Chernoff Bounds

Wolfgang Mulzer

1 The General Bound

Let $P = (p_1, \ldots, p_m)$ and $Q = (q_1, \ldots, q_m)$ be two distributions on *m* elements, i.e., $p_i, q_i \ge 0$, for $i = 1, \ldots, m$, and $\sum_{i=1}^m p_i = \sum_{i=1}^m q_i = 1$. The Kullback-Leibler divergence or relative entropy of *P* and *Q* is defined as

$$D_{\mathrm{KL}}(P||Q) := \sum_{i=1}^{m} p_i \ln \frac{p_i}{q_i}.$$

If m = 2, i.e., P = (p, 1 - p) and Q = (q, 1 - q), we also write $D_{\text{KL}}(p||q)$. The Kullback-Leibler divergence provides a measure of distance between the distributions P and Q: it represents the expected loss of efficiency if we encode an *m*-letter alphabet with distribution P with a code that is optimal for distribution Q. We can now state the general form of the Chernoff Bound:

Theorem 1.1. Let X_1, \ldots, X_n be independent random variables with $X_i \in \{0, 1\}$ and $\Pr[X_i = 1] = p$, for $i = 1, \ldots n$. Set $X := \sum_{i=1}^n X_i$. Then, for any $t \in [0, 1-p]$, we have

$$\Pr[X \ge (p+t)n] \le e^{-D_{\mathrm{KL}}(p+t||p)n}.$$

2 Four Proofs

2.1 The Moment Method

The usual proof of Theorem 1.1 uses the exponential function exp and Markov's inequality. It is called *moment method* because exp simultaneously encodes all *moments* of X, i.e., X, X^2 , X^3 , etc. The proof technique is very general and can be used to obtain several variants of Theorem 1.1. Let $\lambda > 0$ be a parameter to be determined later. We have

$$\Pr[X \ge (p+t)n] = \Pr[\lambda X \ge \lambda(p+t)n] = \Pr[e^{\lambda X} \ge e^{\lambda(p+t)n}].$$

From Markov's inequality, we obtain

$$\Pr[e^{\lambda X} \ge e^{\lambda(p+t)n}] \le \frac{\mathbf{E}[e^{\lambda X}]}{e^{\lambda(p+t)n}}.$$

Now, the independence of the X_i yields

$$\mathbf{E}[e^{\lambda X}] = \mathbf{E}\left[e^{\lambda \sum_{i=1}^{n} X_{i}}\right] = \mathbf{E}\left[\prod_{i=1}^{n} e^{\lambda X_{i}}\right] = \prod_{i=1}^{n} \mathbf{E}\left[e^{\lambda X_{i}}\right] = \left(pe^{\lambda} + 1 - p\right)^{n}.$$

Thus,

$$\Pr[X > (p+t)n] \le \left(\frac{pe^{\lambda} + 1 - p}{e^{\lambda(p+t)}}\right)^n,\tag{1}$$

for every $\lambda > 0$. Optimizing for λ using calculus, we get that the right hand side is minimized if

$$e^{\lambda} = \frac{(1-p)(p+t)}{p(1-p-t)}.$$

Plugging this into (1), we get

$$\Pr[X > (p+t)n] \le \left[\left(\frac{p}{p+t}\right)^{p+t} \left(\frac{1-p}{1-p-t}\right)^{1-p-t} \right]^n = e^{-D_{\mathrm{KL}}(p+t||p)n},$$

as desired.

