
The KKT-Algorithm for Minimum Spanning
Trees

Wolfgang Mulzer

1 The Problem

We are given a connected undirected graph G = (V,E) with n vertices and m edges, together
with a weight function w : E → R on the edges. Without loss of generality, we assume that
all weights are pairwise distinct. The goal is to compute a minimum spanning tree of G, i.e.,
a set F ⊆ E of edges such that the subgraph (V, F) is acyclic and connected, and such that
the total edge weight

∑
e∈F w(e) is minimum among all acyclic connected subgraphs of G.

We denote F by mst(G). The following fact is well known.

Fact 1.1. Let G = (V,E) be a connected undirected weighted graph such that all edge weights
are pairwise distinct. Then mst(G) is uniquely determined.

The minimum spanning tree problem has been studied intensively over the last decades,
and many different algorithms are known. The first algorithm is due to Bor̊uvka. It takes
O(min{n2,m log n}) steps and is described in more detail below. Two further classic algo-
rithms are Kruskal’s algorithm, a greedy algorithm that runs in O(m log n) time, and the
algorithm of Prim/Jarnik/Dijkstra, that requires O(m+n log n) steps if implemented with an
appropriate heap structure, such as Fibonacci heaps. These algorithms have been improved
significantly, and the currently fastest general deterministic algorithm is due to Chazelle. It
needs O(mα(m,n)) time, where α(m,n) is the slow-growing inverse Ackermann function.

If we are allowed to use randomness, there is a conceptually simple linear-time algorithm
due to Karger, Klein, and Tarjan. We will describe this algorithm here.

2 Ingredients

We begin by describing some of the ingredients that the KKT algorithm borrows from
previous MST-algorithms.

1

2.1 Bor̊uvka’s Algorithm

Bor̊uvka’s algorithm consists of an iterative application of Bor̊uvka phases. In a Bor̊uvka
phase, we are given a graph G1 = (V1, E1), and we obtain from it a smaller graph G2 =
(V2, E2) by contracting edges that are guaranteed to be in mst(G1). This is done as follows:
for each vertex v ∈ V1, we select the incident edge of minimum weight. Let F be the
resulting edges. The graph G2 contains a node for each connected component of (V1, F). For
two distinct nodes a, b ∈ V2, the graph G2 has an edge e between a, b ∈ V2 if and only if G1

has an edge between a node in component a and a node in component b. The weight of e
is chosen as the minimum of all edge weights between a and b. The corresponding edge of e
in G1 is the edge of minimum weight between components a and b in G1. A Bor̊uvka phase
has the following properties:

Lemma 2.1. Let G1 = (V1, E1) be connected, undirected, and weighted. Apply a Bor̊uvka
phase to G1, and let G2 = (V2, E2) be the result. Denote the set of contracted edges by F .
Then G2 has at most half as many vertices as G1, i.e., |V2| ≤ |V1|/2. Furthermore, the MST
of G1 is obtained by taking F and adding the corresponding edges of mst(G2) in G1. The
Bor̊uvka phase can be implemented in O(|E1|) steps.

Proof. Exercise.

Bor̊uvka’s algorithm starts with G1 = G and applies Bor̊uvka phases until there is only one
node left. Let G1, . . . , Gk be the resulting sequence of graphs, and let Fi be the edges that
were contracted in Gi during the ith Bor̊uvka phase. Let F̂i be the corresponding edges in
G. The algorithm returns

⋃k−1
i=1 F̂i.

Theorem 2.2. Bor̊uvka’s algorithm correctly computes mst(G). It can be implemented in
O(min(n2,m log n)) steps.

Proof. This follows from Lemma 2.1. The details are left as an exercise.

2.2 MST Verification

The second ingredient is an algorithm for checking whether an acyclic subgraph of G is an
MST. This algorithm also provides a witness of non-minimality. The following definition
makes this notion of witness precise. Let A ⊆ E be acyclic. An edge e ∈ E is called A-light
if either (i) A ∪ {e} is acyclic; or (ii) the unique cycle in A ∪ {e} contains an edge of weight
larger than w(e). Note that case (i) also applies if e ∈ A. The following lemma shows the
usefulness of our definition.

Lemma 2.3. Let G = (V,E) be undirected and weighted, and let A ⊆ E be such that (V,A)
is an acyclic graph. Then mst(G) is contained in the set of A-light edges in E. Furthermore,
A is the MST of G if and only if there are no A-light edges outside of A.

2

Proof. Exercise.

The following theorem is due to Dixon, Rauch, and Tarjan. A simpler algorithm was later
presented by King.

Theorem 2.4. Let G = (V,E) be undirected, connected, and weighted, and let A ⊆ E be
acyclic. We can find all A-light edges in G in total deterministic time O(m+ n).

