

JAN – Java Animation for Program Understanding

Klaus-Peter Löhr
lohr@inf.fu-berlin.de

André Vratislavsky
jan@vratislavsky.de

Institut für Informatik, Freie Universität Berlin

Abstract

JAN is a system for animated execution of Java programs.
Its application area is program understanding rather than
debugging. To this end, the animation can be customized,
both by annotating the code with visualization directives
and by interactively adapting the visual appearance to the
user’s personal taste. Object diagrams and sequence dia-
grams are supported. Scalability is achieved by recogniz-
ing object composition: object aggregates are displayed in
a nested fashion and mechanisms for collapsing and ex-
ploding aggregates are provided. JAN has been applied to
itself, producing an animation of its visualization back-
end.

1. Introduction

Systems for program animation are mainly used for
debugging purposes. They come in different flavours,
ranging from simple text-based debuggers to sophisticated
visual debuggers. While text-based animation uses tradi-
tional techniques such as statement highlighting and tex-
tual data display, visual debuggers present graphical repre-
sentations of data entities; linked structures, e.g., are
shown as diagrams with boxes and arrows, as featured by
the graphical debugging front-end DDD [18].

Object-oriented animation goes beyond that by gener-
ating object diagrams similar to the collaboration diagrams
known from UML [4] and history diagrams similar to the
UML sequence diagrams. The state of the art is character-
ized by systems such as JaVis [10], VisiVue [16] and
JAVAVIS [13].

If program understanding is to be supported by ani-
mation, two problems have to be solved that have not been
given adequate treatment in previous approaches:

1. Graphical representation of architectural proper-
ties: An important design decision in a system is
composition/containment (or aggregation in
UML), i.e., the part-of relationship between ob-
jects. With respect to visualization, an aggregate
object is the ideal candidate for abstraction
through collapsing and for refinement through

explosion. As several object-oriented languages,
including Java, do not support the notion of ob-
ject composition, the usual box-and-arrow dia-
grams tend to become unwieldy for programs of
realistic size. Not only will the screen overflow,
but also the user is overwhelmed with an incom-
prehensible spaghetti diagram. This is not con-
ducive to program understanding.

2. Focus on important parts of the program: Not all
parts of a program are equally important for un-
derstanding; and understanding different issues
may require focussing on different parts. An
“animator” or instructor must be able to tailor the
animation in accordance with the actual needs,
which may be different for different audiences
(and different tomorrow from today).

This paper presents JAN, a Java animation system for
program understanding. We see two main contributions of
JAN: 1. a notion of object composition that is exploited for
using nesting, refinement and abstraction in the visual rep-
resentation of the object structure; 2. a system of annota-
tions which are inserted into the source program for cus-
tomizing the animation. A preprocessor is responsible for
generating an instrumented version of the program that is
based on the annotations. The instrumented version, when
executing, drives a visualizer which makes the diagrams
unfold on the screen. Various mechanisms allow the in-
teractive user to further adapt the animation, beyond the
static directives given by the annotations, to suit the indi-
vidual taste.

The treatment of JAN in this paper focuses on compo-
sition and nesting in the object diagrams (section 2) and on
the annotations (section 3). As a proof of scalability, JAN
has been applied reflectively to its own visualizer; the ex-
perience is reported in section 4. Section 5 discusses re-
lated work, and section 6 wraps up with a conclusion. For
information about the sequence diagrams (also for multi-
threaded programs), the user interface and the design de-
tails of JAN, the reader is referred to the technical report
[9]. JAN’s website offers extensive documentation and a
demonstration applet [17].

2. Object diagrams with nested objects

Class diagrams and object diagrams tend to become

unwieldy for all but the smallest toy systems. Not only do
we have to struggle with spaghetti diagrams; the sheer
mass of classes/objects prevents a diagram from being
displayed on the screen in a satisfying manner. Scrolling
or zooming may alleviate the problem but does not elimi-
nate it.

Object orientation itself is at the root of that problem.
More precisely, it is the objects-by-reference property of
several object-oriented languages, notably Java, that leads
to object diagrams with lots of boxes and arrows. The
low-level concept of reference is used for each and every
object, even when no object sharing through aliasing takes
place.

