + g) A, (1 + %) )\]. Hence, the expected complexity of a random level ¢ among them is

6)\1/6 .O<%log3n) = g-eélk)gn.0<ggklog3n> :O(ﬁloan»

as claimed. n

Finally, we show how to handle the case when k is small. If k < (1/e?)clogn, we pick an
integer ¢ randomly in the interval [k, (1 + €)k]. Let Ty be the t-level in the arrangement A(F) of
all surfaces. By definition T, approximates the k-level in A(F). Furthermore, the same Clarkson-
Shor based analysis as used in Lemma 4.2 and Lemma, 4.3 shows that T, has expected complexity
O(™) = O("logzn), for k small enough.

€ &Sk

SHere we use the model where we sample a subset of the prescribed size, where all such subsets are equally likely
to be drawn. One could also use an alternative common model, in which each function is independently chosen to
be in Sk with probability rx/n. The calculations are slightly different in the latter model, but they lead to the same
conclusions and asymptotic bounds.
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5 From approximate levels to shallow cuttings

Informally, we would like to turn the approximate level T, into a shallow cutting of the first & levels
of A(F), so that each face @ of T becomes a semi-unbounded vertical pseudo-prism ¢, consisting
of all the points that lie vertically below . In what follows, we simplify the notation, and refer
to these pseudo-prisms simply as prisms. We denote by Tj the collection of prisms obtained in
this way. The only technical obstacle is that the faces % need not have constant complexity, which
might cause the corresponding prisms to be crossed by too many function graphs.

To overcome this issue, we decompose each such face p into sub-faces of constant complexity,
using two-dimensional vertical decomposition. That is, we project each face @ onto the xy-plane,
and decompose the resulting projection p* into y-vertical pseudo-trapezoids by erecting y-vertical
segments (or rays) from each vertex of ¥* and from each point of vertical tangency on its boundary,
extending them until they hit another edge of @* (or all the way to +oo if they don’t). The number
of pseudo-trapezoids is proportional to the complexity of @. We then lift each resulting pseudo-
trapezoid 7* into a vertical semi-unbounded pseudo-prism 7 (called, as above, a prism), consisting
of all the points that lie vertically below @ and project to points in 7.6 Our cutting Ay is the
collection of all these prisms 7. We also denote by Ay the terrain formed by the ceilings 7 of the
prisms 7 € Aj. Note that Ay is a refinement of T. As we will shortly show, Ay, is indeed a shallow
cutting of the first k levels of A(F).

For each prism ¢ € T} and 7 € Ay, its conflict list, denoted as CL(yp) and CL(7), respectively,
is the set of functions of I’ whose graphs intersect ¢ or 7.

Lemma 5.1. Ay is a shallow cutting of the first k levels of A(F). It consists (in expectation) of

O(|A]) = O (7 log?n)

prisms, and each prism in Ay intersects at least k and at most (1 4 2¢)k graphs of functions of F.

Proof. Let T be a prism of A;. By Lemma 4.1, for each point p on the ceiling 7 of 7, the level
lr(p) of p in A(F) is in the range [k, (1 + ¢)k]. In particular, the level of each vertex of 7 is in
[k, (1 + ¢)k]. Furthermore, since 7 does not intersect the graph of any function of Sy (which is a

relative (%, %)—approximation for (F,R), and 7 induces a range in R), it cannot intersect more
than
ek
epn = =,

graphs of functions of F' (here the second bound in (1) applies). For any function f € F whose
graph crosses 7, the graph either passes below all vertices of 7 (and there are at most (1+ ¢)k such
functions), or crosses 7. Altogether,

|CL(7)| < <1 + 75) k< (14 2¢)k.

The construction of Ay ensures that the number of its prisms is proportional to the complexity of
Ak, so, using Lemma 4.3, it satisfies (in expectation) the bound asserted in the lemma. ]

5A significant difference between the machinery used here and that for the case of planes, as in [27], say, is that
in the case of planes we only lift the vertices of the zy-map to the appropriate level (or to an approximation of the
level), and each triangular face is lifted to the convex hull of its vertices, which in general is not contained in the
level. In contrast, here we lift each pseudo-trapezoidal face from the xy-plane to lie fully on the level.
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6 Randomized Incremental Construction of the <i¢ Level

In this section, we present a randomized incremental construction of the first ¢ levels in an arrange-
ment of n zy-monotone surfaces of constant description complexity in R?, for which the complexity
of the lower envelope of any m of them is O(m). The expected running time of the algorithm is
O(ntAs+2(t)log(n/t)logn), and the expected storage is O(ntAs12(t)), where s is a constant that de-
pends on the complexity of the surfaces and A\s12(t) is the familiar Davenport-Schinzel bound [42].
We will later use it to compute the shallow cutting as described in Section 5 together with its
conflict lists.

Let F be a family of bivariate functions in R? with constant description complexity and with
linear lower envelope complexity. Let F' be a subset of n members of F. Our goal is to construct
the first ¢ levels of the arrangement A(F'). For doing this, we follow the standard technique of
randomized incremental construction (RIC in short), in which we insert the surfaces of F' one at a
time, in a random order, and maintain, after each insertion, the first ¢ levels in the arrangement of
the functions inserted so far (¢ is kept fixed during the process). Enumerate the functions of F' in
the random insertion order as fi, fo, ..., fn, and let F; = {f1,..., fi}, fori=1,... n.

As is standard in this approach, the algorithm maintains a decomposition of L<;(F;) into cells
of constant description complexity (see below for details on the decomposition that we use), and
maintains, for each cell 7, its conflict list, which is the set of all functions not yet inserted that
cross 7. When the next function f;;; is inserted, it retrieves right away, using the conflict lists, all
the cells that it crosses. These cells are “destroyed” by f;+1 (that is, they are no longer valid cells
of the new decomposition), and are partitioned by f;+1 into subcells. These subcells, though, are
also not necessarily valid cells of the new decomposition of L<;(Fj41), and need to be merged and
refined into the correct new cells. In addition, one has to construct the conflict lists of the new
cells, which are composed from the elements in the conflict lists of the destroyed cells.

6.1 Computing the First ¢ Levels

We take a random permutation of F', which we assume to be fi, fo,..., fn, and denote by F; the
prefix of the first ¢ elements, for i = 0,1,...,n.

The structure that we maintain after each insertion is the vertical decomposition of L<; =
L<;(F;) of the first ¢ levels of A(F;). This vertical decomposition is denoted by VD<; and is defined
in the following standard manner.

We obtain VD<; in two decomposition stages. In the first stage, we erect within each cell C' of
L<; a vertical curtain up and/or down from each edge (an intersection edge of a pair of surfaces)
of L<;. Each such wall consists of maximal vertical segments contained in (the closure of) C' and
passing through the points of the edge. The collection of these walls partitions C' into subcells,
each having the property that it has a unique “top” facet (referred to as its ceiling) and a unique
“bottom” facet (referred to as its floor); one or both of these facets may be undefined when the
subcell is unbounded, and all other facets of the subcell lie on the vertical walls. However, the
complexity of each subcell may still be arbitrarily large. Thus, in the second decomposition stage,
we take each subcell C’, project it onto the xy-plane, and apply to the projection a similar but two-
dimensional vertical decomposition: we erect a y-vertical segment from each vertex of the projected
subcell and from each point of local z-extrema on its edges. This yields a collection of trapezoidal-
like subcells, and we then lift each of them vertically to 3-space; formally, we take each trapezoid 7
and form the intersection (7 x R) N C’. This yields a decomposition of C’ into prism-like subcells,
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each having “constant description complexity,” meaning that each of them is a semialgebraic set
defined by a constant number of polynomials of constant maximum degree (which depends on the
maximum degree of the surfaces in F). Repeating this second stage for all subcells C’ produced
in the first stage, and all the cells C' of L<; , we obtain the desired vertical decomposition of L<;.
More details can be found in [18,42].

As is well known, the complexity of VD<; is proportional to the number of pairs (e, ¢’) of edges
of L<;, such that (i) the zy-projections of e and €’ cross one another, at some point ¢, and (ii) the
z-vertical line through ¢ meets e and e’ at two respective points w and w’, such that the segment
ww’ does not cross any other surface of F;. We refer to such a pair (e, €’) as a vertically visible pair
of edges, and assume that the pair is ordered, and that e lies above €’ (i.e., w lies above w').

The following crucial lemma improves an earlier bound of O(nt?*¢) by Agarwal et al. [3]. The
parameter s in the lemma is defined as follows. For any quadruple f1, fa, f3, f1 of functions of F,
we let s(f1, f2, f3, f1) denote the number of co-vertical pairs of points ¢ € f1 N fa, ¢ € f3N fi. We
define s to be the maximum value of s(f1, fa, f3, fa), over all quadruples fi, fa, f3, f4 of functions
of F. By our assumptions on F (including the one on general position), we have s = O(1). The
function Ag42(t) in the lemma is the familiar bound on the maximum length of a Davenport-Schinzel
sequence of order s + 2 [42].

Lemma 6.1. Let F be a set of n functions of F, and let t < n be a parameter. The complexity of
VD < (F) is O(ntAsy2(t)).

Proof. Let (e,€’) be a vertically visible pair of edges of A(F') within L<;(F). By definition, e is
not crossed by any function of F', and the overall number of functions whose graphs appear below
e is at most ¢. (Clearly, if a function f appears below some point of e, it must appear below every
point of e.) Hence, the complexity of the upper envelope of these functions, clipped to the vertical
curtain V. erected downward from e, is at most As(¢). Indeed, using a suitable parametrization of
e, the cross-sections of these functions within the curtain are totally defined univariate continuous
functions, each pair of which intersect at most s times. The latter property follows from the
definition of s, by noting that each vertex of the envelope is an intersection point of some edge €’
of L<¢(F) with V, that forms with e a vertically visible pair (e, e’), and vice versa.

A standard application of the Clarkson-Shor technique implies that the number of edges of
L<(F) is O(nt?). This follows by charging the edges to their endpoints, and by using the fact that
the number of vertices in the lower envelope of any m functions of F' is O(m). The analysis so far
already gives the (weak) bound of O(nt?)s(t)) ~ nt® on the complexity of VD<(F).

The arguments so far repeat more or less those given in the initial part of the analysis of [3],
and we are now going to replace the rest of the analysis in [3] by the following sharper one.

Fix a pair of functions f, f’ € F and let v denote their intersection curve. We first cut v at
each of its singular points and locally z-extremal points, into O(1) connected pieces, each of which
is an z-monotone Jordan arc. (In addition to our assumption of general position of the surfaces in
F, we also assume that the zy-frame is generic, to ensure that none of the curves v contains any
arc that lies within some yz-parallel plane.)

We cut these arcs further at their intersections with L;(F'), and keep the portions of these arcs
that lie in L<;(F'). To control the number of such portions, we relax the problem a bit, replacing
the level ¢ by a larger level ¢’ with ¢ < ' < 2t, for which the complexity of Ly(F) is O(nt). Since,
as mentioned above, the overall complexity of L<o:(F) is O(nt?), the average complexity of a level
between t and 2¢ is indeed O(nt), so there exists a level ¢ with the above properties. In the rest
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of the proof, we will establish the asserted upper bound for VD<y (F'), which will clearly serve as
an upper bound for the quantity we are after. To keep the notation simple, we continue to denote
the top level ¢/ as t.

Fix a Jordan subarc of some intersection curve that lies in L<;(F') (now with the new, potentially
larger index t). Any such subarc, if not fully contained strictly below L;(F'), ends in at least one
vertex of Ly(F'), implying that the number of subarcs that reach the t-level is O(nt). Any other
arc is charged either to one of its endpoints, or, if it is unbounded and has no endpoints, to its
intersection with the plane at infinity, say z = +oo.

Any arc that reaches the plane at infinity appears there as a vertex of the first ¢ levels of the
cross-sections of the functions of F' with that plane. An application of the Clarkson-Shor technique
to this planar arrangement implies that the number of these vertices is O(nt), so this also bounds
the number of arcs of this particular kind.

Finally, the number of arcs with an endpoint that is either singular or locally z-extremal is
bounded by charging each such arc to its respective (singular or z-extremal) endpoint, and by
bounding the number of these points (all lying in L<¢(F')) by yet another application of the
Clarkson-Shor technique. Noting that each such point is now defined by only two functions of
F, this leads to the upper bound O(nt) on their number.

To recap, the overall number of Jordan arcs that we have constructed is O(nt). Let I' denote
their collection.

