
Chernoff Bounds

Wolfgang Mulzer

1 The General Bound

Let P = (p1, . . . , pm) and Q = (q1, . . . , qm) be two distributions on m elements, i.e., pi, qi ≥ 0, for
i = 1, . . . ,m, and

∑m
i=1 pi =

∑m
i=1 qi = 1. The Kullback-Leibler divergence or relative entropy of P

and Q is defined as

DKL(P‖Q) :=
m∑
i=1

pi ln
pi
qi
.

If m = 2, i.e., P = (p, 1 − p) and Q = (q, 1 − q), we also write DKL(p‖q). The Kullback-Leibler
divergence provides a measure of distance between the distributions P and Q: it represents the
expected loss of efficiency if we encode an m-letter alphabet with distribution P with a code that
is optimal for distribution Q. We can now state the general form of the Chernoff Bound:

Theorem 1.1. Let X1, . . . , Xn be independent random variables with Xi ∈ {0, 1} and Pr[Xi = 1] =
p, for i = 1, . . . n. Set X :=

∑n
i=1Xi. Then, for any t ∈ [0, 1− p], we have

Pr[X ≥ (p+ t)n] ≤ e−DKL(p+t‖p)n.

2 Four Proofs

2.1 The Moment Method

The usual proof of Theorem 1.1 uses the exponential function exp and Markov’s inequality. It is
called moment method because exp simultaneously encodes all moments of X, i.e., X, X2, X3, etc.
The proof technique is very general and can be used to obtain several variants of Theorem 1.1. Let
λ > 0 be a parameter to be determined later. We have

Pr[X ≥ (p+ t)n] = Pr[λX ≥ λ(p+ t)n] = Pr
[
eλX ≥ eλ(p+t)n

]
.

From Markov’s inequality, we obtain

Pr
[
eλX ≥ eλ(p+t)n

]
≤ E[eλX ]

eλ(p+t)n
.

Now, the independence of the Xi yields

E[eλX ] = E
[
eλ

∑n
i=1Xi

]
= E

[
n∏
i=1

eλXi

]
=

n∏
i=1

E
[
eλXi

]
=
(
peλ + 1− p

)n
.
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Thus,

Pr[X > (p+ t)n] ≤
(peλ + 1− p

eλ(p+t)

)n
, (1)

for every λ > 0. Optimizing for λ using calculus, we get that the right hand side is minimized if

eλ =
(1− p)(p+ t)

p(1− p− t)
.

Plugging this into (1), we get

Pr[X > (p+ t)n] ≤

[( p

p+ t

)p+t( 1− p
1− p− t

)1−p−t]n
= e−DKL(p+t‖p)n,

as desired.

2.2 Chvátal’s Method

Let B(n, p) the random variable that gives the number of heads in n independent Bernoulli trials
with success probability p. It is well known that

Pr[B(n, p) = l] =

(
n

l

)
pl(1− p)n−l,

for l = 0, . . . , n. Thus, for any τ ≥ 1 and k ≥ pn, we get

Pr[B(n, p) ≥ k] =
n∑
i=k

(
n

i

)
pi(1− p)n−i

≤
n∑
i=k

(
n

i

)
pi(1− p)n−i τ i−k︸︷︷︸

≥1

+
k−1∑
i=0

(
n

i

)
pi(1− p)n−iτ i−k︸ ︷︷ ︸
≥0

=
n∑
i=0

(
n

i

)
pi(1− p)n−iτ i−k.

Using the Binomial theorem, we obtain

Pr[B(n, p) ≥ k] ≤
n∑
i=0

(
n

i

)
pi(1− p)n−iτ i−k = τ−k

n∑
i=0

(
n

i

)
(pτ)i(1− p)n−i =

(pτ + 1− p)n

τk
.

If we write k = (p+ t)n and τ = eλ, we can conclude

Pr[B(n, p) ≥ (p+ t)n] ≤
(peλ + 1− p

eλ(p+t)

)n
.

This is the same as (1), so we can complete the proof of Theorem 1.1 as in Section 2.1.

