
Randomized Incremental Construction of a 3D-Convex Hull

Wolfgang Mulzer

1 The Algorithm

Let P = {p1, p2, . . . , pn} a set of n point in R3 in general position (i.e., no four points from P lie on a common
plane). We would like to compute CH(P ), the convex hull of P . For i = 4, . . . , n, set Pi = {p1, p2, . . . , pi}.
The incremental algorithm successively computes CH(P4),CH(P5), . . . ,CH(Pn). In each step, we find CH(Pi)
by inserting the point pi into CH(Pi−1). Each convex hull is stored as a DCEL, representing the planar graph
G(CH(Pi)).

To facilitate the insertion of the next point, the algorithm stores conflict information: for each point p ∈
P \ Pi, there is a pointer Cp to a facet f of CH(Pi), so that p lies to the left of the oriented plane through
f . The facet f muss be deleted when p is inserted. Thus, it is called a conflict facet of p. For each facet f
of CH(Pi), we store a conflict list Cf that contains all points p ∈ P \ Pi with Cp = f . Initially, CH(P4) and
the conflict information can be computed easily.

Now we describe how to use the conflict information in order to insert pi into CH(Pi−1). If Cpi
=⊥, then

pi lies inside of CH(Pi−1), and nothing has to be done. Otherwise, we know that the facet f = Cpi
must be

deleted. We perform a breadth-first search from f in the dual graph of G(CH(Pi−1)), visiting only facets of
G(CH(Pi−1) that are in conflict with pi. That is, we only insert an unvisited facet f ′ into the BFS-queue, if
pi lies to the left of the oriented plane spanned by f ′. Let Di be the set of all facets that are in conflict with
pi, the conflict region of pi. The conflict region is bounded by a simple cycle in G(CH(Pi− 1)). We call this
cycle Zi. In CH(Pi), we create new facets between pi and each edge of Zi, and we delete all facets in Di.

It remains to update the conflict information. For this, we consider for each conflict facet f ′ ∈ Di the
corresponding conflict list Cf ′ . For each point q ∈ Cf ′ we do the following: similarly to pi, we perform a
BFS from f ′ to determine the conflict region of q. However, we restrict the BFS to the facets in Di. In
this way, we find all edges of Zi that are incident to a facet that is in conflict with both q and pi. For each
such edge e, we test whether q is in conflict with the newly created facet of CH(Pi) incident to e. If so, we
update the conflict pointer Cq and the conflict list for the corresponding facet. If no such facet is found, we
set Cq =⊥. This concludes the description of one insertion.

We repeat this process until we have found CH(Pn) = CH(P ).

2 Running Time Analysis

2.1 Structural Change

Each facet is deleted at most once, so it suffices to bound the number of facets that are created. In the worst
case, this can be quadratic. Using backwards analysis, however, we can show that the expected structural
change is O(n) (see class).

1



2.2 Conflict Change

While updating the conflict information, each facet f is traversed at most once for each point that is in
conflict with f . Thus, the total time for the conflict change is proportional to the total number of conflicts
that exist between the created facets and the points in P . We can show that this number is O(n log n) in
expectation. For this, we need a three-dimensional version of Clarkson’s theorem, which states that the
number of oriented planes that are spanned by three points of P and that have at most k points from P to
the left is at most O(nk2).

2