Fix an arc v € I'. In general, v will consist of more than one edge of A(F'), and we denote
their number by p(y). We decompose v into () := [u(7y)/t] pieces, each consisting of at most ¢
consecutive edges. Again, assuming general position, if e; and ey are consecutive edges along (a
piece of) 7, the set of functions of F' whose graphs appear below e, and the set of those whose
graphs appear below ¢’ differ by exactly one function (the one incident to the common vertex of e
and ¢€’), which appears below e but not below ¢, or vice versa. This implies that, for a piece § of
v, the overall number of functions whose graphs appear below § is at most 2¢. Note that some of
these functions are now only partially defined. Arguing as above, the number of vertically visible
pairs of edges whose top edge is part of § is at most Asy2(2t) = O(As42(t)). Hence, the overall
number of vertically visible pairs of edges in L<;(F') is

e |00t < [ T (M7 4 1) - 00niat0) = | 3 T u0) 4111 | - 0001200

yer vyel vyer

We have already argued that |I'| = O(nt). The sum . . p(7) is simply the number of edges in
L<(F) which, as already argued, is O(nt?). In other words, the number of vertically visible pairs
of edges in L<;(F') is O (ntAs42(t)), as asserted. O

Remark. The same analysis yields a bound on the complexity of VD<;(F) also in cases where the
complexity of the lower envelope is not necessarily linear.

Each three-dimensional cell of VD<(F}) is a pseudo-prism, with up to six faces. Concretely,
we have already used “floor” and “ceiling” to refer, respectively, to the bottom and top faces of 7.
The y-forward (resp., y-backward) faces are the z-vertical “curtains” that bound 7 in the respective
positive and negative y-directions, and are each erected from an edge of 7 which is a portion of
an intersection curve between the surface supporting the floor or ceiling of 7 with another surface.
We will sometimes refer to these curtains shortly as the forward and backward faces of 7. The last
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two faces of 7 are portions of planes orthogonal to the z-axis; they are the left and right faces of
7. When we do not care whether a face of the second kind is forward or backward, we will refer to
it as a y-face. Similarly, we will refer to the left and right faces collectively as z-faces; see Figure 2
for an illustration. The notation also carries over to edges of 7. There are three kinds of edges:
(i) A y-edge, which is the common edge of the floor or ceiling and a y-face of 7. It is either (a
portion of) a “real” intersection curve, or a shadow edge, which lies vertically below or above a real
intersection edge on the other (floor or ceiling) side of 7. (ii) An x-edge, which is the common edge
of the floor or ceiling and an x-face of 7. (iii) A straight z-parallel segment, which is a common
edge of an z-face and a y-face.

y-forward face

left z-face right x-face

y-backward face

Figure 2: A top view of a prism 7 and its y-faces and x-faces.

6.1.1 Inserting a Surface

Consider the step when we insert a new surface f = f;1+1 to some prefix F; of F'. We have the
vertical decomposition VD<(F;), where each of its prisms 7 has an associated conflict list CL(7),
consisting of the surfaces of F'\ F; that cross 7. Our task is to obtain VD<;(Fj 1) with the conflict
lists of its prisms, each consisting of surfaces in F'\ Fj.

We perform this task in two steps. First we obtain the vertical decomposition of the part of
the arrangement A(F;11) which lies below the ¢ level of A(F;). We denote this arrangement by
Ai{ (Fj). This vertical decomposition contains some prisms which are above A<;(Fj+1), and we
discard them in the second step.

When f is inserted, we retrieve all the “old” prisms of VD<;(F;) that f crosses. Note that any
old prism 7 that f does not cross remains a valid prism in the vertical decomposition of Aig (Fy),
but, in case f passes fully below it, its level in the new arrangement (compared to its level A(F;))
is increased by 1. Hence, it may find itself above the t-level, in which case we will discard it in the
second stage. On the other hand, any old prism 7 that f does cross is destroyed. It is split by f
into fragments, some of which may climb up to level ¢t + 1 (and have to be discarded), while others
stay within the first ¢ levels, but in general they need not be valid prisms of Ai{ (EF}).

For the subsequent steps of the algorithm, we take these fragments, and construct their vertical
decomposition within 7. This takes O(1) time. In addition, we compute the conflict list of each of
the refined prisms of this decomposition, in brute force, by inspecting each function g € CL(7) and
selecting those that intersect the sub-prism.

Each new prism 7 must involve f as one of its (up to) six defining surfaces. That is, it must
contain a bounding feature that lies on f. This feature could be a face (when f forms the floor
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or ceiling of 7), or a y-edge (where f intersects the floor or ceiling of 7 at a boundary edge), or
a vertex (which is either an intersection point of f with an edge of 7 at its endpoint, or a locally
z-extremal point of an edge on f, which defines an z-face of 7; see Figure 3).

Figure 3: An z-face of a prism 7 (seen here as the left side of the view) formed by a locally
x-extremal point of some intersection edge with f (top view).

New prisms with a face on f. To construct these prisms, we begin by constructing and tracing
the y-edges of VD(A;{ (F;)) along f. More precisely, we collect the edges along f of the first stage

of the vertical decomposition of A:{ (F;). Following the terminology just introduced, each of these
edges is either a real intersection edge between f and an older surface, or a shadow edge, namely
the vertical projection of the portions of some real intersection edge that are vertically visible from
f. The real intersection edges are drawn, naturally, on both sides of f, but each shadow edge is
drawn only on one side (top or bottom) of f. Therefore, we obtain two different maps on f, MJE
and Mj?, corresponding to the top and bottom sides of f, respectively.

We start by identifying the real intersection edges along f. For each of the old prisms 7 that
f crosses (which we have already retrieved), we check whether f intersects the floor and/or the
ceiling of 7. Each such intersection consists of O(1) connected subarcs, which are portions of the
real edges that we are after. When such an edge e leaves a prism 7 (at an endpoint of some
intersection subarc), it can do so either through an z-edge or through a y-edge. In the former case
(crossing an z-edge), we have to glue e to a suitable portion of its continuation into the appropriate
old prism adjacent to 7, whereas in the latter case (crossing a y-edge) the crossing point v is either
a real vertex of Ai{ (F;) on e, or part of a vertically visible pair in Ai{ (F;) consisting of e and
the real intersection edge of 7 on its other side (floor or ceiling). In the former case, v delimits
two subedges of e, one within 7 (locally near v) and one entering an adjacent prism, and it is a
feature of both M} and be. In the latter case v is a feature only in one of the maps Mj; or be.
See Figure 4 for an illustration.

When this process terminates, over all old prisms that f crosses, we have constructed the edges
of the first stage of the new vertical decomposition along f that are contained in real intersection
edges (between f and older surfaces).

In the next stage, we construct the shadow edges along f. Recall that these are vertical
projections onto f of portions of intersection edges (between two surfaces in F;) that lie above or
below f and are vertically visible from f (at the point where their projections cross). Shadow edges
that are obtained by projecting real edges onto f from above are drawn on MJ’Z and shadow edges

that are obtained by projecting real edges onto f from below are drawn on MJIZ.
For an illustration, when an intersection edge e between two other surfaces f’ and f” crosses
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Figure 4: Tracing an intersection curve involving f along the floor or ceiling of a prism 7 (view
from above). At the left exit point of the curve we glue it to its continuation within an adjacent
prism, and the top exit point is a real feature (vertex or part of a vertically visible pair) of the new
decomposition.

f, at some real vertex v of Ai{ (F;), we break e into two subedges e™, e~, where e™ lies above f
and e~ lies below f, locally near v. Then the vertical projection of e™ on f is drawn only on the
top side of f, and that of e~ only on the bottom side. Both projections are arcs emanating from
v. See, e.g., Figure 5, where the intersection curve between the surfaces a and b intersects f in a
vertex v.

As another illustration, if w is a real vertex of A:{ (F;), incident to three surfaces fi, fo, f3,
which is vertically visible from f and lies, say, above f, then w is incident to three intersection
edges of pairs of these functions. Each of these edges is split at w into two portions, one visible
from f and one invisible (hidden by the third function), so we draw on the top side of f three
respective projected arcs, all emanating from the projection of w. See Figure 5 for an illustration
of these structures, where the real vertices w defined by a, d, and g and the real vertex w’ defined
by d, h, and k form the shadow vertices w and w’ on f.

fna
fnb

fne

Figure 5: The first stage of the vertical decomposition on (the top side of) the newly inserted
surface f. Red (solid) arcs depict real intersection edges and blue (dashed) arcs depict shadow
arcs. The label of each face denotes the surface that appears vertically above f over that face.

The shadow edges are also fairly easy to collect: they are composed of projections onto f of
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portions of y-edges of the prisms that f crosses, which are portions of real intersection edges that
are vertically visible from f. These edges are collected from all the prisms 7 that f crosses, based
on the local information available at each such prism. For example, if such an edge e lies on the
top side of the prism 7, we take the y-face ¢ bounded from above by e, intersect f with ¢, and for
each connected arc €’ of that intersection, we draw the shadow of e on (the top side of) f over €’
as €' itself; see Figure 6. The other portions of e are not handled within 7, since the information
we have at 7 does not let us know whether these pieces are at all visible (in their entirety) from
f; these pieces will be handled within other nearby prisms that f crosses and have e (or an edge
overlapping e) as an edge. Similarly, real intersection edges on the bottom side of 7 will be handled
in a fully symmetric manner, and their relevant portions will be drawn as shadow edges on the
bottom side of f. Once we have all these pieces of shadow edges, we glue them together into full
shadow edges. Each such edge ends either when (i) it reaches a real intersection edge v on f (the
original intersection edge e is no longer visible from f on the other side of v, as the other surface
forming +, rises above f on the other side and hides e), or when (ii) it reaches the projection onto f
of a real vertex (an endpoint of e), or (iii) at a real vertex on f where e crosses f (the continuation
of e past this vertex has to be drawn on the other side of f). Again, see Figure 5 and also Figure 6
for an illustration of all these situations.

Figure 6: Creating shadow edges on the top side of f within a vertical curtain ¢ (a side view).

Note that endpoints of type (i) correspond, in a one-to-one manner, to new vertically visible
pairs of edges (each of which necessarily involves f as one of its four defining functions) Note also
that there might be shadow edges that do not cross any real edge (so they are not involved in any
vertically visible pair). These edges are projections of full (and fully visible) edges of A(F;), which
might also be closed or unbounded Jordan curves.

The time to construct all the real edges and shadow edges, as well as (a DCEL representation
of) the planar map M}Z (resp., M}’) that they form along the top (resp., bottom) side of f, is linear
in the number of prisms that f crosses.

Each face of M} is the lower face of some cell of the first stage of the vertical decomposition

of .A;{ (F;), namely, the decomposition of A;{ (F;) obtained by adding the z-vertical curtains from

all the edges of AI{ (F;). Recall that each such cell has a unique floor (a portion of f in this case)
and a unique ceiling (a portion of another surface), but its complexity can be arbitrarily large (its
floor and ceiling need not even be simply connected, although, by construction, they are always
connected). Denote by H the collection of these cells that have f on their floor. Each cell of H is
the union of fragments of the prisms of VD<;(F;) (obtained by decomposing prisms of VD<¢(F;)
that are intersected by f into smaller “local” prisms, as mentioned above). Each cell of H can be
obtained by traversing these smaller prisms and by “gluing” them along suitable common z-faces.

In the next step, we perform the second stage of the vertical decomposition within each cell B
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of H, by computing the z-faces that partition it into our standard, constant-complexity prisms.
To do this, we take the floor By of B (which is a portion of f), project it onto the xzy-plane, and
compute the vertical decomposition, denoted VD(By), of By using a planar sweep. The y-parallel
edges of VD(By), when lifted to three dimensions and intersected with B, define the z-faces of the
desired vertical decomposition of B, which we denote as VD(B).

Constructing the Conflict Lists. Finally, we construct the conflict lists of the prisms 7 €
VD(B), in three stages. In the first stage we distribute functions g to conflict lists of prisms 7, such
that the connected component of g N B that contains g N 7 also contains the intersection of g with
a y-edge of B. In the second stage we distribute functions g to conflict lists of prisms 7, such that
the connected component of g N B that contains g N7 intersects only the top or bottom faces of B.
In the third stage we find the functions that penetrate 7 through its z-parallel edges. Clearly, these
are the only (not necessarily mutually exclusive) ways in which g can intersect a prism 7 € VD(B).