2.2 Chvátal's Method

Let B(n, p) the random variable that gives the number of heads in n independent Bernoulli trials with success probability p. It is well known that

$$\Pr[B(n,p)=l] = \binom{n}{l} p^l (1-p)^{n-l},$$

for l = 0, ..., n. Thus, for any $\tau \ge 1$ and $k \ge pn$, we get

$$\Pr[B(n,p) \ge k] = \sum_{i=k}^{n} \binom{n}{i} p^{i} (1-p)^{n-i}$$
$$\le \sum_{i=k}^{n} \binom{n}{i} p^{i} (1-p)^{n-i} \underbrace{\tau^{i-k}}_{\ge 1} + \underbrace{\sum_{i=0}^{k-1} \binom{n}{i} p^{i} (1-p)^{n-i} \tau^{i-k}}_{>0} = \sum_{i=0}^{n} \binom{n}{i} p^{i} (1-p)^{n-i} \tau^{i-k}.$$

Using the Binomial theorem, we obtain

$$\Pr[B(n,p) \ge k] \le \sum_{i=0}^{n} \binom{n}{i} p^{i} (1-p)^{n-i} \tau^{i-k} = \tau^{-k} \sum_{i=0}^{n} \binom{n}{i} (p\tau)^{i} (1-p)^{n-i} = \frac{(p\tau+1-p)^{n-i}}{\tau^{k}}.$$

If we write k = (p+t)n and $\tau = e^{\lambda}$, we can conclude

$$\Pr[B(n,p) \ge (p+t)n] \le \left(\frac{pe^{\lambda}+1-p}{e^{\lambda(p+t)}}\right)^n.$$

This is the same as (1), so we can complete the proof of Theorem 1.1 as in Section 2.1.

2.3 The Impagliazzo-Kabanets Method

Let $\lambda \in [0, 1]$ be a parameter to be chosen later. Let $I \subseteq \{1, \ldots, n\}$ be a random index set obtained by including each element $i \in \{1, \ldots, n\}$ with probability λ . We estimate $\Pr[\prod_{i \in I} X_i = 1]$ in two different ways, where the probability is over the random choice of X_1, \ldots, X_n and I.

On the one hand, using the union bound and independence, we have

$$\Pr\left[\prod_{i\in I} X_{i} = 1\right] \leq \sum_{S\subseteq\{1,\dots,n\}} \Pr\left[I = S \land \prod_{i\in S} X_{i} = 1\right] = \sum_{S\subseteq\{1,\dots,n\}} \Pr[I = S] \cdot \prod_{i\in S} \Pr[X_{i} = 1]$$
$$= \sum_{S\subseteq\{1,\dots,n\}} \lambda^{|S|} (1-\lambda)^{n-|S|} \cdot p^{|S|} = \sum_{s=0}^{n} \binom{n}{s} (\lambda p)^{s} (1-\lambda)^{n-s} = (\lambda p + 1 - \lambda)^{n}, \quad (2)$$

by the Binomial theorem. On the other hand, by the law of total probability,

$$\Pr\left[\prod_{i\in I} X_i = 1\right] \ge \Pr\left[\prod_{i\in I} X_i = 1 \mid X \ge (p+t)n\right] \Pr[X \ge (p+t)n].$$

Now, fix X_1, \ldots, X_n with $X \ge (p+t)n$. For the fixed choice of $X_1 = x_1, \ldots, X_n = x_n$, the probability $\Pr[\prod_{i \in I} x_i = 1]$ is exactly the probability that I avoids all the n - X indices i where $x_i = 0$. Thus,

$$\Pr\left[\prod_{i \in I} x_i = 1\right] = (1 - \lambda)^{n - X} \ge (1 - \lambda)^{(1 - p - t)n}.$$

Since the bound holds uniformly for every choice of x_1, \ldots, x_n with $X \ge (p+t)n$, we get

$$\Pr\left[\prod_{i\in I} X_i = 1 \mid X \ge (p+t)n\right] \ge (1-\lambda)^{(1-p-t)n},$$

 \mathbf{SO}

$$\Pr\left[\prod_{i\in I} X_i = 1\right] \ge (1-\lambda)^{(1-p-t)n} \Pr[X \ge (p+t)n].$$

Combining with (2),

$$\Pr[X \ge (p+t)n] \le \left(\frac{\lambda p + 1 - \lambda}{(1-\lambda)^{(1-p-t)}}\right)^n.$$
(3)

Using calculus, we get that the right hand side is minimized for $\lambda = t/(1-p)(p+t)$ (note that $\lambda \leq 1$ for $t \leq 1-p$). Plugging this into (3),

$$\Pr[X > (p+t)n] \le \left[\left(\frac{p}{p+t}\right)^{p+t} \left(\frac{1-p}{1-p-t}\right)^{1-p-t} \right]^n = e^{-D_{\mathrm{KL}}(p+t||p)n},$$

as desired.