The careful programmer would implement object
composition (or containment; also aggregation in UML
terminology) with objects-by-value when using a language
such as Eiffel [11], C++ [15] or C# [1]. The natural
graphical representation of composition is nesting, which
reduces the number of arrows considerably and paves the
way for a disciplined kind of zooming: visualized object
refinement. A C# programmer, for instance, who uses
structs wherever possible will produce code that is
readily suited to this kind of program visualization. The
Eiffel programmer enjoys even more flexibility because
the declaration of a by-value object (keyword expanded)
can just refer to a regular class.

2.1 Components of Java classes

An Eiffel class describes how its instances are com-
posed from components, i.e., attributes of value types, and
from references to other objects, i.e., attributes of refer-
ence types. When writing an Eiffel program, the careful
programmer uses reference types only when necessary.

The components of such a program will appear in a
different guise in an equivalent Java program; three kinds
of components can be distinguished:

1. fields of primitive types;
2. fields of type String (as Java strings are im-

mutable objects, their semantics is actually by-
value);

3. fields of reference types (other than String)
with a component-like usage pattern.

The component idiom of case 3 for a field c of an
object x of class X is characterized as follows:

• Single assignment: A non-null reference is as-
signed to c exactly once, either by a variable
initializer or by an assignment executed by a con-
structor of X.

• Confinement: No copy of c is ever available in
non-local variable outside x.

Confinement not only requires that copies do not leak
out of x and into fields of foreign objects but also that
they do not enter x from fields of foreign objects.

Note that two phenomena are not excluded by this
haracterization – confined aliasing and export: c

• Confined aliasing: c can be passed as an argu-
ment in a call, causing temporary aliasing for the
component during the lifetime of the called
method. It is also possible that another compo-
nent s of x is set up in such a way that it re-
fers to the component c.

• Export: c will often be private or protected, but
this is not mandatory. If c is public, however,
the confinement requirement allows just use-only
access, which is more restrictive than read-only.
c can be dereferenced, but cannot be copied.
E.g., x.c.op() is allowed, but a = x.c is
not.

There is a rich literature on the issues of aliasing, con-
finement, containment and ownership
[Clarke/Drossopolou 02]. Several authors suggest extend-
ing the type system of Java in order to tame the reference
types. Encapsulation is often considered essential for con-
tainment. Note that our notion of component does mean
that a component object is part of a containing object, but
does not insist on encapsulation. In this respect we share
the view of [Parnas/Siewiorek 75] on transparency, trans-
ferred from functional hierarchies to object orientation.

The component property of a field is undecidable in
Java. Can Java programs still be animated in such a way
that components are recognized – and can thus be dis-
played in a nested fashion? We see three different options
or attacking this problem: f

1. Conservative static analysis: A data flow analy-
sis performed by a preprocessor tries to prove the
component property of each instance variable. If
it fails, the variable is not considered a compo-
nent. The code is instrumented in such a way that
the animation system is informed about the in-
stance variables that have been identified as
components.

2. Simple conservative heuristics: As a crude ap-
proximation, the final modifier may be con-

sidered to declare a component. This is almost1
in accordance with the single-assignment re-
quirement, but not with the confinement require-
ment. In particular, static object structures with
object sharing through aliasing are often set up
using final fields. We pretend that final does
indeed declare a component. This means that the
designer of a program that is to be animated, say,
for teaching purposes can take this into account
and consequently will drop some finals. A
preprocessor instruments the code accordingly.

3. Program annotation: A program that has been
written without considering option 2 is annotated
with special comments: a component is declared
by attaching a component tag to a field declara-
tion. The component tag can be viewed as the
equivalent to Eiffel’s expanded (if only for
visualization purposes). A preprocessor recog-
nizes the tags and instruments the code in the
same way as for option 2. Of course, there is no
guarantee whatsoever that the program actually
meets the single-assignment and confinement re-
quirements. Correctly placing the component
tags requires a thorough understanding of the
program.

The present version of Jan supports options 2 and 3.
The annotations supported by Jan will be described in sec-
tion 3. Presently, we turn to the visual appearance of ani-
mated Java code without any annotations, relying on the
final modifier according to option 2.