We start by computing the conflict lists of the y-edges of B. Each y-edge e of B is the concate-
nation of y-edges of (refined) prisms that comprise B (namely, prisms which are fragments of prisms
intersected by f). The conflict list CL(e) of e is the union of the conflict lists of these y-edges (recall
that the conflict lists of the refined prisms have already been constructed, as described earlier). We
then sort the intersections of the functions in CL(e) with e, along e. Finally, we traverse this sorted
list of intersections and distribute the functions in CL(e) to the prisms of VD(B) that contain a
segment of e as a y-edge. When we put a function g in CL(7) for some 7 € VD(B) we check which
of the prisms 7" adjacent to 7 intersects g and add g to CL(7") if 7' Ng # 0. If we added g to
CL(7') we continue this search to prisms adjacent to 7" and so on. The search stops at each prism
that does not intersect g. This completes the first stage of the construction of the conflict lists

For the second stage, we merge the conflict lists of all the (refined) prisms that comprise B
into one list, which we denote by CL(B). We construct a planar point location data structure
over VD(By). For each function g € CL(B), we compute the intersections g N f and g N h, where
h is the function containing the ceiling of B. In each connected component of g N f, we pick an
arbitrary point p, and find, using the point location data structure if p € By and if so we also find
the trapezoid T' € VD(By) that contains p. If p is out of By we stop. Otherwise, we add g to
CL(7r), where 77 is the lifted image of T', that is, the prism whose top and bottom faces project to
T. Then, for each trapezoid T” adjacent to T, we check whether the lifted image of 7" to By also
intersects g. If so, we add g to CL(77v), and continue the search through VD(By) to the neighbors
of T". The search stops at trapezoids whose lifted images to By do not intersect g. We repeat this
procedure, in a fully symmetric fashion, to the ceiling Bj;, of B, over the connected components
of g N h. This yields all the new prisms into which g penetrates through their floor or ceiling.
Repeating this for all functions g € CL(B), and for all regions B, completes the second stage of the
construction. Note that if the connected component of g N f or g N h intersects a y-edge of B, then
we have already added g to all the conflicts list of prisms that intersect this connected component
at the first stage.

We now describe the execution of the third stage. For each z-parallel edge ¢ of some prism
7 € VD(B), the bottom (resp., top) endpoint (¥ (resp., ¢*) of ¢ is a vertex on some y-edge of B.
We process all the z-parallel edges adjacent to each y-edge e of B in turn. We pick an arbitrary
initial z-parallel edge (y intersecting e which is also a z-parallel edge of some (refined) old prism,
so we have the conflict list of {y ready. (It is easy to see that there must be such a z-parallel
edge Let ¢ be a z-parallel edge adjacent to {y along e. An easy but crucial observation is that any
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function ¢ that intersects ¢ must also cross either (y or one of the top and bottom y-subedges of
e that connect ¢ to ¢* or CS to ¢®. We can therefore obtain CL(() by inspecting all the functions
in CL({p) and in the conflict lists of this pair of y-edges. We continue this traversal in a similar
manner and compute the conflict lists of all new z-parallel edges that intersect e.

We obtain the final conflict list of each prism A € VD(B) by uniting its conflict lists from the
first and second stages and the conflict lists of its z-parallel edges, as computed in the third stage.

Running time. To compute the conflict lists of the first stage, we perform O(1) point location
queries for each element of CL(B). Following each point location query, we traverse a connected
subset of prisms (separated by z-faces) to locate all prisms containing a particular connected
component of gN f or gNh for each g € CL(B). This scan performs O(1) operations per item in a
conflict list of a new trapezoid. The sorting of the intersections of items in CL(e) along each y-edge
of B takes logarithmic time per item in these conflict lists. It is also easy to verify that the work in
the second stage of the vertical decomposition is proportional to the total size of the conflict lists
of the destroyed and the new prisms. Summing up we get that the time it takes to compute the
conflict lists of the prisms is proportional to their size times a logarithmic factor.

We produce the new prisms whose top face lies on f and their conflict lists analogously, using
MJZZ rather than M}

Prisms for which f defines a y-edge or an z-face (that passes through a vertex on f).
Consider the new prisms of this kind whose bottom faces lie on the graph of g, for some g € F;.
To construct these prisms, we draw on ¢ the intersection edges of g with f (which we have already
computed). Let e be such an intersection edge. Vertically above g, on one side of e, we have prisms
whose top faces are on f, which we have already computed. On the other side of e, we draw the
projections of the y-faces of the fragments of old prisms that were cut by f and intersect e.

Each cell which we obtain on g is the projection on g of a cell (with a bottom face on g) of the
first stage of the vertical decomposition of the arrangement of the intersection of f with the first ¢
levels of A(F;). We compute the vertical decomposition of each such cell and the conflict lists of
its prisms as we did for cells with a bottom or a top face on f.

We repeat this process for each side of each function intersected by f. See Figure 7 for an
illustration.

Removal of prisms which are above A<;(F;y1). Consider an old prism 7 that lay at the top
t-level (that is, its ceiling was part of the t-level) before f was inserted. If f passes fully below 7,
the level of 7 goes up by 1, to t + 1, and 7 has to be removed from the structure. Similarly, some
new prisms are now at level ¢t + 1, and we need to remove them too.

If we could explicitly record in the structure the level of each prism that it stores, and update
these counters after each insertion, the removal of these “overflowing” prisms would be trivial—
simply remove them from the structure. This however is expensive to do. The main difficulty is
that there might be many prisms that lie fully above f, as discussed above, and broadcasting to all
of them that their level has increased by 1 will in general be too expensive.

Instead, we note that any connected patch of prisms that has to be removed is surrounded by
prisms that have f as their floor, so that this portion of f lies at the ¢-level. Such prisms are easy
to identify: any old prism 71y that overlaps such a prism 7 had its ceiling at level ¢ before f was
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Figure 7: Collecting prisms to which f contributes only a y-edge or a vertex. The figure depicts
floors of such prisms on an older surface g. The red arcs depict f N g, and the blue arcs depict
(portions of) older real or shadow arcs. For the prisms 71 and 7, f only contributes a vertex. For
all the other prisms, f contributes a y-edge. f passes below g in the region decomposed into prisms,
and above g in the complementary regions.

inserted, and 79 “was aware” of this fact simply because there were no prisms above the ceiling, a
property that is easy to detect by locally inspecting the neighbors of 7.

We therefore identify these “fringe” prisms, and then carry out a transversal of the adjacent
prisms, collecting in this manner all the prisms that have to be removed. To better understand
this process, we note that each cell C of the first stage of the vertical decomposition is such that
all its prisms are at the same level of Ai{ (F;), and they are adjacent to each other only through
common z-faces. Hence, if one of these prisms lie at the fringe, they all are.

When we cross a y-face of a prism, we pass into another region of the first-stage decomposition.
The level does not change in this case, but such a y-face may overlap several y-faces from the other
side, because the second-stage decompositions within each first-stage region are not compatible.

When we cross the floor or the ceiling of the current prism, the level increases or decreases, so
we will not do this. We do face, however, the situation where we reach a y-edge e of a prism in
which its floor and ceiling meet. When we cross e (technically, we cross the ceiling upwards, move
over e, and then cross the floor downwards), we reach a new cell of Ai{ (F;) that also lies at level
t + 1 (note that, locally near e, the floor and ceiling surfaces are swapped). Here too, there may
be several prisms that touch e on its other side, in the above sense, all part of a single first-stage
decomposition cell, and they are adjacent to one another, in the order in which they meet e, via
common z-faces.

This traversal finds all prisms that are now at level t+1 and need to be discarded. The traversal
terminates in situations when we reach a y-edge e at which the floor and ceiling of a prism meet,
and there is “nothing” on the other side of e. This would be the case when f is the floor of the
current prism. On the other side of e, f should become the ceiling, lying at level ¢ + 1, but this
part of f would not have been processed, as there were no older prisms at this level for f to cross.
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6.2 Analysis

The expected running time of the above procedure is proportional to the overall size of all the
conflict lists that have been generated during the incremental process, times a logarithmic factor.
Let II denote the set of all possible pseudo-prisms. That is, we consider all possible subsets Fy of
up to six functions of F', and for each such Fjy, we construct the vertical decomposition of the entire
arrangement A(Fp), and add all resulting prisms to II.

We associate two weights with each prism 7 € II. The first weight, denoted wq(7), is equal to
the size of its conflict list. The second weight, denoted w™(7), is equal to the number of surfaces
that pass fully below 7. For simplicity, we focus below on prisms that are defined by exactly six
functions; the treatment of prisms defined by fewer functions is done in a fully analogous manner.

Following one of the standard approaches to the analysis of RICs, we proceed in two steps.
First, we estimate the probability that a prism with given weights ever appears in the first ¢ levels
of A(F;), for some i < n, during the incremental process. Then we estimate the number of prisms
with weights < a, < b, using the Clarkson-Shor technique and several other considerations, and
then combine the bounds to get the desired bound on the expected running time and storage of
the algorithm.

Estimating the probability of a prism to appear. For the first step, let 7 be a prism in II
with weights w™(7) = a, wo(7) = b, and with six defining functions. We refer to the a surfaces
counted in w™(7) as the lower surfaces of T, and to the b surfaces counted in wy(7) as the crossing
surfaces of T.

Then 7 appears as a prism in some VD<(F;) if and only if (i) the last of the six defining
functions, call it fg, is inserted before any of the b crossing surfaces; and (ii) at most t/ =¢—1—¢
of the a lower surfaces are inserted before fg, where ¢ is the number of defining functions of 7 that
pass below 7 (the “1” accounts for the floor of 7)

An explicit calculation of this probability, denoted p,, goes as follows. Restrict the random
insertion permutation to the a 4+ b + 6 relevant surfaces (the a surfaces below 7, the b surfaces
crossing 7, and the six surfaces defining 7). To get a restricted permutation that satisfies (i) and
(ii), we first choose which of the six defining functions is the last one fg, then we choose some
Jj < min{a,t'} of the a lower surfaces to precede fs, then mix these j surfaces with the other five
defining ones, and finally place the remaining a — j lower surfaces and all b crossing surfaces after
fe. We thus get

min{a,t'} ~ra\/: | Y|
b Z 6(j)(j+5).(a+b j).. @
(a+b+6)!

§=0
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We rewrite and upper bound each term in the sum as follows.

6()(+5)a+b—)' _ Gal(j+5)(a+b—j)

(a+b+6)! W a— ) a+b+6)!
__ 6 (@a—j+1)--(a—j+b)  (G+1)---(j+5)
_a+b+6 (a+1)-- (a+w (a4+b4+1)---(a+b+5)

_ a—j+0b\° i+5 \°
_a+b+6 a+b a+b+5

5
< JE5 b/ (a+b)
*a+b+6 a+b+5

Let 5
6 j+5 —jb/(a-+b)
vall) = 55 (a+b+5> °
be the bound we obtained on the jth item of the sum in (4).
Note that with a,b ﬁxed Yap(x) peaks at z = 5(ab+ b _5 = % (the zero of the derivative,

satisfying 5(z + 5)* — a+b (x+5)° =0).
We estimate p; by replacing the sum by an integral. That is, we have

min{a,t'} »(a\/ - o
e S 6(5)(7 +5)!(a+b—j)
T (a+b+6)

J=0
min{a,t’'}

‘ min{a,t'}
> wMO)SeA Pa,p(T)dz

Jj=0

_ L . /min{a,t’} $7_{_5 5 . e_xb/(a_i_b)dx‘
a+b+6 Jy a+b+5 ’

to justify bounding the sum by the integral in the third inequality above, it suffices to note that,
for z € [j,7 + 1],

IN

Pap(r) (x—%5)56_mz—ﬁ/m+w S }
Soa,b(j) ] +95 “ e’
for every j > 0, from which the argument follows.
To estimate the integral, we apply the substitution y = xb/(a + b), replace the upper limit by

¢ :=min{a,t'} - P
a

6e(a +b) y(a+b)/b+5 _
< Yd
Pr=ba+b+6) /‘< a+b+5 ) e
6e(a + b) a+b > e 5 _
= 5b/(a + b))® e ¥d
-+ 0 +6) ba+b+5) A<y+ /lat b)) ey
66

and get

; (y+5b/(a+b)) e Ydy.
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The integral is at most
[e.e]
| sy,
0

which is some absolute constant. Thus,” p, = O(1/b5). For large ¢ we cannot improve on this
bound but if ¢ is sufficiently small, the integration up to ¢ may accumulate only a fraction of the
total (constant) mass underneath the integrand. For a < ¢ we will not refine the bound and use
pr = O(1/b°%). Consider now the case where a >t so ¢ = min{a,t’}ai% = abfr/b.

