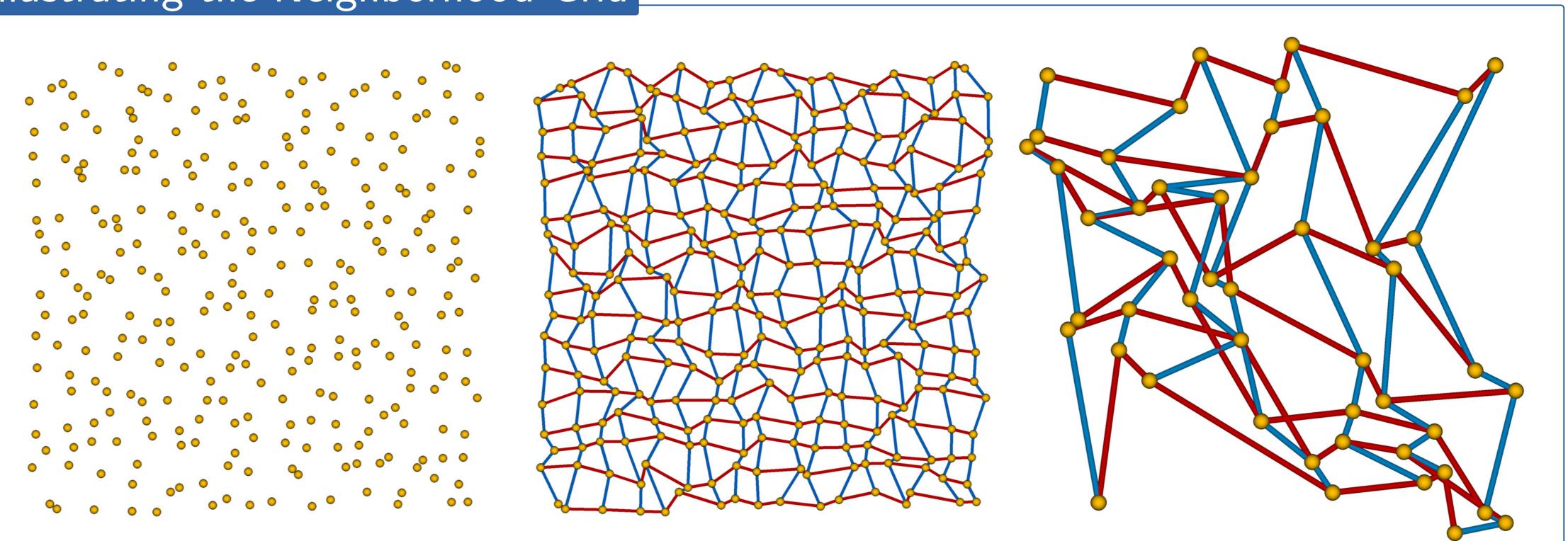


Asymptotical & Combinatorial Results on the Neighborhood Grid Data Structure

The Neighborhood Grid

The Neighborhood Grid approximates neighborhood information. A (quadratic) matrix contains the coordinates of the points such that in each row the x-values are increasing while in each column the y-values are increasing. For the algorithm, the order of the points suffices, the exact coordinates are irrelevant. If the above ordering is given, we call it a "stable state".

Illustrating the Neighborhood Grid



From left to right: A raw point cloud, the corresponding structure induced by the grid, and an example where the neighborhood is not faithfully recovered.

Upper Bound on building a Stable State

A stable state for $n^2 = N \in \mathbb{N}$ points can be computed in $\mathcal{O}(N\log(N))$ via sorting all points by their x-values in one sequence first and then sort \sqrt{N} blocks by their y-values. Each block then gives a column of the matrix which is in a stable state.

Lower Bound

Given a comparison-based algorithm \mathcal{A} , its decision tree has depth $\log((N)!)$, but every placement π of points is stable for exactly $\frac{(n^2)!}{(n!)^n}$ point sets. Thus, the algorithm has to traverse $\log((n^2)!) - \log(\frac{(n^2)!}{(n!)^n}) = \mathcal{O}(N\log(N))$, see [4].

(Non)Unique Stable States

Combinatorial Results

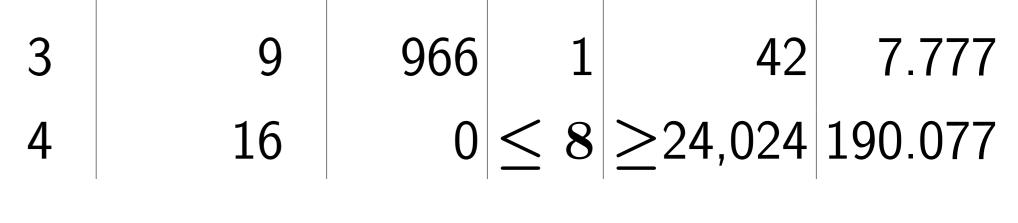
Given a point set P with n^2 points, it can have several stable states. Overall, there are $(n^2)!$ such sets with a total of $(n^2)!$ stable states. The "identity"

Results

size <i>n</i>	points n^2	unique	min	max	avg.
1	1	1	1	1	1.0
2	4	12	1	2	1.5

		•				
12	34	34	43		23	34
21	43	12	21		11	42
21	4 3		21	L		4 2

of $\frac{1}{(n!)^n}$ stable states. The identity	
has $N!/\left(\prod_{i=1}^n \prod_{j=1}^n (2n-i-j+1) ight)$	
stable states.	