3 Algorithm

The problem with Bor̊uvka’s algorithm is that although each phase at least halves the number
of vertices, it does not necessarily reduce the number of edges significantly. Thus, it may be
that some edges are considered during a logarithmic number of phases. To avoid this, we use
random sampling in order to reduce the number of edges. We compute a minimum spanning
forest F of the resulting graph. The random sampling may discard edges that belong to the
MST. To correct for these errors, we determine the F -light edges L and recompute the MST
with respect to L. The hope is that L will be small. Details follow.

The algorithm gets an undirected and weighted graph G = (V,E) as input. We do not
necessarily require that G is connected. The goal is to compute a minimum spanning forest
for G, i.e., a minimum spanning tree for each connected component of G. We denote it by
msf(G).

Initially, the algorithm performs three Bor̊uvka phases on G. This reduces the number of
edges at least by a factor of 8. Let G1 = (V1, E1) be the resulting graph, and F1 ⊆ E the
corresponding set of contracted edges. We pick a random subset R ⊆ E1 with |R| = |E1|/2,
and we recursively compute msf(V1, R). Let F2 be the result. We use Theorem 2.4 to find
the set L ⊆ E1 of F2-light edges in G1. We recurse again to compute msf(V1, L). Let F3 be
the corresponding edges in G. We return F1 ∪ F3 as the MSF of G.

4 Analysis

The correctness of the algorithm follows from Lemmas 2.1 and 2.3. Let T (m,n) denote the
expected running time on a graph with m edges and n vertices. By Lemma 2.1, the initial
three Bor̊uvka phases take O(n + m) steps. The time to find the first random sample also
requires O(n + m) time. Since the three Bor̊uvka phases reduce the number of vertices at
least by a factor of 8, and since the sample contains at most m/2 edges, the first recursive
call needs T (n/8,m/2) steps. By Theorem 2.4, it takes O(n + m) time to find the F2-light
edges. Finally, the second recursive call takes time T (n/8, |L|). This gives the following
recursion for T :

T (n,m) = O(n+m) + T (n/8,m/2) + T (n/8, |L|).

3

The following lemma bounds the expected size of L.

Lemma 4.1. Let G = (V,E) be undirected and weighted, and R ⊆ V random with |R| =
|V |/2. Let F = msf(V,R). The expected number of F -light edges in G is at most 2|V |.

Using Lemma 4.1, we can use induction and linearity of expectation to show that T (n,m) =
O(n+m). It remains to prove Lemma 4.1. The following proof is due to Timothy M. Chan.

Proof of Lemma 4.1. Using linearity of expectation, we have

E[# of F -light edges] =
∑
e∈E

Pr[e is F -light].

Observing that e ∈ E is F -light if and only if e ∈ msf(V,R ∪ {e}) (Exercise) and distin-
guishing the choices for R, this becomes

E[# of F -light edges] =
∑
e∈E

∑
S⊆E

|S|=|E|/2

Pr[R = S][e ∈ msf(S ∪ {e})].

Here, the notation [P] gives 1 if the condition P is true and 0 if the condition P is false.
Now we change the order of summation and distinguish whether e ∈ S. We get

E[# of F -light edges] =
∑
S⊆E

|S|=|E|/2

∑
e∈S

Pr[R = S][e ∈ msf(S ∪ {e})]+

∑
S⊆E

|S|=|E|/2

∑
e∈E\S

Pr[R = S][e ∈ msf(S ∪ {e})].

We bound the sums individually. For the first sum, we have∑
S⊆E

|S|=|E|/2

∑
e∈S

Pr[R = S][e ∈ msf(S ∪ {e})] =
∑
S⊆E

|S|=|E|/2

Pr[R = S]
∑
e∈S

[e ∈ msf(S ∪ {e})]

=
∑
S⊆E

|S|=|E|/2

Pr[R = S]|msf(S)|

≤ |V | − 1,

since msf(S) has at most |V | − 1 edges, for any choice of S ⊆ E.

We rewrite the second sum as∑
S⊆E
|S|= |E|

2

∑
e∈E\S

Pr[R = S][e ∈ msf(S ∪ {e})] =
|E|
2

∑
S⊆E
|S|= |E|

2

∑
e∈E\S

2 Pr[R = S]

|E|
[e ∈ msf(S ∪ {e})].

4

This sum can be interpreted as follows: pick a random subset S ⊆ E with |S| = |E|/2, and
then pick a random edge e ∈ E \ S. What is the probability that e ∈ msf(S ∪ {e})? An
equivalent formulation is that we first pick a random subset S ′ ⊆ E with |S ′| = |E|/2 + 1,
and then we pick a random edge e′ ∈ S ′. Now we want the probability that e′ ∈ msf(S ′).
This second formulation gives an easy estimate for the sum: since msf(S ′) has at most |V |−1
edges, it is at most

|V | − 1

|S ′|
≤ |V |
|E|/2

.

Hence,

E[# of F -light edges] ≤ |V | − 1 +
|E|
2
· |V |
|E|/2

< 2|V |,

as claimed.

5