As it is easily checked, the integrand peaks at y = 5a/(a + b), so when

bt/ 5a ,
c=— <22 o <
a+b " a+b

oa
b )

we tighten the bound and upper bound the integral by ¢ times the value of the integrand at y = c.

We get®
6e bt (bt +5)\° o 6
< oe _ /(a+b) _ U —bt/(atb) ) LA
Pr =% a+b< a+b > ¢ O\ axope O\

To recap, we have an upper bound for p, in terms of a and b. Denoting this bound by p(a, b), we
have

O (& for a < bt'/5 or a <
p(a,w:{ A )

0 (Z—Z) for a > bt'/5 and a > t.

(Unless b is very small, the constraint a < ¢ or a > t is subsumed by the other respective constraint.)

Bounding the number of prisms of small weights. We next estimate the number of prisms
7 with w™ (1) < a and wy(7) < b.

Lemma 6.2. The number of prisms T with w™ (1) < a and wo(r) < b is O(nb®) for a < b, and
O(nab*\sy2(a/b)) for a > b.

Proof. Pick a random sample R of F' where each function is chosen with some probability p that
we will fix later. The expected size of R is np. Let 7 be a prism in II, defined by six functions,
with w™(7) =i and wo(7) = j, with i < a, j < b. The probability ¢, that 7 appears in the vertical
decomposition of the first £ levels of A(R) (£ is another parameter that we will fix shortly) is the
probability of the event that (i) the six defining functions of 7 are chosen in R; (ii) none of the j
crossing functions is chosen; and (iii) at most & of the i lower functions are chosen.

To proceed, we distinguish, as in the statement of the lemma, between the cases a < b and
a > b. In the former case, we replace the third constraint by the constraint (iii’) none of the i lower
functions are chosen. This only lowers the estimate for ¢,, and we thus get (note that in this part
of the analysis ¢ is irrelevant).

¢ > p*(1 —p) (1 —p) > p%(1 —p)®*® > pb(1 — p)*.

"Technically, we should write this as O(1/(b+1)%), to cater also for the case b = 0. We gloss over this trifle issue,
as is common in other works too, to simplify the notation.
8 Again, we should write ¢ + 1 in the final expression.
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In this case, 7 becomes a prism in the vertical decomposition of the first two levels in A(R). By
Lemma 6.1, the number of such prisms is O(|R|), so its expected value is O(np). Choosing p = 1/b,
this yields, as in Clarkson and Shor, N<, <, = O(nb®).

Consider next the case a > b. The probability of (i) and (ii) is, as above, p®(1 —p)7 > p(1—p)°.
The event (iii), which is independent of (i) and (ii), is to have at most { successful trials in a
Bernoulli process with 4 trials, each with success probability p. We take p = 1/b and £ = 2a/b.
Since the mean of the process is i/b < a/b, Chernoft’s bound implies that the failure probability is
at most e~ (30) < ¢=1/3_ Hence, with this choice of £, we have

1—e /3 ( 1

b
w2 (1-3) =eum)

To complete the Clarkson-Shor analysis, we need an upper bound on the (expected) number of
prisms in the vertical decomposition of the first £ levels of A(R). By Lemma 6.1, this number is
O(|R|€As+2(€)). The analysis thus yields

N<g<p = O (b%np - EXs12(€)) = O (b5(n/b)(a/b)As12(a/b)) = O (nab*Asi2(a/b)),

as asserted. O
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Figure 8: The decomposition of the (a,b)-range into subranges.

We can now combine all the bounds derived so far, and bound (i) the expected number of prisms
that are ever generated in the RIC, and (ii) the expected overall size of their conflict lists, which,
as explained above, dominates the running time of the algorithm (with an additional logarithmic
factor).

The expected number of prisms is simply

Zp‘r = Zzp(a’ b)Na,b- (6)
a b

Tell
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Similarly, the expected overall size of the conflict lists is

Z wWo (T)p.,- = Z Z bp(a, b)Na,b- (7)
b

Tell a

We bound these sums separately for pairs (a, b) within each of the six regions depicted in Figure 8.
Together, these regions cover the entire range a,b > 0, a+b < n —6. Note that the most expensive
prisms are those for which (a, b) lies in region (I) or region (IV).

Region (I). In this region, 5 < b < 5n/t and 0 < a < bt/5. We cover the region by vertical slabs
of the form S; := {(a,b) | bj—1 < b < b;}, for j = 1,2,..., where b; = 5-2J. Within each slab
Sj, the maximum value of p, is O(l/b?fl) = 0(1/2%), and we bound Z(a,b)esj Nap by Nep,t/5 <,
which, by Lemma 6.2, is

O (n(bjt/5)bjAs42(t/5)) = O (nb3tAsra(t)) = O (2 ntAsia(t)) .

Hence, the contribution of S; to (6) is at most
0 <nt)\s+2(t)> ’
27

and, summing this over j, we get that the contribution of region (I) to (6) is O(ntAs42(t)).
Similarly, the contribution of S; to (7) is at most

0 <bj . W) — O (ntAssa(t)) .

We need to multiply this bound by the number of slabs, which, as is easily checked, is O(log(n/t)).
Hence, the contribution of region (I) to (7) is O(ntAs+2(t)log(n/t)).

Region (II). In this region, 5n/t < b < n/2 and 0 < a < n —6 —b. Here too we cover the
region by vertical slabs of the form S} := {(a,b) [ bj_; < b <V}, for j = 1,2,..., where V; =
(5n/t) - 27. Within each S, the maximum value of p, is O(1/(;_)%) = O(t°/(n%2%)), and we
bound Z(a,b)es; Nap by Nﬁn—bg,l—&ﬁbg which, by Lemma 6.2, is (upper bounding n — b;-_l -6
simply by n)

O (n* () Asra(n/b})) = O (n?(n/t)2Y \s4a(t/27)) = O (20 Aspa(t) /1) .
Hence, the contribution of S to ( 6) is at most
O (P Asy2(t)/2%7)

and, summing this over j, we get that the contribution of region (II) to (6) is O(t?*As12(t)) =
O(ntAs42(t)).
Similarly, the contribution of S} to (7) is at most

O (b;t2)\s+2(t)/23j) -0 (nt)\s+2(t)/22j) :

and, summing this over j, we get that the contribution of region (II) to (7) is O(ntAs1+2(t)).
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Region (III). In this region, n/2 < b <nand 0 <a <n—6 —b. We treat this region as a single
entity. The maximum value of p, here is O(1/n%), and we bound Z(a’b)e( 111y Nap by the overall
number of prisms, which is O(n%), getting a negligible contribution to (6) of only O(1). A similar
argument shows that the contribution of this region to (7) is O(n), again negligible compared with
the other regions.

Region (IV). In this region, t < a < ap~n and 0 < b < 5a/t. We cover the region by horizontal
slabs of the form S7 := {(a,b) | aj-1 < a < a;}, for j = 1,2,..., where a; = t -2/, Within
each slab 57, the maximum value of p; is O(tﬁ/a?_l) = 0(1/2%), and we bound Z(a,b)eS}’ Ny by
N<q;,<5a;/t Which, by Lemma 6.2, is

O (na; (5aj/t)4)\s+2(t/5)) =0 (na?)\s+2(t)/t4) =0 (25jnt)\s+2(t)) :

Hence, the contribution of S7 to (6) is at most

o <nt)\;2(t)> |

and, summing this over j, we get that the contribution of region (IV) to (6) is O(ntAsy2(t)).
Similarly, the contribution of S} to (7) is at most

Tlt)\5+2 (t)

e

) = O (ntAs42(t)).
Here too, as in the case of region (I), the number of slabs is O(log(n/t)), making the contribution
of region (IV) to (7) is O(ntAs+2(t)log(n/t)).

Region (V). In this region, ag < a <nand 0 <b <n—a— 6. We treat this region as a single
entity. The maximum value of p, in this region is O(t%/n%), and we bound > (an)ev) Nap by

Nen,<snst = O (n°(5n/1) Ass2(t/5)) = O(n°Asy2(t) /1)
Hence, the contribution of region (V) to (6) is at most
O (£ As42(t)) = O(ntAgi2(2)).

For the contribution to (7), we multiply this bound by O(n/t), an upper bound on b in this region,
and get

O ((n/1) - *Aesa(t) = O(ntAssal(?)).

Region (VI). Finally, we consider this region, which is given by 0 < a < ¢ and 0 < b < 5. Here we
upper bound p, simply by 1, and bound Z(a,b)e(VI) Nap by N<i <5, which is O(ntAso(t)). Hence,
the contribution of region (VI) to (6) is at most O(ntAsy2(t)). Since b is bounded by a constant in
this region, the same expression also bounds the contribution of region (VI) to (7).

In conclusion, taking the additional logarithmic factor into account, we have the following main
result of this section.

Theorem 6.3. The first t levels of an arrangement of the graphs of n continuous totally defined
algebraic functions of constant description complexity, for which the complexity of the lower envelope
of any m functions is O(m), can be constructed by a randomized incremental algorithm, whose
expected running time is O(ntAsy2(t)log(n/t)logn), and whose expected storage is O(ntAs12(t)).
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7 Improved Dynamic Lower Envelopes for Planes

In this section, we present our own interpretation of Chan’s technique for dynamically maintaining
the lower envelope of a set H of non-vertical planes in R3, under insertions and deletions of planes,
or dually, dynamically maintaining convex hulls in R3. In the next section, we will see how to
combine this structure with the results from the previous sections to obtain a data structure that
works for general surfaces and that achieves polylogarithmic update and query time.

We present our version of the structure in three phases: We begin with a static structure, then
develop a variant of a simple standard technique for extending it so as to allow insertions, and
finally describe how to perform deletions. With the help of a simple counting argument in the
construction of the static structure, we also manage to improve Chan’s bound for the deletion time
by a logarithmic factor, the first improvement on this problem in ten years.

7.1 A static structure

Let H be a fixed set of n non-vertical planes in R3. We fix a constant level kg, and we consider the
sequence of levels kj = 27k, for j =0,1,...,m, where m = |log(n/ko)|. (Level k, lies somewhere
between levels n/2 and n.)

We construct a sequence of shallow cuttings, one for each level k; in the following iterative
manner. The initial cutting is a vertical ky,-shallow (aky,/n,)-cutting A,,, of A(H) for some fixed
constant o > 1, as in [15,27]. During this process, we keep pruning away planes from H (these are
not real deletions, but are only made to ensure efficient performance of the data structure). So,
when we reach level kj;, we have a subset H; of n; < n surviving planes and we construct a vertical
kj-shallow (akj/n;)-cutting, A;, of A(H;).? That is, A; consists of O(n;/k;) semi-unbounded
vertical prisms, where each prism 7 consists of all the points that lie vertically below some triangle
7 (the ‘ceiling’ of 7), so that these triangles form the faces of a polyhedral terrain Aj. The number
of planes intersecting each prism 7 is at most ak; and its ceiling 7 lies fully above level ;.

With each prism 7 of A;, we maintain its conflict list C;, containing the at most ak; planes
of Hj that cross 7. However, before storing these lists, we prune away all the planes h € H; that
belong to more than clogn conflict lists of prisms in all the cuttings constructed so far (including
the new Aj);lo here c¢ is some sufficiently large constant that we will specify shortly. We collect all
the pruned planes in a remainder set H®), and we let H j—1 denote the set of surviving planes.'t A
subtle yet important property of the construction is that when we prune away a plane, we do not
delete it from the conflict lists of prisms that have been constructed for higher levels. This pruning
mechanism ensures that each plane of H is stored in at most clogn conflict lists, a property crucial
for the efficiency of the algorithm.'?

We keep iterating in this manner, until we reach the kg-level, and then stop; note that planes
can still be pruned away at this step. The conflict lists of the prisms of this lowest level is the only

9In particular H,, = H.

10We note for the expert reader that this is the point where our construction improves over Chan’s original result,
since Chan’s pruning strategy considers each level individually. Our approach ensures that each plane appears in
O(logn) conflict lists in a static structure, whereas in Chan’s structure the bound is O(log®n). Lemma 7.1 shows
that the more aggressive pruning does not remove too many planes.

U'We use the same remainder set H® for all levels j of the construction. For consistency, we also put H® := H.

12Note that A;_; is not necessarily “lower” than A;, since the former cutting is constructed with respect to a
potentially smaller set of planes (and can therefore contain points that lie above A;, even though it approximates a
lower-indexed level).
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output that we use for answering queries. (To support deletions, as will be described below, we will
also need the conflict lists of the prisms of all the other cuttings in the hierarchy, not for answering
queries but for controlling the deletion mechanism.) We denote by D the structure consisting of
the resulting sequence of shallow cuttings and the conflict lists of their prisms.

