Analysis of the Randomized Incremental Construction of Convex Hulls in Space

Wolfgang Mulzer

1 Clarkson's Theorem in Space

Let $P \subseteq \mathbb{R}^{3}$ a three-dimensional n-point set in general position (i.e., no four points from P lie on a common plane). We define the set $S_{\leq k}$ of $(\leq k)$-sets of P as

$$
S_{\leq k}:=\{Q \subseteq P| | Q \mid \leq k \text { and } Q=P \cap h, h \text { open halfspace }\} .
$$

Clarkson's theorem bounds the number of possible $(\leq k)$-sets.
Theorem 1. We have $\left|S_{\leq k}\right|=O\left(n k^{2}\right)$.
Proof. We assume that $3 \leq k \leq n-3$ since otherwise the theorem is obvious.
We begin with a definition: let $0 \leq \ell \leq k$. A pair $(\{p, q, r\}, s) \in\binom{P}{3} \times\{+,-\}$, consisting of a set of three distinct points from P and a sign + or - , is called ℓ-facet if and only if $\left|P \cap h_{p q r}^{s}\right|=\ell$. Here, $h_{p q r}^{+}$denotes the open halfspace above the plane that is spanned by p, q and r and $h_{p q r}^{-}$denotes the open halfspace below the plane spanned by $\{p, q, r\}$. Let $L_{\leq k}$ the set of all $(\leq k)$-facets.

We have $\left|S_{\leq k}\right|=O\left(\left|L_{\leq k}\right|\right)$. Indeed, by appropriate rotations, we can assign to each ℓ-facet a constant number of $\ell-,(\bar{\ell}+1)$ - and $(\ell+2)$-sets, and we can generate every $(\leq k)$-set in this way.

Now, let $R \subseteq P$ be a random subset of P, that contains every point $p \in P$ independently with probability $1 / k$. We consider the set $F(\mathrm{CH}(R))$ of facets on the convex hull of R, and we bound this expectation in two ways.

On the one hand, we have

$$
\mathbf{E}[|F(\mathrm{CH}(R))|] \leq 2 \mathbf{E}[|R|])=2 n / k,
$$

as the convex hull of R has at most $2|R|-4$ facets and each point of P lies in R with probability $1 / k$.
Now let $X=(\{p, q, r\}, s\} \in\binom{P}{3} \times\{+,-\}$ a pair of three points from P and a sign, and let I_{X} be the indicator random variable for the event that X defines a facet of $\mathrm{CH}(R)$ (this means that $\{p, q, r\}$ bounds a facet of $\mathrm{CH}(P)$ and that $h_{p q r}^{s}$ does not contain the polytope $\left.\mathrm{CH}(R)\right)$. Then,

$$
\mathbf{E}[|F(\mathrm{CH}(R))|]=\sum_{(\{p, q, r\}, s) \in\binom{P}{3} \times\{+,-\}} \mathbf{E}\left[I_{X}\right] \geq \sum_{X \in L_{\leq k}} \mathbf{E}\left[I_{X}\right],
$$

by linearity of expectation. For an $(\leq k)$-facet X, the expectation $\mathbf{E}\left[I_{X}\right]$ is the probability that X is a facet of $\mathrm{CH}(R)$. For this, we must have that (i) $p, q, r \in R$; and (ii) $R \cap h_{p q r}^{s}=\emptyset$. The probability for this is at least $k^{-3}(1-1 / k)^{k}$, as $\left|P \cap h_{p q r}^{s}\right| \leq k$ and the points in R where chosen independently.

It follows that

$$
\mathbf{E}[|F(\mathrm{CH}(R))|] \geq \sum_{X \in L_{\leq k}} \mathbf{E}\left[I_{X}\right] \geq \sum_{X \in L_{\leq k}} k^{-3}(1-1 / k)^{k} \geq\left|L_{\leq k}\right| / 4 k^{3}
$$

because $k \geq 2$. Therefore, $\left|L_{\leq k}\right| \leq 4 n k^{2}$ and $\left|S_{\leq k}\right| \leq O\left(n k^{2}\right)$.