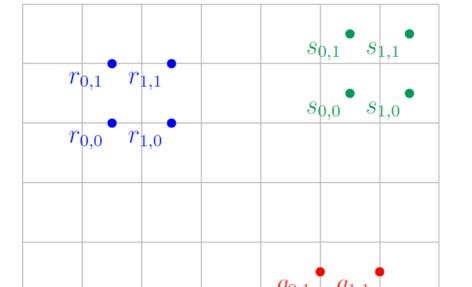
Open Questions

Combinatorial For a given n, \ldots

- \blacktriangleright . . . what is a point set P with minimal number of stable states?
- ▶ . . . does the "identity" $P = \{(1, 1), \dots, (n^2, n^2)\}$ have the maximal number of stable states?

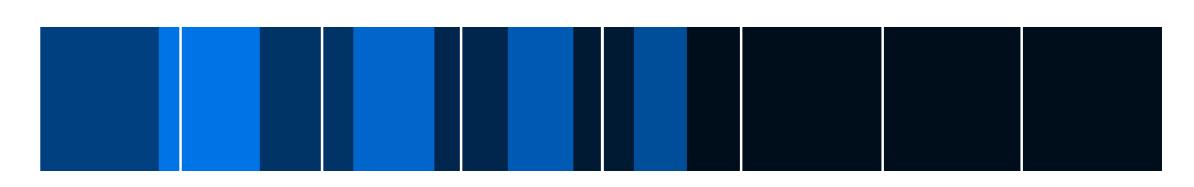
Geometrical

What is the average neighborhood quality of a random stable state of a random point set?



	$q_{0,\frac{n}{2}-1}$	$S_{0,\frac{n}{2}-1}$	$q_{1,\frac{n}{2}-1}$	$S_{1,\frac{n}{2}-1}$		$q_{\frac{n}{2}-1,\frac{n}{2}-1}$	$S_{\frac{n}{2}-1,\frac{n}{2}-1}$
	$p_{0,\frac{n}{2}-1}$	$r_{0,\frac{n}{2}-1}$	$p_{1,\frac{n}{2}-1}$	$r_{1,\frac{n}{2}-1}$		$p_{\frac{n}{2}-1,\frac{n}{2}-1}$	$r_{\frac{n}{2}-1,\frac{n}{2}-1}$
	:	:	:	:	·	:	÷
M(P) =	$q_{0,1}$	$s_{0,1}$	$q_{1,1}$	$s_{1,1}$		$q_{\frac{n}{2}-1,1}$	$s_{\frac{n}{2}-1,1}$
	$p_{0,1}$	$r_{0,1}$	$p_{1,1}$	$r_{1,1}$		$p_{\frac{n}{2}-1,1}$	$r_{\frac{n}{2}-1,1}$
	$q_{0,0}$	$s_{0,0}$	$q_{1,0}$	$s_{1,0}$		$q_{\frac{n}{2}-1,0}$	$s_{\frac{n}{2}-1,0}$
	$p_{0,0}$	$r_{0,0}$	$p_{1,0}$	$r_{1,0}$		$p_{\frac{n}{2}-1,0}$	$r_{\frac{n}{2}-1,0}$

Neighborhood Estimates



				$q_{0,1}$	$q_{1,1}$	
p	0,1	$p_{1,1}$				
				$q_{0,0}$	$q_{1,0}$	
p	0,0	$p_{1,0}$				

Construction of a point set and a stable state s.t. no point has its nearest neighbor in the 1-ring.

Top to Bottom: direct, rows/cols iteratively, odd/even, maximum growing energy; Left to Right: 1st, 2nd,...,8th nearest neighbor known.

Applications

► Crowd Simulation [1].

- ► Fluid Animation [2].
- ► Biological Cell Simulation [3].

References

- [1] M. Joselli, E. B. Passos, M. Zamith, E. Clua, A. Montenegro, and B. Feijó. "A Neighborhood Grid Data Structure for Massive 3D Crowd Simulation on GPU", 2009.
- 2] M. Joselli, J. R. da S. Junior, E. W. Clua, A. Montenegro, M. Lage, and P. Pagliosa. "Neighborhood grid: A novel data structure for fluids animation with GPU computing", 2015.
- [3] M. de Geomensoro Malheiros and M. Walter. "Simple and Efficient Approximate Nearest Neighbor Search using Spatial Sorting", 2015.
- [4] M. Skrodzki, R. Reitebuch, and K. Polthier. "Combinatorial and Asymptotical Results on the Neighborhood Grid", ArXiv, 2018.

Corresponding Author: Martin Skrodzki, Workgroup Geometry Processing, FU Berlin, Germany, martin.skrodzki@fu-berlin.de