We associate with DY) the set of planes H \ H® that survive the construction of DM (without
being pruned away at any stage), and denote it by H (D(l)). The following lemma bounds the
number of planes that are pruned and collected in H?) during the construction.

Lemma 7.1. For a suitable choice of c, the overall number of planes that get pruned, over all levels
kj, is at most Bn, for a constant B < 1 inversely proportional to c. That is, \H(D(l))\ > (1-p)n.

Proof. Define a potential function ® to be equal to the sum of the sizes of the conflict lists up to
some level k; in the construction, where the size of a conflict list C is defined to be the number of
planes of H;_; that cross 7 (i.e. planes of H; that were not pruned away at this stage).

Since A; consists of O(n;/k;) prisms, and the conflict list of each prism contains at most ok;
planes, the overall size of the conflict lists of the prisms of A; is O(n;) = O(n). Hence, generating
A; and the conflict lists of its prisms increases ® by at most yn, for some fixed constant .

Each plane h that we prune away is contained in at least clogn conflict lists. Therefore the
pruning of h reduces ® by at least clogn. Since @ is initially 0 and never negative, and since we
increase it by at most ynlogn units, it follows that we discard at most n, planes for g = v/c. O

We now repeat the whole process, and apply it to the set H @), obtaining an analogous structure
D and a remainder set H®) of at most 32n planes that got pruned away at some level. Proceeding
in this manner for at most log; /v steps, we obtain the complete structure, that we denote as D,
which is simply the sequence of substructures D), D) . Note that the sets H (D(i)) are disjoint
with union H. Furthermore, Lemma 7.1 implies that |H(D®)| > 2|H(D*Y)], since we can choose
¢ to obtain 5 < 1/2.

For each 4, the overall size of D@, including the conflict lists, is

m i

O Z |};;(‘)| ki =0 (\H(i)llogn) .
j=0

(Note that the number of levels m depends on |[H®| (it is [log(|H"|/ko)]), and decreases as i

increases; for simplicity, we use the original value of m in the above upper bound, for each i.) Since

|H®| < 3*~'n, the overall size of D is O(nlogn).'?

We can construct each cutting A;, in each of the substructures DU, using the algorithm of
Chan and Tsakalidis [15], in O(|/H®|logn) time. Summing over j, we can construct D in
O(|H®|log? n) time, and summing over i, using the fact that |H®)| decreases geometrically with
i, we get a total of O(nlog?n) running time.

Answering a query is easy: Given a point ¢ in the zy-plane, we iterate over each substructure
D and find the prism 7 of the corresponding lowest cutting Ag (of the first ko levels) whose
xy-projection contains gq. This is done using a suitable point-location structure constructed for the
xy-projection of Ag. We then access the conflict list C.- of 7, and search in it, in brute force, for the
lowest plane over q. We repeat this search over all substructures D@, and return the plane that is
lowest over ¢ among all O(logn) candidate outputs. The cost of a query is thus O(log®n) time.

13T ater we will show how to reduce the storage to linear, by representing the conflict lists in an implicit manner.
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7.2 Handling insertions

We use a variant of a standard technique, originally due to Bentley and Saxe [7] and later refined
in Overmars and van Leeuwen [38] (see also Erickson’s notes [24]).

Specifically, we maintain a sequence Z = (D;,, Dy, ..., D;,) of structures, where 0 < i1 < ip <
-+« < 1. (These indices are not fixed, and in general will vary after each insertion. Lemma 7.2 below
shows that the length of Z is O(logn).) Each fi]. is a substructure D*) of some static structure
D, as constructed above, over some subset Fij of H. We maintain the following invariants.

1. The set H;;, which is used to construct D;;, has size at most 2, and |H(Dy,)| > 24~ 1.

2. The sets H(D;;) are disjoint and their union is the set of planes currently in the data structure.

We refer to the structure 51']- as the structure at location i;. For each plane h, we refer to the
structure fij such that h € H (fij) as the structure that stores h. If h is stored at 5Z-j we also say
that A is stored at location z'j.14

When a plane h is inserted, we look for the smallest non-negative integer j that does not belong
to the sequence (iq,is,...,i;). If j = 0, we just set Ho := {h}, and construct over it a trivial
structure Dy with only one plane.

Otherwise, we set H; := (Uf;é H (5)) U{h}. Assuming that Invariant (1) holds prior to the

L
insertion of h, we have

Jj—1 Jj—1 Jj—1 j—1
27 <24 Y o < [H =1+ ) [HD;)| <1+ [H| <1+ 20 =27, (8)
i=1 i=0 i=0 i=0
We construct over H; a static structure D = D(H;) as in Section 7.1, and recall ‘that D is a
sequence of a logarithmic number of substructures, DM, D@ ... D) where s < log |Hj| <j. We
remove D, .. .fi]._l (which are in fact Do, D1,...,Dj_1) from Z. Then, for each structure D)
we set

D; :=DW for i = [log|H(D™)|] +1, (9)

and add it to Z. Note that by Equation (8) and Lemma 7.1, if 8 < 1/2, D) is set to be either
ﬁj or fj_l. It also follows from Lemma 7.1 that each structure D™ is associated with a different
index 7 < j. It is clear from the definition of the algorithm that Invariants (1) and (2) hold.

The number of planes in our structure changes as we do insertions (and later deletions). We
denote this number by n and treat it as a static quantity. That is, we keep it fixed (equal to some
power of 2), even though the actual number of planes changes due to insertions and deletions. To
justify this, we add a global rebuilding mechanism to the structure that rebuilds it entirely from
scratch whenever the number of elements changes (increases or decreases) by a factor of 2. When
this happens, we double or half our n, as appropriate.

The following lemma gives an upper bound on the number of structures in Z.

Lemma 7.2. The number of structures in Z is at most |logn| + 3.

Proof. The actual number of planes currently in the structure is at most 2n, where n is the static
size of the structure, as defined above. It follows by Invariant (1) that the largest index j for which
D; exists is |log(2n)] +1 = |logn| + 2. O

14Note that a plane h may also appear in conflict lists of substructures fij that do not store it, as is the case with
the static structure too.
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Lemma 7.3. The deterministic amortized cost of an insertion is O(log3n), and the deterministic
worst-case cost of a query is O(log2 n), where n is the number of planes in the data structure when
we perform the operation.

Proof. The claim for the cost of a query is obvious: In each of the O(logn) structures D; of Z we
find the prism of the corresponding lowest level Ag whose zy-projection contains the query point
q, and search over its at most ko planes for the lowest one over g. This takes O(logn) time per
structure, by augmenting D; with a planar point location data structure over the minimization
diagram of Ag (as in the static structure).

Concerning insertions, we recall that an insertion of a plane h destroys a prefix of length j of the
subsets in Z and moves their planes, including h, to a subset ﬁj, computes a new static structure
for Hj, and spreads its substructures D) according to Equation (9) from j downwards along the
prefix of Z. The real cost of such an insertion is a|H;|log? |H,|, for some absolute constant a.

To pay for this cost, we use the following charging argument. We maintain the invariant that
each plane h that is currently stored in Z holds b(w — i) credits, each worth alog?® n units, where i
is the current location of h, and w := |logn| + 4 is the maximum length of Z plus one. Here b is
some absolute constant that we will fix shortly.

When a reconstruction takes place at some location j of Z, as prescribed above, its cost can be
covered by at most t = |H | credits.

We first allocate bw credits to the newly inserted plane h. Then we show that the total credit
of the planes in the data structure decreases by at least ¢, covering the cost of the reconstruction.
This implies that the total amortized cost of the insertion is the allocation of the bw new credits
to h, which amount to balog® n units.

We use the following observations regarding the planes in Fj to lower bound the total credit
decrease following the reconstruction.

e As in Equation (8), |H;| < 27.

e First, by the lower bound in Invariant (1), at least 23;12 2071 +1 = 2972 of the planes in H;
were stored, before the reconstruction, in structures D;, for ¢ < j — 2. insertion, in this sum).
That is, at least a quarter of the planes in H; are from a location < j — 2.

e By Lemma 7.1, after the reconstruction, at least (1 — ) of the planes in H; are stored in the
first substructure D) of the resulting static structure, which we place at location j or j — 1.

Let f <p |F]] < Bt be the number of planes that were at location j — 1 before the reconstruction,
and were pruned away during the construction of DM, It follows from the observations above that
at least (% — 5) t + f planes that were stored at locations < j — 2 before the reconstruction have
not been pruned away during the construction of DO, (Indeed, we had at least ¢/4 planes stored
at at locations < j — 2, and we have pruned away a total of at most 8¢ planes, of which f came
from location j — 1.) Since we place DM either at location j or at location j — 1, all these planes
are stored either at location j or at location j — 1 following the reconstruction. Hence, the credit
of each of these planes has decreased by at least b, so in total they release at least (% — 6) bt +bf
credits.

At most f planes from location j — 1 are moved down to location j — 2, thereby requiring a
total of bf additional credits. By Lemma 7.1, the number of planes that end up at position j — 3
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is at most $%t, and, in general the number of planes that end up at position j — i is at most 5~ 't.
These planes require at most

232
1-28

4 > .
B2t -2b4 B3 - 3b+ Bt -4b + - - < 260t (1 + gﬁ+ 552 +> < 25%2(2&)% < bt
1=0

additional credits.
Summing up the credit changes of all planes we get that the total credit decreases by at least

(1 —5) bt +bf — <bf+2ﬁzbt> I

1-28 4(1 —-2p)
which is larger than ¢ for b > 4(11—;62/86)' That is, we have shown that the number of credits has
decreased by at least ¢, which suffices to pay for the reconstruction. O

7.3 Handling deletions

We support deletions by adding a deletion lookahead mechanism to each structure ﬁj. This is
implemented as follows. When we delete a plane h, we go over each substructure fj that has a
conflict list containing h, and remove h from each of the O(logn) conflict lists of D; that it belongs
to. In total, we remove h from at most O(log?n) conflict lists within the entire Z. When the size
of such a list C'; becomes too small, the surviving planes in C; might show up on the new lower
envelope of H, and thus might be the answer to some query, even though they might not necessarily
belong to the conflict list of any prism at the lowest kg-level, in which case our mechanism might
fail to report them. To avoid this situation, we delete all the surviving planes from C;. So as not to
lose the planes involved in these additional artificial deletions, we re-insert them into the structure,
using the insertion mechanism described above. The precise rule for “emptying out” a conflict list
C'; is to do so as soon as its size becomes < (1 — 1/2«) its original size, where a > 1 is our cutting
parameter (so that each prism of Ay intersects at most ak planes), as in the static construction.
This description pertains to all the prisms, including those at the kg-level.

We say that h was lookahead deleted (by the deletion lookahead mechanism) from a structure
D; if it belonged to some annihilated conflict list of D;.1° A plane h that was lookahead deleted
from D; may still appear in other conflict lists of D;. Therefore h may be lookahead deleted from
D; many times, once per conflict list of D; containing it. Note also that the conflict lists of D,
may contain planes that are not stored in D; (that is planes that are not in H(D,)), which may
be lookahead deleted as well. To economize, we do not re-insert these planes into the structure,
as they are already stored, by construction, in another structure D;, for some i < j. Furthermore,
we can mark a plane h € H(D,) when it is lookahead deleted for the first time from a conflict
list of D;. Then, when we purge additional conflict lists of D; containing h, we also refrain from
re-inserting h into the data structure.

In spite of these refinements, a plane h may be stored (contained in H (5j)) at multiple locations
j. (This happens when we lookahead delete a plane h € H(D;) (for the first time) from D;. The

reinsertion of h will place it at another h € H(D;) for some i < j.) We maintain the invariant that

15To avoid confusion, we emphasize that there are three kinds of removals of planes that occur in the algorithm:
pruning in the static construction, lookahead deletions, as described now, and real deletions, of planes from H, to
which we refer as deletions by the adversary.
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h is not lookahead deleted from the structure D; of lowest index j containing it, and observe that
h always belongs to the corresponding set H(Dj).

Recall that an insertion (or reinsertion) of a plane h takes a contiguous prefix Z' of Z of length
j, discards the existing structures in Z’, sets H; := (Uf;é H (fz)) U {h}, constructs a new static
structure for Fj, and spreads its components along Z'.

The correctness of the data structure is a consequence of the following Invariant.