2.4 The Coding Theoretic Argument

The next proof, due to Luc Devroye, Gábor Lugosi, and Pat Morin, is inspired by coding theory. Let $\{0,1\}^n$ be the set of all bit strings of length n, and let $w : \{0,1\}^n \to [0,1]$ be a weight function. We call w valid if $\sum_{x \in \{0,1\}^n} w(x) \leq 1$. The following lemma says that for any probability distribution p_x on $\{0,1\}^n$, a valid weight function is unlikely to be substantially larger than p_x .

Lemma 2.1. Let \mathcal{D} be a probability distribution on $\{0,1\}^n$ that assigns to each $x \in \{0,1\}^n$ a probability p_x , and let w be a valid weight function. For any $s \ge 1$, we have

$$\Pr_{x \sim \mathcal{D}} \left[w(x) \ge s p_x \right] \le 1/s.$$

Proof. Let $Z_s = \{x \in \{0, 1\}^n \mid w(x) \ge sp_x\}$. We have

$$\Pr_{x \sim \mathcal{D}} \left[w(x) \ge sp_x \right] = \sum_{\substack{x \in Z_s \\ p_x > 0}} p_x \le \sum_{\substack{x \in Z_s \\ p_x > 0}} p_x \frac{w(x)}{sp_x} \le (1/s) \sum_{x \in Z_s} w(x) \le 1/s,$$

since $w(x)/sp_x \ge 1$ for $x \in Z_s$, $p_x > 0$, and since w is valid.

We now show that Lemma 2.1 implies Theorem 1.1. For this, we interpret the sequence X_1, \ldots, X_n as a bit string of length n. This induces a probability distribution \mathcal{D} that assigns to each $x \in \{0, 1\}^n$ the probability $p_x = p^{k_x}(1-p)^{n-k_x}$, where k_x denotes the number of 1-bits in x. We define a weight function $w : \{0, 1\}^n \to [0, 1]$ by $w(x) = (p+t)^{k_x}(1-p-t)^{n-k_x}$, for $x \in \{0, 1\}^n$. Then w is valid, since w(x) is the probability that x is generated by setting each bit to 1 independently with probability p+t. For $x \in \{0, 1\}^n$, we have

$$\frac{w(x)}{p_x} = \left(\frac{p+t}{p}\right)^{k_x} \left(\frac{1-p-t}{1-p}\right)^{n-k_x}$$

Since $((p+t)/p)((1-p)/(1-p-t)) \ge 1$, it follows that $w(x)/p_x$ is an increasing function of k_x . Hence, if $k_x \ge (p+t)n$, we have

$$\frac{w(x)}{p_x} \ge \left[\left(\frac{p+t}{p}\right)^{p+t} \left(\frac{1-p-t}{1-p}\right)^{1-p-t} \right]^n = e^{D_{\mathrm{KL}}(p+t||p)n}.$$

We now apply Lemma 2.1 to \mathcal{D} and w to get

$$\Pr[X \ge (p+t)n] = \Pr_{x \sim \mathcal{D}}[k(x) \ge (p+t)n] \le \Pr_{x \sim \mathcal{D}}\left[w(x) \ge p_x e^{D_{\mathrm{KL}}(p+t||p)n}\right] \le e^{-D_{\mathrm{KL}}(p+t||p)n}$$

as claimed in Theorem 1.1.