2



2.3 The Impagliazzo-Kabanets Method

Let λ ∈ [0, 1] be a parameter to be chosen later. Let I ⊆ {1, . . . , n} be a random index set obtained
by including each element i ∈ {1, . . . , n} with probability λ. We estimate Pr

[∏
i∈I Xi = 1

]
in two

different ways, where the probability is over the random choice of X1, . . . , Xn and I.

On the one hand, using the union bound and independence, we have

Pr
[∏
i∈I

Xi = 1
]
≤

∑
S⊆{1,...,n}

Pr
[
I = S ∧

∏
i∈S

Xi = 1
]

=
∑

S⊆{1,...,n}

Pr[I = S] ·
∏
i∈S

Pr[Xi = 1]

=
∑

S⊆{1,...,n}

λ|S|(1− λ)n−|S| · p|S| =
n∑
s=0

(
n

s

)
(λp)s(1− λ)n−s = (λp+ 1− λ)n, (2)

by the Binomial theorem. On the other hand, by the law of total probability,

Pr
[∏
i∈I

Xi = 1
]
≥ Pr

[∏
i∈I

Xi = 1 | X ≥ (p+ t)n
]

Pr[X ≥ (p+ t)n].

Now, fix X1, . . . , Xn with X ≥ (p + t)n. For the fixed choice of X1 = x1, . . . , Xn = xn, the
probability Pr

[∏
i∈I xi = 1

]
is exactly the probability that I avoids all the n −X indices i where

xi = 0. Thus,

Pr
[∏
i∈I

xi = 1
]

= (1− λ)n−X ≥ (1− λ)(1−p−t)n.

Since the bound holds uniformly for every choice of x1, . . . , xn with X ≥ (p+ t)n, we get

Pr
[∏
i∈I

Xi = 1 | X ≥ (p+ t)n
]
≥ (1− λ)(1−p−t)n,

so
Pr
[∏
i∈I

Xi = 1
]
≥ (1− λ)(1−p−t)n Pr[X ≥ (p+ t)n].

Combining with (2),

Pr[X ≥ (p+ t)n] ≤
(

λp+ 1− λ
(1− λ)(1−p−t)

)n
. (3)

Using calculus, we get that the right hand side is minimized for λ = t/(1 − p)(p + t) (note that
λ ≤ 1 for t ≤ 1− p). Plugging this into (3),

Pr[X > (p+ t)n] ≤

[( p

p+ t

)p+t( 1− p
1− p− t

)1−p−t]n
= e−DKL(p+t‖p)n,

as desired.
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2.4 The Coding Theoretic Argument

The next proof, due to Luc Devroye, Gábor Lugosi, and Pat Morin, is inspired by coding theory. Let
{0, 1}n be the set of all bit strings of length n, and let w : {0, 1}n → [0, 1] be a weight function. We
call w valid if

∑
x∈{0,1}n w(x) ≤ 1. The following lemma says that for any probability distribution

px on {0, 1}n, a valid weight function is unlikely to be substantially larger than px.

Lemma 2.1. Let D be a probability distribution on {0, 1}n that assigns to each x ∈ {0, 1}n a
probability px, and let w be a valid weight function. For any s ≥ 1, we have

Pr
x∼D

[w(x) ≥ spx] ≤ 1/s.

Proof. Let Zs = {x ∈ {0, 1}n | w(x) ≥ spx}. We have

Pr
x∼D

[w(x) ≥ spx] =
∑
x∈Zs
px>0

px ≤
∑
x∈Zs
px>0

px
w(x)

spx
≤ (1/s)

∑
x∈Zs

w(x) ≤ 1/s,

since w(x)/spx ≥ 1 for x ∈ Zs, px > 0, and since w is valid.

We now show that Lemma 2.1 implies Theorem 1.1. For this, we interpret the sequence X1, . . . , Xn

as a bit string of length n. This induces a probability distribution D that assigns to each x ∈ {0, 1}n
the probability px = pkx(1−p)n−kx , where kx denotes the number of 1-bits in x. We define a weight
function w : {0, 1}n → [0, 1] by w(x) = (p+t)kx(1−p−t)n−kx , for x ∈ {0, 1}n. Then w is valid, since
w(x) is the probability that x is generated by setting each bit to 1 independently with probability
p+ t. For x ∈ {0, 1}n, we have

w(x)

px
=

(
p+ t

p

)kx (1− p− t
1− p

)n−kx
.