Invariant 7.4. Let h be a plane that is stored in the current I, and that shows up on the lower
envelope of the entire current set H over some point q in the xy-plane. Let ﬁj be a substructure
from which h was not deleted by the lookahead deletion mechanism. Then h belongs to the conflict
list Cr of the prism T of the lowest cutting Ao of D;, whose xy-projection contains q.

Proof. Assume to the contrary that h does not belong to the conflict list C; of the corresponding
prism 7 of the lowest level of 5]-. Let ¢t denote the point on h that is co-vertical with ¢ (by
assumption, ¢t lies on the lower envelope of H). By assumption, ¢* lies above 7. Let ¢ be the
largest index for which ¢* lies above the top terrain A; of the cutting A; of @j.

Let 7/ be the prism of A; such that ¢ lies above its ceiling 7. At the time 7/ was constructed,
each of the vertices of 7 was at some level larger than k; and smaller than ak; in the arrangement
A(Hy) of some subset H; of H. At this time, at least k; planes of H; passed below ¢*. Indeed,
A was a shallow cutting of A<, (Hy) at the time of its construction, so A; passed fully above the
ki-level of A(H;). This subset of H;, denoted as Cy+, is not necessarily a subset of the actual
conflict list €/, as some of the planes C+ may have been deleted by the pruning mechanism of
the static structure, as it processed level k;, and moved to the next substructure of the relevant
static structure. Nevertheless, since ¢ now belongs to the lower envelope of H, all the (at least
ki) planes of C + must have been deleted (by the adversary) from H.

Consider now the prism 7" of Ay, 1 that contains ¢ (letting 7" be the entire R? if t = m). Since
C,+ is contained in Hy, none of its planes was pruned away (by the static mechanism) during the
preceding processing of A1, and consequently all of them are actually stored at C;» (all of them
certainly cross 7). (For the case t = m, this simply means that all the planes are present at the
beginning of the process.) The original size of Cr» is at most akyy1 < 2aky, and, by the time ¢t
has reached the lower envelope of H, at least

‘CT” ‘

Cyr| > ke >

of them have been deleted (by the adversary). By the deletion lookahead mechanism, we must have
then lookahead deleted h before this has occurred, which is a contradiction. ]

The following lemma analyzes the performance of the data structure.

Lemma 7.5. The amortized deterministic cost of an insertion is O(log> n), the amortized deter-
ministic cost of a deletion is O(log® n), and the worst-case deterministic cost of a query is O(log? n),
where n is the size of H at the time the operation takes place.

Proof. The bound on the cost of the query is proved as in the proof of Lemma 7.3.
Consider insertions. We have to modify the analysis in Lemma 7.3 since H; := (Uz;é H (fz)> U

{h} does not contain duplicates and therefore the lower bound on its size, given in Equation (8),
may not hold.
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Consider the size of H; before and after removing duplicate planes. We split the analysis into
two cases: If, following the removal of duplicate planes, the size of Fj does not shrink substantially,
say it only shrinks by a factor of at most 1/8, then the analysis in Lemma 7.3 stays valid with a
minor adaptation of the constants. If at least 1/8 the planes of Fj are duplicate planes, then these
planes have at least %b[ﬁﬂ = %bt credits which are now freed and, for b sufficiently large, suffice
to pay for the reconstruction and to allocate sufficient credit to the remaining planes that move to
substructures of lower index as a result of the reconstruction.

Finally, we analyze the amortized cost of a deletion. When we delete (that is, the adversary
deletes) a plane h, we remove it from at most O(log® n) conflict lists, as already argued above. Each
removal of A from such a conflict list may trigger the annihilation of the entire list, accompanied
with the re-insertion of each of its survivors back into Z. For the analysis of the amortized cost
of a deletion, each time a plane h is removed from some conflict list, without causing the list to
be purged, we let h deposit in the list ©(log®n) units. In total, h deposits ©(log® n) units. When
a conflict list C; gets purged (by the lookahead mechanism) at the deletion of a plane h, at least
i of its original elements have already been deleted (by the adversary), so it has accumulated
Q (i]CT\ log® n) units, where here |C;| refers to the original size of the list. With a suitable choice
of the constant of proportionality, these units suffice to pay for the (amortized) cost of re-insertion
of the remaining elements of C'. O

Storage. The entire structure, as described so far, requires O(n logn) storage. Indeed, Z consists
of O(logn) substructures, where the structure 53- at index 7, if nonempty, is a static substructure
that has originally been constructed for some set H; of at most 2/ planes. Such a substructure
is a hierarchy of cuttings, each approximating some level in a geometric sequence of levels. Put
n; = |H;| < 27. The number of prisms in the cutting for level k is O(n;/k), and the size of the
conflict list of each of its prisms is O(k), so the total storage for each level of D; is O(n;), for a
total storage of O(n;logn;). Summing over j, we get that the total storage used by Z is O(nlogn).
(Note that a similar analysis shows that the total storage required by Z, excluding the conflict lists,
is only O(n).)

Following an idea of Chan [13], we can improve the storage to linear, if we do not store explicitly
the conflict list of each prism, but only its size (except for the lowest-level prisms, but the size of
each list at that level is only O(1)). It is easily seen (along the comment just made) that with this
approach the total storage for D; is O(n;), making the overall storage O(n).

To make this reduction effective, we need additional mechanisms that will compensate for the
missing conflict lists. Specifically, when we delete a plane h, we need to find the prisms at which
it would have been stored, and decrement the counter (size of the conflict list) of each such prism.
Proceeding naively, within a substructure D;, h has to find all the vertices of all the cuttings
that lie above it; each such vertex is a vertex of some prism(s) and h belongs to the conflict list
of each of these prisms. However, h might lie below a vertex v and not belong to the conflict
lists of the incident prisms, because it has been pruned away while processing a previous (higher)
level. To handle this issue, we augment D; with a halfspace range reporting data structure for
the set of vertices of each of its cuttings separately. We use the recent algorithm of Afshani and
Chan [1] (which can be made deterministic by using the shallow cutting construction of [15]), which
preprocesses a set V' of points in R3, in O(|V|log|V|) time, into a data structure of linear size, so
that the set of those points of V' that lie above a query plane h can be reported in O(log |V| + t)
time, where ¢ is the output size. The cost of augmenting D; with these reporting structures is
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subsumed by the cost of building D; itself.

Now, when deleting a plane h, we access each substructure fj of Z for which h belongs to some
conflict list of 5j. For this, each plane h stores pointers to all these structures. Since the overall size
of the sets H; is O(n), the overall number of pointers is also O(n). For each substructure D; that
contains h, we find the prisms that contain A in their conflict lists. To ensure correctness of this
step, h also stores a second pointer, for each 5j containing it, to the level at which it was pruned; if
h was not pruned, we store a null pointer. Now h accesses the halfspace range reporting structures
of all the levels from the level at which h was pruned and higher, and retrieves from each of these
structures the prisms that contain it in their conflict lists. For each such prism 7, we decrement its
counter by 1. If the counter becomes too small, according to the criterion given above, we purge
the entire conflict list, and reinsert its surviving members into Z (this step of course also requires an
alternative structure to be performed efficiently, see below). The total cost of these steps, excluding
the one that purges conflict lists that have become too small, is O(log® n +t), where t is the overall
number of prisms that store h in their conflict lists. The term O(log®n) arises since we access up
to O(logn) substructures 5j, access up to O(logn) halfspace range reporting structures at each
of them, and pay an overhead of O(logn) for querying in each of them. Since, by construction,
t = O(log? n), this modification, so far, adds O(log®n) to the total of cost of a deletion.

As noted, the step that purges conflict lists that have become too small also requires a mech-
anism to compute the conflict lists to be purged. Specifically, when we purge the conflict list of a
prism 7 in the structure 5j, we need to retrieve the planes of C; that have to be re-inserted. To do
so, we preprocess the planes of H(D;) into a (dual version of a) halfspace reporting data structure
that we keep with Dj. We query this structure with each of the four vertices of 7, to obtain, in
an output-sensitive manner, all the planes of H(D,) that cross 7. This structure takes space linear
in |H(D;)|, O(|H(D;)|log |H(D;)|) time to build, and can answer a query in O(log|H (D;)| + t)
time, where ¢ is the output size. The cost of answering such a query is subsumed by the cost of
reinserting the planes of C', and the cost of constructing this reporting structure is subsumed by
the cost of constructing fj.

As we mentioned before, on top of the maintenance mechanism described so far, we rebuild the
entire structure when the number of planes in H increases or decreases by a factor of 2. The cost
of this rebuilding, namely O(nlog?n), is subsumed by the cost of the insertions and/or deletions
that have been performed since the last global rebuilding.

We thus obtain the following main summary result of this section.

Theorem 7.6. The lower envelope of a set of n non-vertical planes in three dimensions can be
maintained dynamically, so as to support insertions, deletions, and queries, so that each insertion
takes O(log®n) amortized deterministic time, each deletion takes O(log® n) amortized deterministic
time, and each query takes O(log2 n) worst-case deterministic time, where n is the size of the set
of planes at the time the operation is performed. The data structure requires O(n) storage.

8 Dynamic Lower Envelopes for Surfaces

We finally show how to generalize the data structure from the previous section for general surfaces.
As mentioned in the introduction, the key observation is that Chan’s technique, as well as our
improvement thereof, is “purely combinatorial”: Once we have, as a black box, a procedure for
efficiently constructing (vertical) shallow cuttings, accompanied with efficient procedures for the
various geometric primitives that are used by the algorithm (which are provided by our algebraic
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model of computation—see the introduction for details), the rest of the algorithm is a purely
symbolic organization and manipulation of the given surfaces into standard data structures. Indeed,
the whole geometry needed for the deletion lookahead mechanism is encapsulated in the proof of
Invariant 7.4, which relies only on the properties of conflict lists in a vertical shallow cutting.

We begin by showing how to find a wertical shallow cutting with conflict lists as needed for
Chan’s construction.

Theorem 8.1. Let F' be a set of n continuous totally defined algebraic functions of constant de-
scription complexity for which the complexity of the lower envelope of any m functions is O(m).
Furthermore, let k € {1,...,n}. Then, there is a vertical shallow cutting Ay for the first k levels
of A(F) with the following properties:

1. The number of cells in Ay, is O((n/k)log®n).
2. Fach prism in Ay intersects at least k and at most 2k graphs of functions in F'.

3. We can find Ay, and the conflict lists for its prisms in expected time O(nlog® nsio(logn))
using expected space O(nlognsio(logn)).

Proof. We combine the techniques from Sections 4, 5 and 6. First, set ¢ = 1/2 and A = 4clogn,
for a suitable constant ¢ as in Section 4. Pick ¢ randomly in [%, %] A, and let S be a random subset
of F of size r, = 4c(n/k)logn. If ri > n, we set rp, = n and we pick ¢ randomly in [k, 2k]. Denote
by T the t-level in A(S;). By Lemma 4.3 and as argued at the end of Section 4, the expected
complexity of Ty is O((n/k)log?n).

We compute T, as follows: we perform the algorithm from Section 6 on F for the chosen
level t, and we stop the randomized incremental construction after 7 steps. The set of func-
tions inserted during these steps constitute the random sample S C F. By Theorem 6.3, this
step takes expected time O(ntAsi2(t)log(n/t)logn) = O(nlog® nAsi2(logn)) and expected space
O(ntAs+2(t)) = O(nlognAsia(logn)). As a result, we get the vertical decomposition VD<;(Sk)
of the (< t)-level of A(Sk) together with the conflict lists (with respect to F') of the prisms in
VD<;(Sk). From this, we can extract Ty by gluing together the ceilings of all prisms that lie on
the ¢ level. If the complexity of T}, exceeds its expectation by a constant factor that is too large,
we repeat the whole process with a new random level t. By Markov’s inequality, this happens a
constant number of times in expectation.

Next, we compute for each function f € F\ S the intersection between f and T'. For this, we
inspect each prism 7 € VD<;(Sk) that has f in its conflict list. If 7 is incident to T, we compute the
intersection between f and the boundary of 7 and keep the part of this intersection that appears on
T Finally, we glue together the resulting partial curves in order to obtain fNT}, (this intersection
curve does not need to be connected and can be very complex). The total time for this step is
proportional to the total size of the conflict lists of VD<;(S), which is O(nlognAsi2(logn)) in
expectation, by Theorem 6.3.

