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Abstract

Let P1, . . . , Pd+1 ⊂ Rd be d-dimensional point sets
such that the convex hull of each Pi contains the origin.
We call the sets Pi color classes, and we think of the
points in Pi as having color i. A colorful choice is a
set with at most one point from each color class. The
colorful Carathéodory theorem guarantees the existence
of a colorful choice whose convex hull contains the
origin. So far, the computational complexity of finding
such a colorful choice is unknown.

An m-colorful choice is a set that contains at most
m points from each color class. We present an ap-
proximation algorithm that computes for any constant
ε > 0, an dε(d + 1)e-colorful choice containing the
origin in its convex hull in polynomial time. This
notion of approximation has not been studied before,
and it is motivated through the applications of the
colorful Carathéodory theorem in the literature. Sec-
ond, we show that the exact problem can be solved in
dO(log d) time if Θ(d2 log d) color classes are available,
improving over the trivial dO(d) time algorithm.

1 Introduction

Let P ⊂ Rd be a point set. Carathéodory’s theorem [4,
Theorem 1.2.3] states that if ~0 ∈ conv(P ), there is
a subset P ′ ⊆ P of size d + 1 with ~0 ∈ conv(P ′).
Bárány [1] gives a colorful generalization.

Theorem 1 (Colorful Carathéodory Theorem)
Let P1, . . . , Pd+1 ⊂ Rd be point sets (the color classes)
with ~0 ∈ conv(Pi), for i = 1, . . . , d + 1. There is a
colorful choice C with ~0 ∈ conv(C). Here, a colorful
choice is a set with at most one point from each color
class.

Theorem 1 yields Carathéodory’s theorem by setting
P1 = · · · = Pd+1. Moreover, there are many variants
with weaker assumptions [5]. While Carathéodory’s
theorem has a proof that gives a polynomial-time al-
gorithm, very little is known about the algorithmic
complexity of the colorful Carathéodory theorem [2].
This question is particularly interesting since Sarkaria’s
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proof [10] of Tverberg’s theorem [11] can be interpreted
as a polynomial-time reduction from computing Tver-
berg partitions to computing a colorful choice with the
origin in its convex hull. Both problems lie in Total
Function NP (TFNP), the complexity class of total
search problems that are solvable in non-deterministic
polynomial time. It is well known that no problem in
TFNP is NP-hard unless NP = coNP [3].

Related problems have been shown to be com-
plete for subclasses of TFNP. Recently, Meunier and
Sarrabezolles [6] proved that given d+1 pairs of points
P1, . . . , Pd+1 ∈ Qd and a colorful choice that contains
the origin in its convex hull, it is PPAD-complete [9]
to find another colorful choice with the origin in its
convex hull. The authors [8] showed the following
generalization of the colorful Carathéodory problem
to be PLS-complete [3]: given sets P1, . . . , Pn ⊂ Rd,
find a colorful choice s.t. the distance of its convex
hull to the origin cannot be decreased by swapping a
single point with another point of the same color.

Since we have no polynomial-time algorithms for
the colorful Carathéodory theorem, approximation al-
gorithms are of interest. This was first studied by
Bárány and Onn [2] who described how to find a color-
ful choice whose convex hull is “close” to the origin. Let
ε, ρ > 0 be parameters. Given sets P1, . . . , Pd+1 ∈ Qd

encoded in L bits s.t. (i) each Pi contains a ball of
radius ρ centered at the origin in its convex hull; and
(ii) all points p ∈ Pi fulfill 1 ≤ ‖p‖ ≤ 2, one can
find a colorful choice C s.t. d(~0, conv(C)) ≤ ε in time
poly(L, log(ε−1), ρ−1) on the Word-Ram with loga-
rithmic costs. If ρ−1 = LO(1), the algorithm actually
guarantees ~0 ∈ conv(C).