Since ((p + t)/p)((1 − p)/(1 − p − t)) ≥ 1, it follows that w(x)/px is an increasing function of kx.
Hence, if kx ≥ (p+ t)n, we have

w(x)

px
≥

[(
p+ t

p

)p+t(1− p− t
1− p

)1−p−t
]n

= eDKL(p+t‖p)n.

We now apply Lemma 2.1 to D and w to get

Pr[X ≥ (p+ t)n] = Pr
x∼D

[k(x) ≥ (p+ t)n] ≤ Pr
x∼D

[
w(x) ≥ pxeDKL(p+t‖p)n

]
≤ e−DKL(p+t‖p)n,

as claimed in Theorem 1.1.

We provide some coding-theoretic background to explain the intuition behind the proof. A code for
{0, 1}n is an injective function C : {0, 1}n → {0, 1}∗. The images of C are called codewords. A code
is called prefix-free if no codeword is the prefix of another codeword, i.e., for all x, y ∈ {0, 1}n with
x 6= y, we have that if |x| ≤ |y|, then x and y differ in at least one bit position. A prefix-free code
has a natural representation as a rooted binary tree in which the leaves correspond to elements of
{0, 1}n. Even though the codeword lengths in a prefix-free code may vary, this structure imposes
a restriction on the allowed lengths. This is formalized in Kraft’s inequality.
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Lemma 2.2 (Kraft’s inequality). Let C : {0, 1}n → {0, 1}∗ be a prefix-free code. Then,∑
x∈{0,1}n

2−|C(x)| ≤ 1.

Conversely, given a function ` : {0, 1}n → N with∑
x∈{0,1}n

2−`(x) ≤ 1,

there exists a prefix-free code C : {0, 1}n → {0, 1}∗ with |C(x)| = `(x) for all x ∈ {0, 1}n.

Proof. Let m = maxx∈{0,1}n |C(x)|, and let y be random element of y ∈ {0, 1}m. Then, for each

x ∈ {0, 1}n, the probability that C(x) is a prefix of y is exactly 2−|C(x)|. Furthermore, since C is
prefix-free, these events are mutually exclusive. Thus,∑

x∈{0,1}n
2−|C(x)| ≤ 1,

as claimed.

Next, we prove the second part. Let m = maxx∈{0,1}n `(x) and let T be a complete binary tree of
height m. We construct C according to the following algorithm: we set X = {0, 1}n, and we pick
x∗ ∈ X with `(x∗) = minx∈X `(x). Then we select a node v ∈ T with depth `(x∗). We assign to
C(x∗) the codeword of length ` that corresponds to v, and we remove v and all its descendants
from T . This deletes exactly 2m−`(x

∗) leaves from T . Next, we remove x∗ from X and we repeat
this procedure until X is empty. While X 6= ∅, we have∑

x∈{0,1}n\X

2m−`(x) < 2m,

so T contains in each iteration at least one leaf and thus also at least one node of depth `(x∗).
Since we assign the nodes by increasing depth, and since all descendants of an assigned node are
deleted from the tree, the resulting code is prefix-free.

Kraft’s inequality shows that a prefix-free code C induces a valid weight function w(x) = 2−|C(x)|.
Thus, Lemma 2.1 implies that for any probability distribution px on {0, 1}n and for any prefix-free
code, the probability mass of the strings x with codeword length log(1/px)−s is at most 2−s. Now,
if we set `(x) = d−kx log(p + t) − (n − kx) log(1 − p − t)e for x ∈ {0, 1}n, the converse of Kraft’s
inequality shows that there exists a prefix free code C ′ with |C ′(x)| = `(x). The calculation above
shows that C ′ saves roughly n(p+ t) log((p+ t)/p) + n(1− p− t) log((1− p− t)/(1− p)) bits over
log(1/px) for any x with kx ≥ (p + t)n, which almost gives the desired result. We generalize to
arbitrary valid weight functions to avoid the slack introduced by the ceiling function.
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3 Useful Consequences

3.1 The Lower Tail

Corollary 3.1. Let X1, . . . , Xn be independent random variables with Xi ∈ {0, 1} and Pr[Xi =
1] = p, for i = 1, . . . n. Set X :=

∑n
i=1Xi. Then, for any t ∈ [0, p], we have

Pr[X ≤ (p− t)n] ≤ e−DKL(p−t‖p)n.