We provide some coding-theoretic background to explain the intuition behind the proof. A code for $\{0,1\}^n$ is an injective function $C : \{0,1\}^n \to \{0,1\}^*$. The images of C are called *codewords*. A code is called *prefix-free* if no codeword is the prefix of another codeword, i.e., for all $x, y \in \{0,1\}^n$ with $x \neq y$, we have that if $|x| \leq |y|$, then x and y differ in at least one bit position. A prefix-free code has a natural representation as a rooted binary tree in which the leaves correspond to elements of $\{0,1\}^n$. Even though the codeword lengths in a prefix-free code may vary, this structure imposes a restriction on the allowed lengths. This is formalized in *Kraft's inequality*.

Lemma 2.2 (Kraft's inequality). Let $C : \{0,1\}^n \to \{0,1\}^*$ be a prefix-free code. Then,

$$\sum_{x \in \{0,1\}^n} 2^{-|C(x)|} \le 1.$$

Conversely, given a function $\ell : \{0,1\}^n \to \mathbb{N}$ with

$$\sum_{x \in \{0,1\}^n} 2^{-\ell(x)} \le 1,$$

there exists a prefix-free code $C: \{0,1\}^n \to \{0,1\}^*$ with $|C(x)| = \ell(x)$ for all $x \in \{0,1\}^n$.

x

Proof. Let $m = \max_{x \in \{0,1\}^n} |C(x)|$, and let y be random element of $y \in \{0,1\}^m$. Then, for each $x \in \{0,1\}^n$, the probability that C(x) is a prefix of y is exactly $2^{-|C(x)|}$. Furthermore, since C is prefix-free, these events are mutually exclusive. Thus,

$$\sum_{x \in \{0,1\}^n} 2^{-|C(x)|} \le 1$$

as claimed.

Next, we prove the second part. Let $m = \max_{x \in \{0,1\}^n} \ell(x)$ and let T be a complete binary tree of height m. We construct C according to the following algorithm: we set $X = \{0,1\}^n$, and we pick $x^* \in X$ with $\ell(x^*) = \min_{x \in X} \ell(x)$. Then we select a node $v \in T$ with depth $\ell(x^*)$. We assign to $C(x^*)$ the codeword of length ℓ that corresponds to v, and we remove v and all its descendants from T. This deletes exactly $2^{m-\ell(x^*)}$ leaves from T. Next, we remove x^* from X and we repeat this procedure until X is empty. While $X \neq \emptyset$, we have

$$\sum_{x \in \{0,1\}^n \setminus X} 2^{m-\ell(x)} < 2^m,$$

so T contains in each iteration at least one leaf and thus also at least one node of depth $\ell(x^*)$. Since we assign the nodes by increasing depth, and since all descendants of an assigned node are deleted from the tree, the resulting code is prefix-free.

Kraft's inequality shows that a prefix-free code C induces a valid weight function $w(x) = 2^{-|C(x)|}$. Thus, Lemma 2.1 implies that for any probability distribution p_x on $\{0,1\}^n$ and for any prefix-free code, the probability mass of the strings x with codeword length $\log(1/p_x) - s$ is at most 2^{-s} . Now, if we set $\ell(x) = \lfloor -k_x \log(p+t) - (n-k_x) \log(1-p-t) \rfloor$ for $x \in \{0,1\}^n$, the converse of Kraft's inequality shows that there exists a prefix free code C' with $|C'(x)| = \ell(x)$. The calculation above shows that C' saves roughly $n(p+t) \log((p+t)/p) + n(1-p-t) \log((1-p-t)/(1-p))$ bits over $\log(1/p_x)$ for any x with $k_x \ge (p+t)n$, which almost gives the desired result. We generalize to arbitrary valid weight functions to avoid the slack introduced by the ceiling function.