2.2 User-defined classes

Here is a simple example of a user-defined class with
 components and a reference to another object: 3

class Book {
 String author;
 String title;
 int year;
 Publisher publisher;
 }

There is nothing unusual in an object diagram that
presents a Book frame pointing to a Publisher
frame as visualized by JAN and shown in Figure 1.

Another version of Book declares publisher as
final and provides a constructor for parametrized ini-
tialization:

1 „almost“ because the field may remain null.

Figure 1. Inter-object reference

class Book {
 String author;
 String title;
 int year;
 final Publisher publisher;
 Book(String a, String t, int y,
 String name, String city) {
 author= a; title= t; year= y;
 publisher=
 new Publisher(name,city);}
}

Figure 2. Book object before opening, after opening,
and after opening the Publisher component

In this case, JAN considers publisher a compo-

nent of Book and will display a Publisher frame
nested inside a Book frame as shown in Figure 2. When
an object is visualized for the first time, it is displayed in
opaque mode: its type is shown and – if applicable – tex-

tual hints are given that it contains components and/or
references to other objects. Clicking on an opaque object
opens the object, establishing transparent mode. Another
click reestablishes opaque mode.

In addition to opening, which expands an object in
situ, an explosion mechanism is available which opens the
object in a separate frame. This is shown for the Pub-
lisher object in Figure 3. We see that refinement and
abstraction of objects are supported in a natural way.

Figure 3. Explosion of component publisher

In addition to opening and closing, further actions can
be applied to object frames, including iconiz-
ing/deiconizing, resizing, and moving. (Any arrows or
explosion lines connected to a window are moved along
with that window.) So if the object diagram becomes un-
wieldy in spite of nesting, the user has the options of
shrinking, closing, iconizing or even hiding frames. A
non-trivial scenario with multiple nesting and inter-
component referencing is presented in the appendix.

2.3 Arrays and Collections

An array is a hybrid entity: it can be viewed either as
an indexed variable or as an object. Java, like many ob-
ject-oriented languages, treats arrays as objects. An array
field, however, does not usually refer to a shared object; it
rather represents multiple indexed components or multiple
indexed references to external objects. For this reason,
JAN always uses nesting when visualizing an array field;
the final modifier or the component tag, if present,
refer to the elements of the array.

We take the view that the experienced programmer
will rarely use the “low-level” arrays but will prefer col-
lection classes from Java’s class library. The programmer
should be able to choose whether or not a collection is a
component of the referring object. Unfortunately, this is
not possible with the current version of JAN for technical
reasons. Collections, like arrays, are considered compo-

nents, and a final modifier or component tag refers to
the collection elements.

The visualization of a collection (or array) ignores the
collection’s actual representation: an intuitive view of an
abstract model of the collection is displayed. Figure 4
shows a HashMap object containing several Book
components, keyed by strings.

Figure 4. Visualization of a HashMap

3. Annotations for customized animation

Screen real estate is a scarce resource. If component

nesting and opaque mode are used judiciously, JAN scales
well for well-designed systems (as will be demonstrated in
section 4 where it is reflexively applied to its own visual-
izer). This is because a well-designed system is recur-
sively composed from a moderate number of subsystems
on each stage of refinement. If the components of a
subsystem/object do not fit on the screen even when
displayed in opaque mode, something is rotten in the state
of that subsystem.

A well-designed subsystem may contain a network of
components that looks like a spaghetti bowl – but this
should only be a small bowl. In addition, as JAN supports
the Java Collections, we will never see any box-and-arrow
representation of linked structures provided by the library,
even not in transparent mode: abstract models are used
instead.

JAN has been designed as a tool for program under-
standing rather than for visual debugging. To this end, it
features a palette of code annotations beyond the compo-
nent tag mentioned in 2.1. By attaching annotations to the
program code, either the programmer or – for existing
code – a “visualization engineer” (e.g., a programming

instructor) chooses a specific animation of the program.
Typical choices pertain to the granularity of stepping
through the program, the objects to be shown or hidden,
the level of detail, the visual representation of different
object types and of values of primitive types.