Proof.

Pr[X ≤ (p− t)n] = Pr[n−X ≥ n− (p− t)n] = Pr[X ′ ≥ (1− p+ t)n],

where X ′ =
∑n

i=1X
′
i with independent random variables X ′i ∈ {0, 1} such that Pr[X ′i = 1] = 1− p.

The result follows from DKL(1− p+ t‖1− p) = DKL(p− t‖p).

3.2 Motwani-Raghavan version

Corollary 3.2. Let X1, . . . , Xn be independent random variables with Xi ∈ {0, 1} and Pr[Xi =
1] = p, for i = 1, . . . n. Set X :=

∑n
i=1Xi and µ = pn. Then, for any δ ≥ 0, we have

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ
, and

Pr[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)1−δ

)µ
.

Proof. Setting t = δµ/n in Theorem 1.1 yields

Pr[X ≥ (1 + δ)µ] ≤ exp

(
−n
[
p(1 + δ) ln(1 + δ) + p

(
1− p
p
− δ
)

ln

(
1− δ p

1− p

)])
=

(
(1− δp/(1− p))δ−(1−p)/p

(1 + δ)1+δ

)µ

≤

(
e−δ

2p/(1−p)+δ

(1 + δ)1+δ

)µ
≤
(

eδ

(1 + δ)1+δ

)µ
.

Setting t = δµ/n in Corollary 3.1 yields

Pr[X ≤ (1− δ)µ] ≤ exp

(
−n
[
p(1− δ) ln(1− δ) + p

(
1− p
p

+ δ

)
ln

(
1 + δ

p

1− p

)])
=

(
(1 + δp/(1− p))−δ−(1−p)/p

(1− δ)1−δ

)µ

≤

(
e−δ

2p/(1−p)−δ

(1− δ)1−δ

)µ
≤
(

e−δ

(1− δ)1−δ

)µ
.
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3.3 Handy Versions

Corollary 3.3. Let X1, . . . , Xn be independent random variables with Xi ∈ {0, 1} and Pr[Xi =
1] = p, for i = 1, . . . n. Set X :=

∑n
i=1Xi and µ = pn. Then, for any δ ∈ (0, 1), we have

Pr[X ≤ (1− δ)µ] ≤ e−δ2µ/2.

Proof. By Corollary 3.2

Pr[X ≤ (1− δ)µ] ≤
(

e−δ

(1− δ)1−δ

)µ
.

Using the power series expansion of ln(1− δ), we get

(1− δ) ln(1− δ) = −(1− δ)
∞∑
i=1

δi

i
= −δ +

∞∑
i=2

δi

(i− 1)i
≥ −δ + δ2/2.

Thus,
Pr[X ≤ (1− δ)µ] ≤ e[−δ+δ−δ2/2]µ = e−δ

2µ/2,

as claimed.

Corollary 3.4. Let X1, . . . , Xn be independent random variables with Xi ∈ {0, 1} and Pr[Xi =
1] = p, for i = 1, . . . n. Set X :=

∑n
i=1Xi and µ = pn. Then, for any δ ≥ 0, we have

Pr[X ≥ (1 + δ)µ] ≤ e−min{δ2,δ}µ/4.

Proof. We may assume that (1 + δ)p ≤ 1. Then Theorem 1.1 gives

Pr[X ≥ (1 + δ)pn] ≤ e−DKL((1+δ)p‖p)n.

Define f(δ) := DKL((1 + δ)p‖p). Then

f ′(δ) = p ln(1 + δ)− p ln(1− δp/(1− p))

and
f ′′(δ) =

p

(1 + δ)(1− p− δp)
≥ p

1 + δ
.

By Taylor’s theorem, we have

f(δ) = f(0) + δf ′(0) +
δ2

2
f ′′(ξ),

for some ξ ∈ [0, δ]. Since f(0) = f ′(0) = 0, it follows that

f(δ) =
δ2

2
f ′′(ξ) ≥ δ2p

2(1 + ξ)
≥ δ2p

2(1 + δ)
.