However, when using the colorful Carathéodory the-
orem in a proof, it is often crucial that the colorful
choice contains the origin in its convex hull. Being
“close” is not enough. On the other hand, allowing
multiple points from each color class may have a natu-
ral interpretation in the reduction. This is the case in
Sarkaria’s proof [10] of Tverberg’s theorem and in the
proof of the First Selection Lemma [4, Theorem 9.1.1].
This motivates a different notion of approximation.
Given a parameter m and sets P1, . . . , Pd+1 ∈ Qd, find
a set C s.t. ~0 ∈ conv(C) and s.t. |C∩Pi| ≤ m for all Pi.
In contrast to Bárány and Onn’s setting, we have no
general position assumption. Surprisingly, this notion
does not seem to have been studied before.
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Our Results. Given sets P1, . . . , Pn ⊂ Rd, we call a
set C containing at most m points from each set Pi

an m-colorful choice. A 1-colorful choice is also called
perfect colorful choice. All presented algorithms are
analyzed on the Real-Ram model with unit costs.
We begin with an algorithm based on a dimension
reduction argument that repeatedly combines approx-
imations for lower dimensional linear subspaces. This
leads to the following result:

Theorem 2 Let P1, . . . , Pd+1 ⊂ Rd be sets of size
at most d + 1 s.t. ~0 ∈ conv(Pi) for i = 1, . . . , d + 1.
Then, for any ε = Ω(d−1/3), an dε(d + 1)e-colorful
choice containing the origin in its convex hull can be
computed in dO((1/ε) log(1/ε)) time.

In particular, for any constant ε the algorithm from
Theorem 2 runs in polynomial-time. Given Θ(d2 log d)
color classes, we can also improve the naive dO(d)

algorithm for finding a perfect colorful choice.

Theorem 3 Let P1, . . . , Pn ⊂ Rd be n = Θ(d2 log d)
sets of size at most d + 1 s.t. ~0 ∈ conv(Pi), for
i = 1, . . . , n. Then, a perfect colorful choice can be
computed in dO(log d) time.

2 Fundamentals

Throughout the paper, we denote for a given point set
P = {p1, . . . , pn} ⊂ Rd by span(P ) = {

∑n
i=1 αipi |

αi ∈ R} its linear span and by span(P )⊥ = {v ∈ Rd |
∀p ∈ span(P ) : 〈v, p〉 = 0} the subspace orthogonal to
span(P ); by aff(P ) = {

∑n
i=1 αipi | αi ∈ R,

∑n
i=1 αi =

1} its affine hull; by pos(P ) = {
∑n

i=1 µipi | µi ≥ 0}
all linear combinations with nonnegative coefficients;
by conv(P ) = {

∑n
i=1 λipi | λi ≥ 0,

∑n
i=1 λi = 1} its

convex hull; and by dim(P ) the dimension of span(P ).
Furthermore, we say that a set P ⊂ Rd is in general

position if for every k ≤ d, no k+2 points lie in a k-flat
and if no proper subset of P contains the origin in its
convex hull. We also use the following constructive
version of Carathéodory’s theorem:

Lemma 4 Let P ⊂ Rd be a set of O(d) points s.t.
~0 ∈ conv(P ). In O(d4) time, we can find a subset
P ′ ⊆ P of at most d + 1 points in general position
such that P ′ contains the origin in its convex hull. �

3 Approximation by Rebalancing

Let P1, . . . , Pd+1 ⊂ Rd be the color classes and
dε(d + 1)e be the desired approximation guarantee.
Throughout the algorithm, we maintain a temporary
approximation C ⊂ P1 ∪ · · · ∪ Pd+1 that contains the
origin in its convex hull, but may have more than
dε(d + 1)e points of the same color. The algorithm
then repeatedly replaces at least one point from each

C

C1

C2

c′1 c′2

~0

Figure 1: Example of Lemma 6 in three dimensions.

color class that appears more than dε(d + 1)e times
in C by colors that appear only “few” times using a
dimension reduction argument.
The following lemma enables us to replace a single

point in C by an approximate colorful choice for the
orthogonal space span(C)⊥:

Lemma 5 Let C ⊂ Rd, |C| = k ≤ d+ 1, be a set in
general position that contains the origin in its convex
hull. Furthermore, let Q ⊂ Rd be a set of size O(d)
whose orthogonal projection onto span(C)⊥ contains
the origin in its convex hull. Then, there is a point c ∈
C computable in O(d4) time s.t. ~0 ∈ conv(Q∪C \{c}).