3 Useful Consequences

3.1 The Lower Tail

Corollary 3.1. Let X_1, \ldots, X_n be independent random variables with $X_i \in \{0, 1\}$ and $\Pr[X_i = 1] = p$, for $i = 1, \ldots n$. Set $X := \sum_{i=1}^n X_i$. Then, for any $t \in [0, p]$, we have

$$\Pr[X \le (p-t)n] \le e^{-D_{\mathrm{KL}}(p-t||p)n}.$$

Proof.

$$\Pr[X \le (p-t)n] = \Pr[n - X \ge n - (p-t)n] = \Pr[X' \ge (1 - p + t)n],$$

where $X' = \sum_{i=1}^{n} X'_i$ with independent random variables $X'_i \in \{0, 1\}$ such that $\Pr[X'_i = 1] = 1 - p$. The result follows from $D_{\text{KL}}(1 - p + t || 1 - p) = D_{\text{KL}}(p - t || p)$.

3.2 Motwani-Raghavan version

Corollary 3.2. Let X_1, \ldots, X_n be independent random variables with $X_i \in \{0, 1\}$ and $\Pr[X_i = 1] = p$, for $i = 1, \ldots n$. Set $X := \sum_{i=1}^n X_i$ and $\mu = pn$. Then, for any $\delta \ge 0$, we have

$$\Pr[X \ge (1+\delta)\mu] \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}, \text{ and}$$
$$\Pr[X \le (1-\delta)\mu] \le \left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{\mu}.$$

Proof. Setting $t = \delta \mu / n$ in Theorem 1.1 yields

$$\begin{aligned} \Pr[X \ge (1+\delta)\mu] &\leq \exp\left(-n\left[p(1+\delta)\ln(1+\delta) + p\left(\frac{1-p}{p} - \delta\right)\ln\left(1 - \delta\frac{p}{1-p}\right)\right]\right) \\ &= \left(\frac{(1-\delta p/(1-p))^{\delta-(1-p)/p}}{(1+\delta)^{1+\delta}}\right)^{\mu} \\ &\leq \left(\frac{e^{-\delta^2 p/(1-p)+\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu} \leq \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}.\end{aligned}$$

Setting $t = \delta \mu / n$ in Corollary 3.1 yields

$$\Pr[X \le (1-\delta)\mu] \le \exp\left(-n\left[p(1-\delta)\ln(1-\delta) + p\left(\frac{1-p}{p} + \delta\right)\ln\left(1+\delta\frac{p}{1-p}\right)\right]\right)$$
$$= \left(\frac{(1+\delta p/(1-p))^{-\delta-(1-p)/p}}{(1-\delta)^{1-\delta}}\right)^{\mu}$$
$$\le \left(\frac{e^{-\delta^2 p/(1-p)-\delta}}{(1-\delta)^{1-\delta}}\right)^{\mu} \le \left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{\mu}.$$

3.3 Handy Versions

Corollary 3.3. Let X_1, \ldots, X_n be independent random variables with $X_i \in \{0, 1\}$ and $\Pr[X_i = 1] = p$, for $i = 1, \ldots n$. Set $X := \sum_{i=1}^n X_i$ and $\mu = pn$. Then, for any $\delta \in (0, 1)$, we have

$$\Pr[X \le (1-\delta)\mu] \le e^{-\delta^2\mu/2}$$

Proof. By Corollary 3.2

$$\Pr[X \le (1-\delta)\mu] \le \left(\frac{e^{-\delta}}{(1-\delta)^{1-\delta}}\right)^{\mu}.$$

Using the power series expansion of $\ln(1-\delta)$, we get

$$(1-\delta)\ln(1-\delta) = -(1-\delta)\sum_{i=1}^{\infty} \frac{\delta^{i}}{i} = -\delta + \sum_{i=2}^{\infty} \frac{\delta^{i}}{(i-1)i} \ge -\delta + \delta^{2}/2.$$

Thus,

$$\Pr[X \le (1 - \delta)\mu] \le e^{[-\delta + \delta - \delta^2/2]\mu} = e^{-\delta^2\mu/2},$$

as claimed.