Finally, we construct the vertical decomposition Ay of Tk, in O(|Tk|logn) = O((n/k)log®n)
time, by performing a vertical sweep on the xy-projection of T). By Lemma 5.1, the downward
vertical extension of Ay, Ay, is a shallow cutting for the first & levels of A(F'), with high probability.
To find the conflict lists of Ay, we build a planar point location structure for the xy-projection of
Ag. Then, for each f € F'\ S, we use the planar point location structure and a walk in A, to find all
trapezoids of Aj, that are intersected by fNT}. Starting from these trapezoids, we perform another
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walk in Ay, to find all trapezoids of Ay, that lie above f. For all these trapezoids, f is in the conflict
list of the corresponding vertical prism, so the overall time for this step is proportional to the total
size of the conflict lists of Ag, times a logarithmic factor for the point location overhead. Thus, the
total expected running time for this step is O(k(n/k)log®n) = O(nlog®n), by Lemma 5.1. The
functions f € F'\ Sy, for which f NTj = @ either lie completely above or completely below Tj. In
the former case, such a function is irrelevant, in the latter case, it appears in all conflict lists of Ay.
In the last step, we check whether all prisms actually intersect between k and 2k functions from
F. If this is not the case, we repeat the whole construction. By the discussion in Section 4 and
Markov’s inequality, the expected number of attempts is constant.

The total expected running time and storage is dominated by the randomized incremental
construction, and hence the theorem follows. ]

Now we can combine Theorem 8.1 with the construction in Section 7 to obtain the desired data
structure. However, we need to adjust the bounds in our analysis to account for the fact that the
cuttings we construct are of slightly sub-optimal size (O((n/k)log?n) instead of O(n/k)) and that
we need more time to construct them (O(nlog®n),,2(logn)) instead of O(nlogn)). Specifically,
the following adjustments are necessary: since now the total size of the conflict lists is O(n log? n),
when constructing the static data structure (Section 7.1), we prune a function only when it appears
in clog®n conflict lists. This increases the overall size of the static structure to O(nlog®n), and
the construction time becomes O(nlog*n),i2(logn)) (in expectation). The query time remains
O(log?n), since O(logn) time point location is also possible in general minimization diagrams.
Concerning insertions, the increased construction time implies that in Lemma 7.3, we need to
allocate ©(log* nAsy2(logn)) units for one credit. Then, the remaining analysis in the proof of
Lemma 7.3 remains valid, and we have an amortized insertion cost of O(log® nAs12(logn)). Finally,
we need to assess the effect on the deletion cost: since now a deleted element can appear in O(log? n)
conflict lists, and since a reinsertion now requires O(log® nAs o(logn)) units, we must equip each
deleted element with @(log9 nAs+2(logn)) units to pay for the lookahead deletions. Since the storage
for the dynamic structure is proportional to the storage for the static structure, our structure needs
O(nlog®n) space overall.

Our efforts so far can thus be immediately reaped into the following main result.

Theorem 8.2. The lower envelope of a set of n bivariate functions of constant description com-
plexity in three dimensions can be maintained dynamically, so as to support insertions, deletions,
and queries, so that each insertion takes O(log® n\sio(logn)) amortized expected time, each dele-
tion takes O(log® n\s 2(logn)) amortized expected time, and each query takes O(log? n) worst-case
deterministic time, where n is the maximum size of the set of functions during the process. The
data structure requires O(n log® n) storage in expectation.

9 Applications

Let S C R? be a finite set of parwise disjoint sites, each being a simply-shaped convex region in the
planhe, e.g., points, line segments, disks, etc. Finding for a point ¢ € R? its nearest neighbor in S
under any norm or convex distance function § [19] translates to ray shooting in the lower envelope of
the graphs of the functions fs(x) = d(x, s) for s € S. Let F denote the set of these functions. Thus,
if the lower envelope of F' has linear complexity, Theorem 8.2 yields a dynamic nearest neighbor
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data structure for S. We note that the minimization diagram of the lower envelope of F' is the
Voronoi diagram of S under § [5,22].

Dynamic nearest neighbor search has several applications that we are going to mention, but
first we introduce two classes of distance functions that are of particular interest.

e The L,-metrics: Let p € [1,00]. Then we define for (z1,¥1), (2,y2) € R? the L, metric
Sp((z1,y1), (2, 42)) = (|1 — @2|P + |Y1 — y2|p)1/p. It is well known that 6, is a metric, and
thus, like any metric, it induces lower envelopes of linear complexity for any set of sites as
above [33].

e Additively Weighted Euclidean Metric: Let S C R? be a set of sites, and suppose that
each s € S has an associated weight w, € R. We define a distance function § : R? x § — R
by d(p, s) = ws + |ps|, where | - | denotes the Euclidean distance. This distance function also
induces lower envelopes of linear complexity, i.e., the additively weighted Voronoi diagram of
point sites has linear complexity [5].

9.1 Direct Applications of Dynamic Nearest Neighbor Search

Now we can improve several previous results by plugging our new bounds into known methods.

Dynamic Bichromatic Closest Pair. Let § : R? x R> — R be a planar distance function, and
let R, B C R? be two sets of point sites in the plane. The bichromatic closest pair of R and B
with respect to ¢ is defined as a pair (r,b) € R x B that minimizes §(r,b). We get the following
improved version of Theorem 6.8 in Agarwal et al. [3], which is obtained by combining Eppstein’s
method [23] with the dynamic lower envelope structure from Theorem 8.2.

Theorem 9.1. Let R and B be two sets of points in the plane, with a total of at most n points. We
can store RUB in a dynamic data structure of size O(n log? n) that maintains a closest pair in Rx B
under any Ly-metric or any additively weighted Buclidean metric in O(log'® nAsy2(logn)) amortized
expected time per insertion and O(log* nAsio(logn)) amortized expected time per deletion.

Minimum Euclidean Bichromatic Matching. Let R and B be two sets of n points in the
plane (the red and the blue points). A minimum Euclidean bichromatic matching M of R and B is
a set M of n line segments that go between R and B such that each point in RU B is an endpoint
of exactly one line segment in M and such that the total length of the segments in M is minimum
over all such sets. Agarwal et al. [3, Theorem 7.1] show how to compute such a minimum Euclidean
bichromatic matching in total time O(n?*¢), building on a trick by Vaidya [43]. The essence of
the algorithm lies in a dynamic bichromatic closest pair data structure for the additively weighted
Euclidean metric. The algorithm makes O(n?) updates to this structure. Thus, using Theorem 9.1,
we get the following improvement:

Theorem 9.2. Let R and B be two sets of points in the plane, each with n points. We can find a
minimum Buclidean bichromatic matching for R and B in O(n? log*! nAsyo(logn)) expected time.

Dynamic Minimum Spanning Trees. Following Eppstein [23], Theorem 9.1 immediately gives
a data structure for dynamic maintenance of minimum spanning trees. We thus get the following
improved version of Theorem 6.9 in Agarwal et al. [3].
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Theorem 9.3. A minimum spanning tree of a set of at most n points in the plane, under any
Ly-metric, can be maintained in O(log'® n\s.o(logn)) per update, using O(nlog®n) space.

Maintaining the Intersection of Unit Balls in Three Dimensions. Agarwal et al. [3] show
how to use dynamic lower envelopes to maintain the intersection of unit balls in three dimensions,
so that certain queries on the union can be supported. Their algorithm uses parametric search
on the query algorithm in a black box fashion. Thus, we obtain the following improvement over
Theorem 8.1 in Agarwal et al. [3]

Theorem 9.4. The intersection B" of a set B of at most n unit balls in R3 can be main-
tained dynamically by a data structure of size O(n log? n), so that each insertion or deletion takes
O(log® nAs12(logn)) or O(log? n)si2(logn)) amortized expected time and the following queries can
be answered: (a) for any query point p € R3, we can determine in O(log2 n) deterministic worst-case
time if p € B", and (b) after performing each update, we can determine in O(log®n) deterministic
worst-case time whether B # ().

Maintaining the Smallest Stabbing Disk. Let C be a family of simply shaped compact
strictly-convex sets in the plane. We wish to dynamically maintain a finite subset C' C C such that
at any point we have a smallest disk that intersects all the sets of C' (see Agarwal et al. [3, Section 9]
for precise definitions). Our structure yields the following improved version of Theorem 9.3 in [3]:

Theorem 9.5. A set C' of at most n (possibly intersecting) simply shaped compact convex sets
in the plane can be stored in a data structure of size O(n log® n), so that a smallest stabbing disk
for C can be computed in O(log®n) additional deterministic worst-case time after each insertion
or deletion. An insertion takes O(log® n)sy2(logn)) amortized expected time and a deletion takes
O(log® n)sio(logn)) amortized expected time.

Shortest Path Trees in Unit Disk Graphs. Let S C R? be a set of n point sites. The unit
disk graph UD(S) of S has vertex set S and an edge between two distinct sites s,t € S if and only if
|st| < 1. Cabello and Jejéic [10] show how to compute a shortest path tree in UD(S) for any given
root vertex r € S, in time O(n!*¢), for any £ > 0, using the bichromatic closest pair structure from
Agarwal et al. [3, Theorem 6.8]. By plugging in our improved Theorem 9.1, we get the following
result.

Theorem 9.6. Let S C R? be a set of n sites. For anyr € S, we can compute a shortest path tree
with root v in UD(S) in expected time O(nlog* nsio(logn)).

9.2 Dynamic Disk Graph Connectivity

Next, we describe three further applications of our data structure with improved bounds for prob-
lems on disk graphs: let S C R? be a finite set of point sites, each with an assigned weight w, > 1.
Every s € S corresponds to a disk with center s and radius ws. The disk graph D(S) is the inter-
section graph of these disks , i.e., D(S) has vertex set S and an edge connects s to t if and only
if |st| < ws + w;. We assume that all weights lie in the interval [1, ¥], for some ¥ > 1, and we
call ¥ the radius ratio. We show how to dynamically maintain D(S) under insertions and dele-
tions of vertices, such that we can answer reachability queries efficiently: given s,t € S, is there a
path in D(S) from s to ¢? The update time will be O(¥21log®n) for insertions and O(¥?log'? n)
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for deletions, and the cost of a query is O(logn/loglogn). Previous results have update time
O(n?/2Y) and query time O(n!/7) for general disk graphs, and update time O(log'® n) and query
time O(logn/loglogn) for the unit disk case [14].

Our approach is as follows: let G be a planar grid whose cells are disjoint axis-aligned squares
with diameter (i.e., diagonal) 1. For any grid cell o € G, since ws > 1 for every s € S, the sites
o NS induce a clique in D(S). For S C R?, we define an abstract graph G whose vertices are
the non empty cells o € G, i.e., the cells with o NS # (. The neighborhood N(o) of a cell o € G
is the ([4v2¥] + 3) x ([4v2¥] + 3) block of cells in G with o in the center. We call two cells
neighboring if they are in each other’s neighborhood. Thus, the endpoints of any edge in D(S)
must lie in neighboring cells. We pick the following edges for G: consider any two neighboring grid
cells 0,7 € G. We have an edge between ¢ and 7 if and only if there are two sites s € 0 NS and
t € 7N S with |st| < ws 4+ w;. By construction, and since the sites inside each cell form a clique,
the connectivity between two sites s,t in D(S) is the same as for the corresponding cells in G:

Lemma 9.7. Let s,t € S be two sites and let o and T be the cells of G containing s and t,
respectively. There is a s-t-path in D(S) if and only if there is a path between o and T in G.

To maintain G, we use the following result by by Holm, De Lichtenberg and Thorup that
supports dynamic connectivity with respect to edge updates [29].

Theorem 9.8 (Holm et al., Theorem 3). Let G be a graph with n vertices. There exists a deter-
ministic data structure such that (i) we can insert or delete edges in G in amortized time O(log®n);
and (i) we can answer reachability queries in worst-case time O(logn/loglogn).

Even though Theorem 9.8 assumes that the number of vertices is fixed, we can use a standard
rebuilding method to maintain G dynamically within the same asymptotic amortized time bounds,
by creating a new data structure whenever the number of non empty grid cells changes by a factor
of 2. When a site s is inserted into or deleted from S, only O(¥?) edges in G change, since only the
neighborhood of the cell of s is affected. Thus, once this set E of changing edges is determined, we
can update G in time O(¥? log? n), by Theorem 9.8. It remains to describe how to find E. For this,
we maintain a mazimal bichromatic matching (MBM) between the sites in each pair of non-empty
neighboring cells, similar to Eppstein’s method [23]. This is defined as follows: let R C S'and B C S
be two sets of sites. A MBM M between R and B is a maximal set of edges in (R x B)ND(S) that
form a matching. Using our dynamic lower envelope structure from Theorem 8.2, we can easily
maintain MBMs.