For δ ≥ 1, we have δ/(1 + δ) ≥ 1/2, for δ < 1, we have 1/(δ + 1) ≥ 1/2. This gives for all δ ≥ 0

f(δ) ≥ min{δ2, δ}p/4,

and the claim follows.
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Corollary 3.5. Let X1, . . . , Xn be independent random variables with Xi ∈ {0, 1} and Pr[Xi =
1] = p, for i = 1, . . . n. Set X :=

∑n
i=1Xi and µ = pn. Then, for any δ > 0, we have

Pr[|X − µ| ≥ δµ] ≤ 2e−min{δ2,δ}µ/4.

Proof. Combine Corollaries 3.3 and 3.4.

Corollary 3.6. Let X1, . . . , Xn be independent random variables with Xi ∈ {0, 1} and Pr[Xi =
1] = p, for i = 1, . . . n. Set X :=

∑n
i=1Xi and µ = pn. For t ≥ 2eµ, we have

Pr[X ≥ t] ≤ 2−t.

Proof. By Corollary 3.2

Pr[X ≥ (1 + δ)µ] ≤
(

eδ

(1 + δ)1+δ

)µ
≤
(

e

1 + δ

)(1+δ)µ

.

For δ ≥ 2e− 1, the denominator in the right hand side is at least 2e, and the claim follows.

4 Generalizations

We mention a few generalizations of the proof techniques for Section 2. Since the consequences
from Section 3 are based on simple algebraic manipulation of the bounds, the same consequences
also hold for the generalized settings.

4.1 Hoeffding-Extension

Theorem 4.1. Let X1, . . . , Xn be independent random variables with Xi ∈ [0, 1] and E[Xi] = pi.
Set X :=

∑n
i=1Xi and p := (1/n)

∑n
i=1 pi. Then, for any t ∈ [0, 1− p], we have

Pr[X ≥ (p+ t)n] ≤ e−DKL(p+t‖p)n.

Proof. The proof generalizes the moment method. Let λ > 0 a parameter to be determined later.
As before, Markov’s inequality yields

Pr
[
eλX ≥ eλ(p+t)n

]
≤ E[eλX ]

eλ(p+t)n
.

Using independence, we get

E[eλX ] = E
[
eλ

∑n
i=1Xi

]
=

n∏
i=1

E
[
eλXi

]
. (4)

Now we need to estimate E
[
eλXi

]
. The function z 7→ eλz is convex, so eλz ≤ (1− z)e0·λ + ze1·λ for

z ∈ [0, 1]. Hence,
E
[
eλXi

]
≤ E[1−Xi +Xie

λ] = 1− pi + pie
λ.
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Going back to (4),

E[eλX ] ≤
n∏
i=1

(1− pi + pie
λ).

Using the arithmetic-geometric mean inequality
∏n
i=1 xi ≤

(
(1/n)

∑n
i=1 xi

)n
, for xi ≥ 0, this is

E[eλX ] ≤ (1− p+ peλ)n.

From here we continue as in Section 2.1.

4.2 Hypergeometric Distribution

Chvátals proof generalizes to the hypergeometric distribution.

Theorem 4.2. Suppose we have an urn with N balls, P of which are red. We randomly draw
n balls from the urn without replacement. Let H(N,P, n) denote the number of red balls in the
sample. Set p := P/N . Then, for any t ∈ [0, 1− p], we have

Pr[H(N,P, n) ≥ (p+ t)n] ≤ e−DKL(p+t‖p)n.

Proof. It is well known that

Pr[H(N,P, n) = l] =

(
P

l

)(
N − p
n− l

)(
N

l

)−1
,

for l = 0, . . . , n.

Claim 4.3. For every j ∈ {0, . . . , n}, we have(
N

n

)−1 n∑
i=j

(
P

i

)(
N − P
n− i

)(
i

j

)
≤
(
n

j

)
pj .