2 The Θ-Series in Space

Let P a 3 -dimensional n-point set in general position. In class, we saw that the total work for updating the conflict information during the randomized incremental construction of $\mathrm{CH}(P)$ is asymptotically bounded by

$$
\Theta:=\sum_{(\{p, q, r\}, s) \in\binom{P}{3} \times\{+,-\}}\left|P \cap h_{p q r}^{s}\right| \cdot[\text { The face }(\{p, q, r\}, s) \text { is created during the RIC }] .
$$

Here, $h_{p q r}^{s}$ is defined as above, and $[Z]$ is Iverson's notation: $[Z]:=1$, if Z is true, and $[Z]:=0$ otherwise.
The randomized incremental construction of $\mathrm{CH}(P)$ first chooses a random permutation σ of P and inserts the points according to the order of σ into the hull. We will now calculate the expected conflict change. By linearity of expectation:

$$
\begin{aligned}
\mathbf{E}_{\sigma}[\Theta] & =\sum_{(\{p, q, r\}, s) \in\binom{P}{3} \times\{+,-\}}\left|P \cap h_{p q r}^{s}\right| \cdot \operatorname{Pr}[\text { The facet }(\{p, q, r\}, s) \text { is created during the RIC }] \\
& =\sum_{k=1}^{n-4} \sum_{X \in L_{k}} k \cdot \operatorname{Pr}[\text { The facet } X \text { is created during the RIC }]
\end{aligned}
$$

where L_{k} is the set of k-facets for P (see above). Since a k-facet $X=(\{p, q, r\}, s)$ is created if and only if the permutation σ puts the points p, q, r before the k points in $P \cap h_{p q r}^{s}$, we have

$$
\operatorname{Pr}[\text { The facet } X \text { is created during the RIC }]=\frac{3!k!}{(k+3)!}=\frac{6}{(k+1)(k+2)(k+3)} .
$$

Hence,

$$
\mathbf{E}_{\sigma}[\Theta]=\sum_{k=1}^{n-4} \sum_{X \in L_{k}} \frac{6 k}{(k+1)(k+2)(k+3)} \leq \sum_{k=1}^{n-4} \frac{6\left|L_{k}\right|}{k^{2}}
$$

We write $\left|L_{k}\right|=\left|L_{\leq k}\right|-\left|L_{\leq(k-1)}\right|$, where $L_{\leq k}$ denotes the set of ℓ-facets of P for $0 \leq \ell \leq k$. Using summation by parts,

$$
\begin{aligned}
& \mathbf{E}_{\sigma}[\Theta] \leq \sum_{k=1}^{n-4} \frac{6}{k^{2}}\left(\left|L_{\leq k}\right|-\left|L_{\leq(k-1)}\right|\right) \\
& \\
& =\frac{6}{(n-3)^{2}}\left|L_{\leq(n-4)}\right|-6\left|L_{\leq 0}\right|+\sum_{k=1}^{n-4}\left|L_{\leq k}\right|\left(\frac{6}{k^{2}}-\frac{6}{(k+1)^{2}}\right) \leq O(n)+\sum_{k=1}^{n-4} \frac{18\left|L_{\leq k}\right|}{k^{3}}
\end{aligned}
$$

since $\left|L_{\leq(n-4)}\right|=O\left(n^{3}\right),\left|L_{\leq 0}\right|=O(n)$ and

$$
\frac{6}{k^{2}}-\frac{6}{(k+1)^{2}}=\frac{12 k+6}{k^{2}(k+1)^{2}} \leq \frac{18}{k^{3}}
$$

By Clarkson's Theorem, we have $\left|L_{\leq k}\right|=O\left(n k^{2}\right)$, so

$$
\mathbf{E}_{\sigma}[\Theta]=O\left(\sum_{k=1}^{n-4} \frac{n k^{2}}{k^{3}}\right)=O\left(n \cdot \sum_{k=1}^{n-4} \frac{1}{k}\right)=O(n \log n)
$$

The expected conflict change, and hence the expected running time for the randomized incremental construction of convex hulls in \mathbb{R}^{3}, is $O(n \log n)$.