Proof. Write Q = {q1, . . . , ql}. Each qi can be ex-
pressed as q̃i + ĉi, where q̃i denotes the orthogonal
projection of qi onto span(C)⊥ and ĉi ∈ span(C).
By our assumption, the origin is a convex combi-
nation of q̃1, . . . , q̃l: ~0 =

∑l
i=1 λiq̃i, where λi ≥ 0

and
∑l

i=1 λi = 1. Consider the convex combination
q =

∑l
i=1 λiqi of points in Q with the same coefficients.

Since q =
∑l

i=1 λiqi =
∑l

i=1 λi(q̃i + ĉi) =
∑l

i=1 λiĉi,
q is contained in span(C). By our assumption, we
have ~0 ∈ conv(C) and C is in general position. It can
be easily verified that this implies pos(P ) = span(C).
Thus, there are k − 1 points cj1 , . . . , cjk−1

in C s.t.
−q ∈ pos(cj1 , . . . , cjk−1

). We take c ∈ C as the single
point that does not appear in cj1 , . . . , cjk−1

. It can
be found in O(d4) time by solving k ≤ d + 1 linear
systems of equations L1, . . . , Lk, where Lj is defined
as

∑
ci∈C,i 6=j αici = −q. Since C is in general posi-

tion, all (k − 1)-subsets of C are a basis for span(C).
Thus, the linear systems have unique solutions. Since
~0 ∈ conv(C), one of the linear systems has a solution
with no negative coefficients. �

Unfortunately, we do not know how to influence the
color of c in Lemma 5. We would like to replace a
point whose color contributes more than dε(d + 1)e
points to C. The next lemma gives us more control.

Lemma 6 Let C ⊂ Rd, |C| ≤ d+1, be a set in general
position s.t. ~0 ∈ conv(C) and let C1, . . . , Cm be a
partition of C. Then, we can find in O(d3) time a set
C ′ = {c′1, . . . , c′m} ⊂ Rd with the following properties:
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(1) ∀i = 1, . . . ,m: c′i ∈ pos(Ci)\{~0}; (2) ~0 ∈ conv(C ′);
and (3) dim(C ′) = m − 1. We call the points in C ′

representatives for C w.r.t. the partition C1, . . . , Cm.

Proof. Since C contains the origin in its convex hull,
we can write~0 as~0 =

∑
c∈C λcc, where all λc > 0, since

C is in general position. Define c′j as c′j =
∑

c∈Cj
λcc

for i = 1, . . . ,m. Properties 1. and 2. can be easily
verified for the set C ′ = {c′1, . . . , c′m}. Furthermore, c′1
can be expressed as a linear combination of the other
points in C ′: c′1 = −(c′2 + · · ·+ c′m). Thus, dim(C ′) <
m. On the other hand, we have dim(C ′) ≥ m − 1
due to general position. This proves Property 3. See
Figure 1 for an example. �

Instead of applying Lemma 5 to C directly, we use
Lemma 6 to obtain a carefully chosen set of representa-
tive points and apply Lemma 5 to replace a representa-
tive. By choosing the partition for the representatives
appropriately, we can influence the color of the re-
moved points.

Now, we are ready to put everything together. The
algorithm repeatedly replaces points in C by a re-
cursively computed approximate colorful choice for
a linear subspace. We are given as input the color
classes P1, . . . , Pd+1 ⊂ Rd, each containing the origin
in its convex hull, and the current recursion depth
j. Define M(j) as M(j) = d(1 − ε)−j/2ε(d + 1)e
and D(j) as D(j) = d(1 − ε)jε(d + 1)e. In recursion
level j, the input is D(j)-dimensional and the algo-
rithm computes an M(j)-colorful choice. Hence, in
the topmost recursion level (i.e., j = 0), a dε(d+ 1)e-
colorful choice is computed. If d = O(1), we compute
an approximation by brute force. Otherwise, we ini-
tialize the temporary approximation C with a com-
plete color class and prune it with Lemma 4. If the
pruned set C is an M(j)-colorful choice, we return
it. Otherwise, we repeat the following balancing-steps:
we partition C into k = D(j) − D(j + 1) + 1 sets
C1, . . . , Ck, where the points from each color in C are
distributed evenly among the k sets. Let ni = |Pi ∩C|
denote the number of points from Pi in C. Since
k ≤ M(j) + 1, each set in the partition contains at
least one point from each color class Pi for which
ni ≥M(j) + 1. Applying Lemma 6, we compute rep-
resentatives C ′ = {c′1, . . . , c′k} for this partition. Note
that dim(C ′) = k − 1 and that dim(span(C ′)⊥) =
D(j) − k + 1 = D(j + 1). We call a color class Pi

