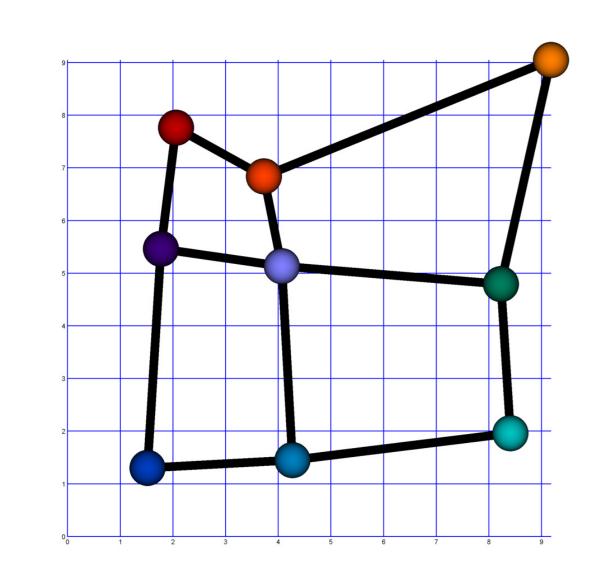
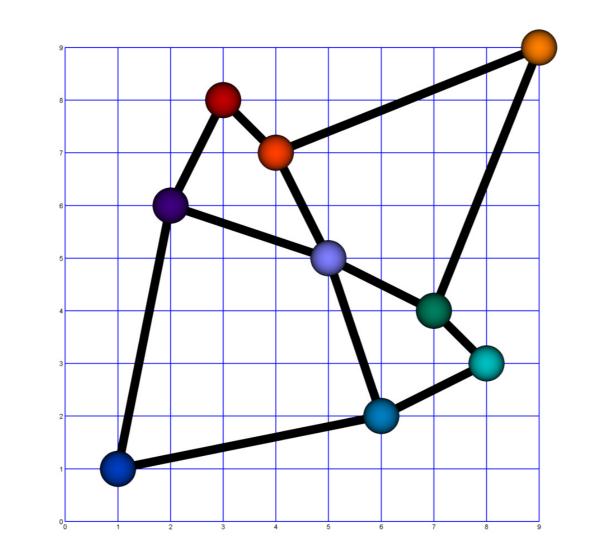

Computational and Structural Aspects of Point Set Surfaces (2)

The Neighborhood Grid

The Neighborhood Grid approximates neighborhood information. A (quadratic) matrix contains the coordinates of the points such that in each row the x-values are increasing while in each column the y-values are increasing.


For the algorithm, the order of the points suffices, the exact coordinates are irrelevant. the above ordering is given, we call it a "stable state".

Illustrating the Neighborhood Grid

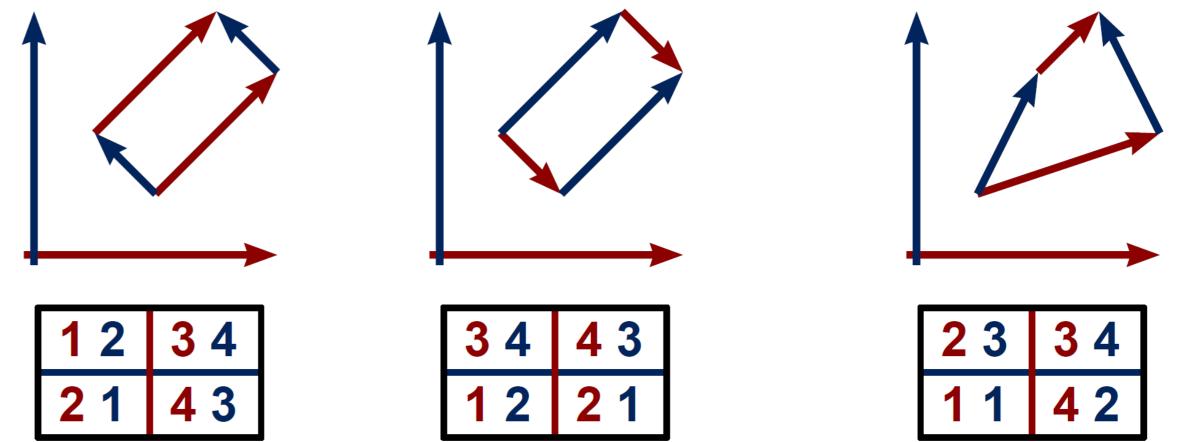


From left to right: A raw point cloud, the corresponding structure induced by the grid, and an example where the neighborhood is not faithfully recovered.

Order Preservence

(2,06; 7,76)	(3,73; 6,84)	(9,18; 9,05)
(1,77; 5,46)	(4,07; 5,13)	(8,23; 4,79)
(1,53; 1,30)	(4,27; 1,45)	(8,41; 1,96)

(3; 8)	(4; 7)	(9; 9)
(2; 6)	(5; 5)	(7; 4)
(1; 1)	(6; 2)	(8; 3)


3321

Uniqueness of Stable States

Summing x-values with column-numbers and y-values with rownumbers, the resulting energy grows when exchanging wrongly sorted pairs.

 $\sum_i ix_i + \sum_j jy_j$

However, the resulting stable states do not have to be unique.

Reducing from double to integer values keeping the order

3342

14 21

2142

Two non-unique and a unique 2 imes 2 state.

Analysis Difficulty

Violations of the sorting are marked in yellow or light blue. Repeatedly interchanging the element (3,3) along violated edges gives a stable state. However, (3,3) circulates through the matrix.

Pro/Contra	Results						
Benefits:	size $m{n}$ po	oints n^2	2 point sets $(n^2)!$ st	able states $((n^2)!/n!^n)^2ert$ u	inique r	min max	avg.
 Easy to parallelize. 		1	1	1	1	1 1	1.0
► Const. time approximation.	2	4	24	36	12	1 2	1.5
Disadvantages:	3	9	362,880	2,822,400	966	1 42	7.777
 No lower-dim. points. Approx. might be bad. 	4	16	20,922,789,888,000	3,976,941,969,000,000	0	? ≥24,024	190.077
Applications	Ref	erence	S				
 Crowd Simulation [1]. Fluid Animation [2]. Biological Cell Simulation [3]. 	[2]	GPU", 200 M. Joselli, with GPU	9. J. R. da S. Junior, E. W. Clua, A. Monte computing", 2015.	ontenegro, and B. Feijó. "A Neighborhood Grid enegro, M. Lage, and P. Pagliosa. "Neighborhoo ole and Efficient Approximate Nearest Neighbor	od grid: A n	ovel data structure for t	luids animatio

33

Circulation of an Element after Exchaning

Martin Skrodzki, Workgroup Geometry Processing, FU Berlin, Germany, martin.skrodzki@fu-berlin.de