Corollary 3.4. Let X_1, \ldots, X_n be independent random variables with $X_i \in \{0, 1\}$ and $\Pr[X_i = 1] = p$, for $i = 1, \ldots n$. Set $X := \sum_{i=1}^n X_i$ and $\mu = pn$. Then, for any $\delta \ge 0$, we have

$$\Pr[X \ge (1+\delta)\mu] \le e^{-\min\{\delta^2, \delta\}\mu/4}$$

Proof. We may assume that $(1 + \delta)p \leq 1$. Then Theorem 1.1 gives

$$\Pr[X \ge (1+\delta)pn] \le e^{-D_{\mathrm{KL}}((1+\delta)p\|p)n}$$

Define $f(\delta) := D_{\mathrm{KL}}((1+\delta)p||p)$. Then

$$f'(\delta) = p \ln(1+\delta) - p \ln(1-\delta p/(1-p))$$

and

$$f''(\delta) = \frac{p}{(1+\delta)(1-p-\delta p)} \ge \frac{p}{1+\delta}.$$

By Taylor's theorem, we have

$$f(\delta) = f(0) + \delta f'(0) + \frac{\delta^2}{2} f''(\xi),$$

for some $\xi \in [0, \delta]$. Since f(0) = f'(0) = 0, it follows that

$$f(\delta) = \frac{\delta^2}{2} f''(\xi) \ge \frac{\delta^2 p}{2(1+\xi)} \ge \frac{\delta^2 p}{2(1+\delta)}.$$

For $\delta \ge 1$, we have $\delta/(1+\delta) \ge 1/2$, for $\delta < 1$, we have $1/(\delta+1) \ge 1/2$. This gives for all $\delta \ge 0$

$$f(\delta) \ge \min\{\delta^2, \delta\}p/4,$$

and the claim follows.

Corollary 3.5. Let X_1, \ldots, X_n be independent random variables with $X_i \in \{0, 1\}$ and $\Pr[X_i = 1] = p$, for $i = 1, \ldots n$. Set $X := \sum_{i=1}^n X_i$ and $\mu = pn$. Then, for any $\delta > 0$, we have

$$\Pr[|X - \mu| \ge \delta\mu] \le 2e^{-\min\{\delta^2, \delta\}\mu/4}.$$

Proof. Combine Corollaries 3.3 and 3.4.

Corollary 3.6. Let X_1, \ldots, X_n be independent random variables with $X_i \in \{0, 1\}$ and $\Pr[X_i = 1] = p$, for $i = 1, \ldots n$. Set $X := \sum_{i=1}^n X_i$ and $\mu = pn$. For $t \ge 2e\mu$, we have

$$\Pr[X \ge t] \le 2^{-t}.$$

Proof. By Corollary 3.2

$$\Pr[X \ge (1+\delta)\mu] \le \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu} \le \left(\frac{e}{1+\delta}\right)^{(1+\delta)\mu}$$

For $\delta \geq 2e - 1$, the denominator in the right hand side is at least 2e, and the claim follows.

4 Generalizations

We mention a few generalizations of the proof techniques for Section 2. Since the consequences from Section 3 are based on simple algebraic manipulation of the bounds, the same consequences also hold for the generalized settings.

4.1 Hoeffding-Extension

Theorem 4.1. Let X_1, \ldots, X_n be independent random variables with $X_i \in [0, 1]$ and $\mathbf{E}[X_i] = p_i$. Set $X := \sum_{i=1}^n X_i$ and $p := (1/n) \sum_{i=1}^n p_i$. Then, for any $t \in [0, 1-p]$, we have

$$\Pr[X \ge (p+t)n] \le e^{-D_{\mathrm{KL}}(p+t||p)n}.$$

Proof. The proof generalizes the moment method. Let $\lambda > 0$ a parameter to be determined later. As before, Markov's inequality yields

$$\Pr\left[e^{\lambda X} \ge e^{\lambda(p+t)n}\right] \le \frac{\mathbf{E}[e^{\lambda X}]}{e^{\lambda(p+t)n}}.$$