light if ni ≤M(j)−M(j + 1), and heavy, otherwise.
We find d− k + 2 light color classes and project them
orthogonally onto span(C ′)⊥. Let P̃j1 , . . . , P̃jd−k+2

de-
note the projections. Next, we recursively compute
an M(j + 1)-colorful choice Q̃ for the space orthog-
onal to span(C ′) with (P̃j1 , . . . , P̃jD(j+1)+1

, j + 1) as
input. Let Q be the point set whose projection gives
Q̃. Using Lemma 5, we compute a point c′j ∈ C ′ s.t.
conv(Q ∪ C ′ \ c′j) contains the origin. We replace the
subset Cj of C by Q and prune C again with Lemma 4.

Since each representative c′i is contained in the cone
pos(Ci), Q ∪ C \ Cj still contains the origin in its
convex hull and the invariant is maintained. Thus, in
each iteration, at least one point from each color class
Pi for which ni > M(j) is replaced by points from
light color classes. This is repeated until no color class
appears more thanM(j) times in C.

Proof of Theorem 2. We prove correctness by in-
duction on the recursion depth. In particular, we show
that the input in the jth recursion is D(j)-dimensional
and that anM(j)-colorful choice is returned. There
are two base cases: if d = O(1) we compute a per-
fect colorful choice by brute force in O(1) time. This
is always a valid approximation regardless of M. If
D(j) + 1 ≤ M(j), we obtain a valid approximation
by pruning C with Lemma 4. Hence, the claim holds
in both base cases. In each level of the recursion, the
dimension is reduced by k − 1. The dimension of the
input in the recursion is thus D(j)−k−1 = D(j+1) as
claimed. Since D is strictly decreasing, some base case
is reached eventually. Assume now that the current
recursion depth is j and that the claim holds for all
j′ > j. Let C(t) denote the set C after t iterations
of the balancing-steps in the jth recursion and n

(t)
i

the number of points from Pi in C. Define the ex-
cess of a color Pi as e

(t)
i = max{0, n(t)i −M(j)} and

the excess of C(t) as E(C(t)) = maxd+1
i=1 e

(t)
i . We show

the following invariant: (α) ~0 ∈ conv(C(t)); and (β)
E(C(t)) < E(C(t−1)) for t ≥ 1. The invariant implies
that eventually anM(j)-colorful choice is returned.
Before the first iteration, the invariant holds since

C(0) = P1. Assume we are now in iteration t and
the invariant holds for all previous iterations. Due to
Lemmas 5 and 6, we have ~0 ∈ conv(C(t)) and thus
Property (α) holds. Because C(t−1) was not anM(j)-
colorful choice (otherwise the balancing-steps would
not haven executed), E(C(t−1)) ≥ 1. Since Q contains
only light color classes, adding Q to C(t−1) does not
increase the excess. At least one point in C from each
color Pi with e

(t−1)
i ≥ 1 is replaced by Q. Hence,

E(C(t)) < E(C(t−1)). Finally, we show that there are
always D(j+1)+1 light color classes for the recursion.
By induction, the recursively computed set Q is an
M(j + 1)-colorful choice. As C is pruned to at most
D(j)+1 points at the end of the balancing-steps, there
are at most

⌊
D(j)+1

M(j)−M(j+1)

⌋
heavy color classes. One

can show that this is at most D(j) − (D(j + 1) + 1)
for d = Ω(1/ε3). Since we assumed ε = Ω(d−1/3), we
can always find D(j + 1) + 1 light colors.