Proof. Consider the following random experiment: take a random permutation of the N balls in
the urn. Let S be the sequence of the first n elements in the permutation. Let X be the number
of j-subsets of S that contain only red balls. We compute E[X] in two different ways. On the one
hand,

E[X] =

n∑
i=j

Pr[S contains i red balls]

(
i

j

)
=

n∑
i=j

(
N

n

)−1(P
i

)(
N − P
n− i

)(
i

j

)
. (5)

On the other hand, let I ⊆ {1, . . . , n} with |I| = j. Then the probability that all the balls in the
positions indexed by I are red is

P

N
· P − 1

N − 1
· · · · · P − j + 1

N − j + 1
≤
(
P

N

)j
= pj .

Thus, by linearity of expectation E[X] ≤
(
n
j

)
pj . Together with (5), the claim follows.

9



Claim 4.4. For every τ ≥ 1, we have(
N

n

)−1 n∑
i=0

(
P

i

)(
N − P
n− i

)
τ i ≤ (1 + (τ − 1)p)n.

Proof. Using Claim 4.3 and the Binomial theorem (twice),(
N

n

)−1 n∑
i=0

(
P

i

)(
N − P
n− i

)
τ i =

(
N

n

)−1 n∑
i=0

(
P

i

)(
N − P
n− i

)
(1− (τ − 1))i

=

(
N

n

)−1 n∑
i=0

(
P

i

)(
N − P
n− i

) i∑
j=0

(
i

j

)
(τ − 1)j

=

(
N

n

)−1 n∑
j=0

(τ − 1)j
n∑
i=j

(
P

i

)(
N − P
n− i

)(
i

j

)

≤
n∑
j=0

(
n

j

)
((τ − 1)p)j = (1 + (τ − 1)p)n,

as claimed.

Thus, for any τ ≥ 1 and k ≥ pn, we get as before

Pr[H(N,P, n) ≥ k] =

(
N

n

)−1 n∑
i=k

(
P

i

)(
N − P
n− i

)

≤
(
N

n

)−1 n∑
i=0

(
P

i

)(
N − P
n− i

)
τ i−k ≤ (pτ + 1− p)n

τk
,

by Claim 4.4. From here the proof proceeds as in Section 2.2.

4.3 General Impagliazzo-Kabanets

Theorem 4.5. Let X1, . . . , Xn be random variables with Xi ∈ 0, 1. Suppose there exist pi ∈ [0, 1],
i = 1, . . . , n, such that for every index set I ⊆ {1, . . . , n}, we have Pr[

∏
i∈I Xi = 1] ≤

∏
i∈I pi. Set

X :=
∑n

i=1Xi and p := (1/n)
∑n

i=1 pi. Then, for any t ∈ [0, 1− p], we have

Pr[X ≥ (p+ t)n] ≤ e−DKL(p+t‖p)n.

Proof. Let λ ∈ [0, 1] be a parameter to be chosen later. Let I ⊆ {1, . . . , n} be a random index set
obtained by including each element i ∈ {1, . . . , n} with probability λ. As before, we estimate the
probability Pr

[∏
i∈I Xi = 1

]
in two different ways, where the probability is over the random choice

of X1, . . . , Xn and I. Similarly to before,

Pr
[∏
i∈I

Xi = 1
]

= Pr
[∏
i∈I

Xi = 1
]
≤

∑
S⊆{1,...,n}

Pr
[
I = S ∧

∏
i∈S

Xi = 1
]

≤
∑

S⊆{1,...,n}

Pr[I = S] · Pr
[∏
i∈S

Xi = 1
]
≤

∑
S⊆{1,...,n}

λ|S|(1− λ)n−|S| ·
∏
i∈S

pi. (6)
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We define n independent random variables Z1, . . . , Zn as follows: for i = 1, . . . , n, with probability
1− λ, we set Zi = 1, and with probability λ, we set Zi = pi. By (6), and using independence and
the arithmetic-geometric mean inequality.

Pr
[∏
i∈I

Xi = 1
]

= E
[ n∏
i=1

Zi

]
=

n∏
i=1

E[Zi] =
n∏
i=1

(1− λ+ piλ) ≤ (1− λ+ pλ)n. (7)

The proof of the lower bound remains unchanged and yields

Pr
[∏
i∈I

Xi = 1
]
≥ (1− λ)(1−p−t)n Pr[X ≥ (p+ t)n],

as before. Combining with (7) and optimizing for λ finishes the proof, see Section 2.3.
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