Using independence, we get

$$\mathbf{E}[e^{\lambda X}] = \mathbf{E}\left[e^{\lambda \sum_{i=1}^{n} X_{i}}\right] = \prod_{i=1}^{n} \mathbf{E}\left[e^{\lambda X_{i}}\right].$$
(4)

Now we need to estimate $\mathbf{E}[e^{\lambda X_i}]$. The function $z \mapsto e^{\lambda z}$ is convex, so $e^{\lambda z} \leq (1-z)e^{0\cdot\lambda} + ze^{1\cdot\lambda}$ for $z \in [0,1]$. Hence,

$$\mathbf{E}\left[e^{\lambda X_{i}}\right] \leq \mathbf{E}\left[1 - X_{i} + X_{i}e^{\lambda}\right] = 1 - p_{i} + p_{i}e^{\lambda}$$

Going back to (4),

$$\mathbf{E}[e^{\lambda X}] \le \prod_{i=1}^{n} (1 - p_i + p_i e^{\lambda})$$

Using the arithmetic-geometric mean inequality $\prod_{i=1}^{n} x_i \leq ((1/n) \sum_{i=1}^{n} x_i)^n$, for $x_i \geq 0$, this is

$$\mathbf{E}[e^{\lambda X}] \le (1 - p + pe^{\lambda})^n.$$

From here we continue as in Section 2.1.

4.2 Hypergeometric Distribution

Chvátals proof generalizes to the hypergeometric distribution.

Theorem 4.2. Suppose we have an urn with N balls, P of which are red. We randomly draw n balls from the urn without replacement. Let H(N, P, n) denote the number of red balls in the sample. Set p := P/N. Then, for any $t \in [0, 1 - p]$, we have

$$\Pr[H(N, P, n) \ge (p+t)n] \le e^{-D_{\mathrm{KL}}(p+t||p)n}.$$

Proof. It is well known that

$$\Pr[H(N, P, n) = l] = \binom{P}{l} \binom{N-p}{n-l} \binom{N}{l}^{-1}$$

for l = 0, ..., n.

Claim 4.3. *For every* $j \in \{0, ..., n\}$ *, we have*

$$\binom{N}{n}^{-1} \sum_{i=j}^{n} \binom{P}{i} \binom{N-P}{n-i} \binom{i}{j} \leq \binom{n}{j} p^{j}.$$

Proof. Consider the following random experiment: take a random permutation of the N balls in the urn. Let S be the sequence of the first n elements in the permutation. Let X be the number of j-subsets of S that contain only red balls. We compute $\mathbf{E}[X]$ in two different ways. On the one hand,

$$\mathbf{E}[X] = \sum_{i=j}^{n} \Pr[\text{S contains } i \text{ red balls}]\binom{i}{j} = \sum_{i=j}^{n} \binom{N}{n}^{-1} \binom{P}{i} \binom{N-P}{n-i} \binom{i}{j}.$$
(5)

On the other hand, let $I \subseteq \{1, ..., n\}$ with |I| = j. Then the probability that all the balls in the positions indexed by I are red is

$$\frac{P}{N} \cdot \frac{P-1}{N-1} \cdot \dots \cdot \frac{P-j+1}{N-j+1} \le \left(\frac{P}{N}\right)^j = p^j.$$

Thus, by linearity of expectation $\mathbf{E}[X] \leq {n \choose i} p^j$. Together with (5), the claim follows.