We now analyze the running time. Each iteration of
the balancing-steps reduces the excess by at least one
until the desired approximation guarantee is reached.
Thus, the total number of iterations is bounded by
D(j) + 1 − M(j) = O(d). Each iteration requires
O(d4) time. The recursion stops when d = O(1) or
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M(j) ≥ D(j) + 1. In the first case, a perfect colorful
choice is computed in O(1) time. In the second case,
we spend O(d4) time since pruning P1 with Lemma 4
already gives a valid approximation. We can bound
the recursion depth j until the second base case is
reached. SinceM(j) ≥ ε(1− ε)j/2(d+ 1) and 3(1−
ε)j(d+1) ≥ D(j)+1, we haveM(j) ≥ D(j)+1 for j =
O((1/ε) log(1/ε)), using the fact that − log(1− ε) ≥ ε.
Thus, the total running time is dO((1/ε) log(1/ε)). �

4 A Subexponential Exact Algorithm

Now, we consider the case that we have “many” color
classes instead of “only” d+ 1: given Θ(d2 log d) color
classes, our algorithm computes a perfect colorful
choice in dO(log d) time, improving the brute force
dO(d) algorithm. The algorithm follows the structure
of Miller and Sheehy’s algorithm for computing approx-
imate Tverberg partitions [7]. We repeatedly combine
m-colorful choices (for some m) to one dm/2e-colorful
choice. Eventually, we obtain a perfect colorful choice.

Lemma 7 Let C1, . . . , Cd+1 ⊂ Rd be m-colorful
choices s.t. |Ci| ≤ d+ 1 and s.t. ~0 ∈ conv(Ci). Then,
a dm/2e-colorful choice containing the origin in its
convex hull can be computed in O(d5) time.

Proof. First, we prune each set Ci with Lemma 4.
This requires O(d5) time. Next, for i = 1, . . . , d +
1, we partition the colorful choice Ci into two sets
Ci,1, Ci,2 of equal size s.t. the points from each color
class are distributed evenly among the two sets. For
each partition Ci,1, Ci,2, we apply Lemma 6 to obtain
two representatives ci,1 and ci,2 in O(d3) time. By
Lemma 6, we have ci,1 ∈ pos(Ci,1) and ci,2 ∈ pos(Ci,2).
Since ~0 ∈ conv({ci,1, ci,2}), both points lie on a line
through the origin and thus −ci,1 ∈ pos(Ci,2). The d+
1 points c1,1, c2,1, . . . , cd+1,1 are linearly dependent, so
there exists a nontrivial linear combination~0 = α1c1,1+
· · ·+ αd+1cd+1,1. For i = 1, . . . d+ 1, we let the set C
contain Ci,1 if αi > 0 (since ci,1 ∈ pos(Ci,1)) and Ci,2

if αi < 0 (since −ci,1 ∈ pos(Ci,2)). By construction, C
contains the origin in its convex hull and exactly one
of Ci,1, Ci,2, for i = 1, . . . , d+ 1. Since all sets Ci are
m-colorful choices, C is a dm/2e-colorful choice. �

Proof of Theorem 3. Let A be an array of size k =
Θ(log d). We set c0 = d + 1 and ci = dci−1/2e, for
i = 1, . . . , k−1. The ith cell of A stores a collection of
ci-colorful choices, such that each color class appears in
exactly one colorful choice in A. Initially, A[0] contains
all Θ(d2 log d) color classes. We repeat the following
steps, until we have computed a perfect colorful choice:
let i be the maximum index s.t. A[i] contains some d+1
sets C1, . . . , Cd+1. We apply Lemma 7 to obtain one
ci+1-colorful choice C. Let C ′ be the set C pruned with
Lemma 4. If C ′ is a perfect colorful choice, we return it.

Otherwise, we add it to A[i+ 1]. Furthermore, we add
all colors that were removed during the pruning to A[0].
As these colors do not appear anywhere else in A, the
invariant is maintained. We claim that a combination
of d+ 1 sets in A[k] for k = dlog(d+ 1)e+ 1 results in
a perfect colorful choice. We have cj ≤ d+1

2k
+ 2. Thus,

sets in A[dlog(d + 1)e] are 3-colorful choices, sets in
A[dlog(d+ 1)e+ 1] = A[k] are 2-colorful choices and
the combination of d+ 1 sets in A[k] gives a perfect
colorful choice. It remains to show that we can always
make progress. The array has k = Θ(log d) levels
and a colorful choice has at most d colors. Thus, for
d2k + 1 = Θ(d2 log d) colors, the pigeonhole principle
implies that there is a cell with d+ 1 sets.

Let us consider the running time. One combination
step takes O(d5) time. To compute a set in level i,
we have to compute d + 1 sets in level i − 1. Hence,
computing one set in level k+1 takes dO(log d) time. �
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