Lemma 9.9. Let R, B C S be two sets with a total of at most n sites. There exists a dynamic data
structure that maintains a mazimal bichromatic matching of the disk graph D(RU B) such that we
can insert or delete sites in expected amortized time O(log”? n\sy2(logn)).

Proof. We have two dynamic lower envelope structures, one for R and one for B, as in Theorem 8.2,
with the weighted distance function d(p, s) = |ps| — ws, that allow us to perform nearest neighbor
search (i.e., vertical ray shooting at the lower envelope) with respect to §. We denote by NNy the
structure for R and by NNp the structure for B. We store in NN the currently unmatched points
in R, and in NNp the currently unmatched points in B. When inserting a site r into R, we query
NNp with r to get an ummatched point b € B that minimizes |rb| — wy. If |rb] < w, + wy, we add
the edge rb to M, and we delete b from NNg. Otherwise we insert r into NNg. By construction, if
there is an edge between r and an unmatched site in B, then there is also an edge between r and b.
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Hence, the insertion procedure maintains a MBM. Now suppose we want to delete a site r from R.
If r is unmatched, we simply delete r from NNpg. Otherwise, we remove the edge rb from M, and
we reinsert b as above, looking for a new unmatched site in R for b. The procedures for updating
B are analogous.

Since inserting and deleting sites requires O(1) insert, delete or query operations in NNg or
NNpg, the lemma follows. O

We create a data structure as in Lemma 9.9 for each pair of non-empty neighboring grid cells.
Whenever we insert or delete a site s in a grid cell o, we update the MBMs for ¢ and all cells
in N(o). Observe that there is an edge between o and 7 if and only if their MBM is not empty.
Thus, if s is inserted, we add to G an edge between any pair o, 7 whose MBM changes from empty
to non-empty. If s is deleted, we delete all edges between pairs of cells whose MBM changes from
non-empty to empty. We obtain the following theorem:

Theorem 9.10. Let ¥ > 1. We can dynamically maintain the disk graph of a set S of at most
n sites in the plane with weights in [1, V] such that (i) we can insert or delete sites in expected
amortized time O(U?1og” n\s 2(logn)) and (i) we can determine for any pair of sites s,t whether
they are connected by a path in D(S), in time determistic worst-case time O(logn/loglogn).

As stated above, prior to this study, polylogarithmic bounds were known only for the case of
unit disk graphs. More precisely, Chan, Patrascu, and Roditty mention that one can derive from
known results an update time of O(log'®n) [14]. An extension of our method leads to significantly
improved bounds for this case, too. Namely, for this case, we can obtain an amortized update time
O(log?n) with worst-case query time O(logn/loglogn) and amortized update O(lognloglogn)
with worst-case query time O(logn) [31].

9.3 Breadth-First-Search in Disk Graphs

As observed by Roditty and Segal [40] in the context of unit disk graphs, a dynamic nearest neighbor
structure can be used for computing exact BFS-trees in disk graphs. More precisely, let D(S) be a
disk graph with n sites as in Section 9.2, and let r € S. To compute a BFS-tree with root r in S, we
build a dynamic nearest neighbor data structure for the weighted Euclidean distance (the weights
correspond to the radii) and we insert all points from S\ {r}. At each point of the BFS-algorithm,
the dynamic nearest neighbor data structure contains all sites that are not yet part of the BFS-tree.
To find all new neighbors of a site p of the partial BFS-tree T', we repeatedly find and delete a
nearest neighbor of p in S\ 7, until the next nearest neighbor is not adjacent to p in D(S). The
successful queries can be charged to the edges of the BFS-tree, the last unsuccessful query can be
charged to p. Thus, the total number of operations on the data structure is O(n). We get the
following theorem:

Theorem 9.11. Let S be a set of n weighted sites in the plane, and let r € S. Then, we can
compute a BFS-tree in D(S) with root r in total expected time O(nlog? nAs o(logn)).
9.4 Spanners for Disk Graphs

Finally, we discuss how to use our data structure in order to compute efficiently a spanner for the
disk graph of a given weighted point set. We only sketch our approach and leave further details
for the full version. Let D(S) be a disk graph with n sites as in Section 9.2, and let ¢ > 0. A
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(1 + €)-spanner for D(S) is a subgraph H C D(S) such that, for any s,t € S, the shortest path
distance dg(s,t) between s and ¢ in H is at most (1 4 €)d(s,t), where d(s,t) is the shortest path
distance in D(S). Fiirer and Kasiviswanathan [25] show that a simple construction based on the
Yao graph [44] yields a (1 4 €)-spanner for D(S) with O(n/e) edges: let C be a set of k = O(1/¢)
cones that partition the plane. For each site ¢ € S, we translate C to t, and for each translated
cone C, we select a site s € S with the following properties (if it exists): (i) s lies in C' and st
is an edge of D(S); (ii) we have ws > wy; and (iii) among all sites with properties (i) and (ii), s
minimizes the distance to t. We add the edge st to H. Fiirer and Kasiviswanathan show that this
construction yields a (1+¢)-spanner [25, Lemma 1]. However, it is not clear how to implement this
construction efficiently. Therefore, Fiirer and Kasiviswanathan show that it is sufficient to relax
property (iii) and to require only an approrimate shortest edge in each cone. Using this, they show
how to construct such a relaxed spanner in time O(n*/3+9¢=4/3 log?/3 U), where 6 > 0 can be made
arbitrarily small and all weights lie in the interval [1, ¥].

We can improve this running time by combining our new dynamic nearest neighbor structure
with techniques that we have developed for transmission graphs [30]. Let S be a set of n weighted
point sites as above. The transmission graph of S is a directed graph on S with an edge from s to ¢
if and only if |st| < wg, i.e., t lies in the disk of s. A similar Yao-based construction as above yields
a (1 + ¢)-spanner for directed transmission graphs: take for each site ¢ € S and each cone C' the
shortest incoming edge for ¢ in C'. Again it is not clear how to obtain this spanner efficiently. To
solve this problem, Kaplan et al. [30] proceed as Fiirer and Kasiviswanathan and describe several
strategies to compute relaxed versions of this spanner using only an approximate shortest edge in
each cone.

One strategy to obtain a running time of O(n log® n) is as follows: we compute a compressed
quadtree T for S [26]. Let o be a cell in T, and let |o| be the diameter of 0. We augment T
such that for every edge st in the transmission graph, there exist cells o, 7 in T with diameters
lo| = |7] = O(e|st]) and with s € o, t € 7. In particular, if st is the shortest edge in a cone with
apex t, then any edge s't with s’ € o is sufficient for our relaxed spanner, see Figure 9. Kaplan et
al. show that this augmentation requires adding O(n) additional nodes to T that can be found in
O(nlogn) time. Furthermore, we compute for each cell o the set W, = {s € cNS | ws = O(|o|/e)}.
Our strategy is to select spanner edges between sites in cells o, 7 € T with |o| = |7| whose distance
is ©(|o|/e). Since a site can be contained in many cells of 7', we consider for each pair o, 7 only the
sites in W, for outgoing edges. This avoids checking sites in o whose radius is too small to form an
edge with sites in 7. Sites whose radius is too large to be in W, can be handled easily; see below.
By definition of the sets W, each site appears in a constant number of such sets, which is crucial
in obtaining an improved running time.

Now we can sketch the construction algorithm for the spanner H. We go through all cones
C € C. For each C', we perform a level order traversal of the cells in T, starting with the lowest
level. For each cell 7 in T', we find the approximate incoming edges of length ©(|7|/¢) with respect
to C' that go into the active sites in .S N 7, i.e., those sites in 7 for which no such edge has been
found in a previous level. See Algorithm 1 for pseudocode how to process a pair C, 7. To do this,
we consider the cells of 7" that have diameter |7| and distance ©(|7|/¢) from 7 and that intersect
the translated copy of C' whose center is in the center of 7. For each such cell o, we first check
whether the disk corresponding to the largest site s in o contains 7 completely. If so, we add edges
from s to all active sites in ¢ € 7. This step covers all edges from sites in ¢ whose radius is too
large to be in W,. Otherwise, we check for each site in W, whether it has edges to active sites in 7.
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Figure 9: A cone C (blue) and the shortest edge st in this cone. Any edge s't with s’ € o has
approximately the same length as st.

This test is performed with a dynamic Euclidean nearest neighbor data structure that stores the
active sites in 7: while the nearest neighbor ¢ in 7 for the current site s € W, has |st| < ws, we add
the edge st to H, and we remove t from the nearest neighbor structure. Otherwise, we proceed to
the next site in W,. The resulting graph H has O(n/e?) edges and contains for each site ¢ and for
each cone C attached to ¢ an approximately shortest incoming edge for t¢.

let v be the child of 7 whose nearest neighbor structure NN, contains the most sites
for each child 7’ # ~ of 7, insert all sites in 7/ into NN,; let NN, = NN,
foreach o € T with |o| = |7| and distance O(|7|/¢) from 7 that is relevant for C do
if disk of site s € o with largest weight contains 7 then
for each t € NN add the edge st to H
else
foreach s € W, do
t < NN,(s) ; // query NN structure of 7 with s
while |st| < ws and ¢ # () do
‘ add the edge st to H; delete ¢t from NN ; ¢t < NN (s)
reinsert all deleted points into NN -
delete all sites ¢ from NN, for which at least one edge st was found (i.e., make them inactive)

© 0 N O 0k~ W Ny

=
o

[Er——
N

Algorithm 1: Selecting incoming edges for the points of a node 7 of 7" and a cone C.

The nearest neighbor structures can be maintained with logarithmic overhead throughout the
level-order traversal: we initialize them at the leaves of T', and when going to the next level, we
obtain the nearest neighbor structure for each cell by inserting the elements of the smaller child
structures into the largest child structure. For more details, we refer to Kaplan et al. [30]. They
prove that the running time is dominated by the time needed for O(nlogn) insertions and O(n/c?)
deletions in the dynamic nearest neighbor structure.

Now, a similar strategy works for the case of disk graphs. We sketch how to modify the
approach above. Given S, we compute an augmented quadtree 1" for S as above in order to obtain
an approximate representation of the distances in S. Furthermore, we compute for each cell o in T
an appropriate set W, of assigned sites s from SNo with ws = O(|o|/e), as above. To construct the
spanner, we perform the level order traversals of the cells in T' as before, going through all cones
C € C and through all cells in T' from bottom to top. Now, suppose we visit a cell 7 of T, and let
o be a cell of T' with diameter |o| = |7| and distance O(|7|/¢) from 7 that intersects the translated
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copy of C with apex in the middle of 7. As in Algorithm 1, our goal is to find all “incoming”
edges from W, for the active sites in 7, where an incoming edge for 7 now is an edge st with ¢t € 7
and wg > w; (recall property (ii) from the original construction of Fiirer and Kasiviswanathan).
We store the active sites of 7 in a dynamic nearest neighbor data structure NN, for the metric
d(s,t) = |st| — wy, instead of the Euclidean metric. To ensure that we find only edges from larger
to smaller disks, we sort the disks in W, by radius, and besides NN, we also maintain a list L, of
all sites in 7N S sorted by radius during the traversal of T

We change lines 7-11 in Algorithm 1 as follows: we query the sites from W, in order from small
to large. Before querying a site s, we use L, to insert into NN, all active sites with weight at
most w;, that are not in NN, yet. We keep querying NN, with s as long as the resulting nearest
neighbor t corresponds to a disk that intersects the disk of s, and we add these edges st to H. After
that, we proceed to the site s’ € W, with the next larger radius, and we again insert all remaining
active sites with weight at most wy from L, into NN, (all these sites ¢t have ws < wy < wy).
When we have finished processing W, we proceed with the next cell o’/. To ensure that our nearest
neighbor queries still returns only smaller disks, we need to delete all sites in NN, whose weight
is larger than the smallest weight in W/. This can be done by deleting all sites in W, from NN,.
By definition of W, for each site the additional insertions and deletions to maintain NN, occur
only for a constant number of pairs o, 7, accounting for an additional O(n) insertions and deletions
per site. An analysis similar to the one performed by Kaplan et al. [30] for transmission graphs
now shows that H can be constructed in time O(nlogn) plus the time for O(nlogn) insertions and
O(n/e?) deletions in the dynamic nearest neighbor structure. By Theorem 8.2, we thus obtain the
following result:

Theorem 9.12. Let S be a set of n weighted sites in the plane, and let € > 0. Then, we can
construct a (14 €) spanner for D(S) in expected time O((n/e?)log? n\si2(logn)).
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