Claim 4.4. For every $\tau \geq 1$, we have

$$\binom{N}{n}^{-1} \sum_{i=0}^{n} \binom{P}{i} \binom{N-P}{n-i} \tau^{i} \le (1+(\tau-1)p)^{n}.$$

Proof. Using Claim 4.3 and the Binomial theorem (twice),

$$\binom{N}{n}^{-1} \sum_{i=0}^{n} \binom{P}{i} \binom{N-P}{n-i} \tau^{i} = \binom{N}{n}^{-1} \sum_{i=0}^{n} \binom{P}{i} \binom{N-P}{n-i} (1-(\tau-1))^{i}$$

$$= \binom{N}{n}^{-1} \sum_{i=0}^{n} \binom{P}{i} \binom{N-P}{n-i} \sum_{j=0}^{i} \binom{i}{j} (\tau-1)^{j}$$

$$= \binom{N}{n}^{-1} \sum_{j=0}^{n} (\tau-1)^{j} \sum_{i=j}^{n} \binom{P}{i} \binom{N-P}{n-i} \binom{i}{j}$$

$$\le \sum_{j=0}^{n} \binom{n}{j} ((\tau-1)p)^{j} = (1+(\tau-1)p)^{n},$$

as claimed.

Thus, for any $\tau \geq 1$ and $k \geq pn$, we get as before

$$\Pr[H(N,P,n) \ge k] = \binom{N}{n}^{-1} \sum_{i=k}^{n} \binom{P}{i} \binom{N-P}{n-i} \le \binom{N}{n}^{-1} \sum_{i=0}^{n} \binom{P}{i} \binom{N-P}{n-i} \tau^{i-k} \le \frac{(p\tau+1-p)^n}{\tau^k},$$

by Claim 4.4. From here the proof proceeds as in Section 2.2.

4.3 General Impagliazzo-Kabanets

Theorem 4.5. Let X_1, \ldots, X_n be random variables with $X_i \in 0, 1$. Suppose there exist $p_i \in [0, 1]$, $i = 1, \ldots, n$, such that for every index set $I \subseteq \{1, \ldots, n\}$, we have $\Pr[\prod_{i \in I} X_i = 1] \leq \prod_{i \in I} p_i$. Set $X := \sum_{i=1}^n X_i$ and $p := (1/n) \sum_{i=1}^n p_i$. Then, for any $t \in [0, 1-p]$, we have

$$\Pr[X \ge (p+t)n] \le e^{-D_{\mathrm{KL}}(p+t||p)n}.$$

Proof. Let $\lambda \in [0, 1]$ be a parameter to be chosen later. Let $I \subseteq \{1, \ldots, n\}$ be a random index set obtained by including each element $i \in \{1, \ldots, n\}$ with probability λ . As before, we estimate the probability $\Pr[\prod_{i \in I} X_i = 1]$ in two different ways, where the probability is over the random choice of X_1, \ldots, X_n and I. Similarly to before,

$$\Pr\left[\prod_{i\in I} X_i = 1\right] = \Pr\left[\prod_{i\in I} X_i = 1\right] \le \sum_{S\subseteq\{1,\dots,n\}} \Pr\left[I = S \land \prod_{i\in S} X_i = 1\right]$$
$$\le \sum_{S\subseteq\{1,\dots,n\}} \Pr\left[I = S\right] \cdot \Pr\left[\prod_{i\in S} X_i = 1\right] \le \sum_{S\subseteq\{1,\dots,n\}} \lambda^{|S|} (1-\lambda)^{n-|S|} \cdot \prod_{i\in S} p_i.$$
(6)

We define n independent random variables Z_1, \ldots, Z_n as follows: for $i = 1, \ldots, n$, with probability $1 - \lambda$, we set $Z_i = 1$, and with probability λ , we set $Z_i = p_i$. By (6), and using independence and the arithmetic-geometric mean inequality.

$$\Pr\left[\prod_{i\in I} X_i = 1\right] = \mathbf{E}\left[\prod_{i=1}^n Z_i\right] = \prod_{i=1}^n \mathbf{E}[Z_i] = \prod_{i=1}^n (1 - \lambda + p_i\lambda) \le (1 - \lambda + p\lambda)^n.$$
(7)

The proof of the lower bound remains unchanged and yields

$$\Pr\left[\prod_{i\in I} X_i = 1\right] \ge (1-\lambda)^{(1-p-t)n} \Pr[X \ge (p+t)n],$$

as before. Combining with (7) and optimizing for λ finishes the proof, see Section 2.3.