The potential of JAN’s annotations is best appreciated
by comparing it to a special-purpose animation system.
JAN’s animated cartoons (if the metaphor is allowed) are
about dynamic evolution of marked, directed higraphs [8]
with different types of nodes. The language for scripting
those cartoons is – just annotated Java. We are not claim-
ing that drawing dynamic higraphs is an important applica-
tion area of JAN; after all, there is no automatic layout ex-
cept nesting. But the hybrid nature of JAN – both program
animation and algorithm animation – should be kept in
mind when using JAN’s animation facilities for program
understanding.

3.1 Semantic tags

All annotations come in the form of Javadoc com-
ments with special tags. We distinguish semantic tags
from selection tags. A selection tag determines whether or
not an item or action should be visualized. Defaults set-
tings are provided which can be changed by the user. A
semantic tag determines how an item is to be visualized;
the component tag is a prime example.

The following semantic tags are available in the pre-
sent version of JAN:

@component

precedes a field declaration,
declares the field a component.

@group groupname

precedes a class declaration,

declares the objects of that class members of a
group; a group is associated with 1. an icon for
iconized objects and 2. an icon that appears in the
upper left-hand corner of non-iconized objects;
default icons are provided.

@range min..max

precedes a number field declaration,
causes the number to be represented as a bar
chart.

3.2 Selection tags

Show and hide tags are attached to fields and certain
statements; they determine the visibility of items and ac-
tions. Default values are present (and can be set by the
user) for the different categories shown below. A tag at a
method call overrides the show/hide mode of the object
involved in the call. The show tag is used as follows:

@show

if preceding a field declaration,
causes the field to be shown;

if preceding a method call,
causes the invocation to be shown in the sequence
diagram;

if preceding an if or loop statement,
causes the occurrence of that statement to be
shown in the sequence diagram;

Using @hide instead of @show has the obvious

effect. More tags are available for giving more specific
directives [9].

4. System design

Given the tagged (or untagged) source code of a pro-

gram, three steps are required for viewing an animated
execution: 1. generating the instrumented source code, 2.
compiling, 3. execution. Step 1 is performed by the Jan
generator, step 2 by a regular Java compiler, step 3 by the
Jan visualizer, in cooperation with the instrumented pro-
gram.

The program and the visualizer run in different Java
Virtual Machines (JVMs), communicating via RMI, as
explained below. Distribution transparency allows us to
view the design of the visualization system as the 4-tiered
structure shown in Figure 5.

The instrumented application sends event data to the
tracing tier by issuing invocations of static methods of
class Trace. These data are passed to the communication
tier which generates event objects which are in turn passed
to the representation tier.

The representation tier stores and updates representa-
tions of the diagrams and keeps the history of the anima-
tion. It is invoked from the communication tier by calls to
a TraceEventHandler. It is also accessed from the
gui tier, by calls to a TraceHistory, e.g., for starting

and stopping the animation. The gui tier, invoked via
TraceConsumer, is the ultimate sink of the visualiza-
tion information.

Figure 5. The 4 tiers of the visualization system

4.1 Source code instrumentation

The Jan generator analyzes the tagged source code

and generates an instrumented version of the code. Tracing
calls are inserted and small modifications to the source
code are made (without changing the semantics).

A tool named Barat [3] is used for analyzing the tags
and generating modified code. Barat generates a syntax
tree and has a Visitor [7] which can emit source code.
Subclassing the visitor makes it possible to generate modi-
fied source code by overwriting inherited methods, e.g., at
assignments or at method calls.

4.2 Interface to the tracing system

Our design sees to it that no trace-related state is in-
troduced into the instrumented program. Communication
between the application and the visualization only uses
static methods (class Trace). These methods create ap-
propriate objects containing event data and pass these to
the representation layer.

When tracing method calls of concurrent threads,
caller and callee must be associated correctly. This re-
quires that the call is reported by the caller, not the callee,
because only the caller knows both its own identity and
that of the callee. This solution also has the advantage that
method calls of library classes can be reported; their
source code is not available for tagging.

An invocation statement that is to be visualized is en-
closed by calls of the static methods beginOfCall and
endOfCall in class Trace. These methods will report
the call event and the return event.

4.3 Decoupling application and visualization

The instrumented application and the visualizer run in

separate JVMs which communicate via RMI. Why is this?
It should be possible to restart visualization without

restarting the GUI. The application may have created
threads. These threads must be completely destroyed be-
fore the program is restarted. But safe destruction of
threads is only possible by shutting down the JVM.

Communication between the JVM of the visualization
system (“server”) and the JVM of the application (“cli-
ent”) uses RMI. The client includes the instrumented ap-
plication and the Trace class because static methods
cannot be used in an RMI interface. The RMI interface is
thus situated between Trace and the visualizer: the
event data are passed to a TraceEventHandler by
remote invocation. Communication in the opposite direc-
tion is by remote invocation of a TraceControl.

4.4 Visual representation

Composed objects and primitive attributes are repre-
sented by appropriate visualization data. The primitive
attributes have the Java types short, int, long, float, double,
byte, char, boolean and String. Objects can also be con-
tained in static variables; in this case they belong to all
instances of a class, and a class representation is used.

A composed component can contain many composed
components and primitive components. Additionally, it
can have many references to other composed components.
The same applies to classes. Components are therefore
organized in a tree structure. Components of primitive
types are the leaves in a component tree.

An object can have named, nameless and assigned
components, depending on whether the enclosing compo-
nent is a Map, a Collection, or another kind of object. A
named component carries its field name. This naming is
not possible for elements of collections; using the key ob-
jects as name tags is the natural solution for maps. The

elements of a set do not carry names. Named and nameless
references are distinguished in the same way.

The Graphical User Interface (GUI) is the interface
between the visualization system and the user. It displays
the visualization and receives user input. Storing and proc-
essing data do not take place in the GUI but in the repre-
sentation layer.

The GUI uses graphic elements from Java Swing. The
basic structure of the visible surface was laid out using the
Java development environment NetBeans [12]. According
to the MVC paradigm, models are the internal representa-
tion of graphical elements. Swing requires models for ele-
ments such as lists and trees. Our models just refer to the
data in the representation layer.

The Swing concept of internal frames (Swing class
JInternalFrame) is used for the surfaces on which the
object and sequence diagrams as well as the code windows
are to appear. Internal frames are windows within a special
area (Swing class JDesktopPane). They are not full-
fledged windows, but have the functionalities of a win-
dow. They can be dragged, minimized and closed.

4.5 JAN visualized by JAN

JAN can be applied to itself or, more precisely, to its

visualizer back-end. The scenario is shown in Figure 6:
the operation of an instrumented version of the visualizer,
when operating on some application program, is visualized
using another visualizer instance. Two JAN GUIs will
appear on the screen, representing the application visuali-
zation and the visualizer visualization, respectively. As
the application visualization proceeds, its actions, e.g.,
creating model objects for newly created frames, are visu-
alized.

 application visualizer visualizer
 for application for visualizer

Figure 6. Jan applied to its visualizer

JAN is a complex system. So not only does this exer-

cise help with understanding JAN’s operation, it is also
proof that Jan does scale for systems of realistic size. A
convincing demonstration can of course not be given in
writing. The appendix contains several screen shots.
They are hoped to convey the message that JAN’s features
for selective visualization and abstraction/refinement work
well for bringing to life the operation of a complex pro-
gram within the limited area of a screen.

5. Related work

Of all existing Java visualization systems, Javavis [13]
probably comes closest to JAN. Javavis animations show
both object diagrams and sequence diagrams. Compared
to JAN, there are two main differences. First, there is no
steering of the animation, neither by static nor by dynamic
means: the Java code is processed as is, without annota-
tions, and a standard layout is produced which cannot be
manipulated interactively. Secondly, as a consequence of
non-annotated code, there is no selective visualization and
no way to avoid spaghetti diagrams by identifying object
composition. A faithful picture of the program with all its
variables is given. The applicability of Javavis is thus
restricted to introductory programming education using
small programs. A plus of Javavis is its ability to display
smooth transitions from step to step. Stepping back, how-
ever, is not supported.

JaVis [10] is a visualization system for understanding
concurrent programs, in particular for deadlock detection.
This is achieved by displaying a sequence diagram with
different colours, much like Jan does. The diagram cannot
be manipulated, though. Object diagrams are not sup-
ported.

Two systems featuring an impressive wealth of func-
tionality, RetroVue and VisiVue, are available commer-
cially [16]. RetroVue is a production-strength visual de-
bugger while VisiVue is meant to support program under-
standing. The focus of both systems is on object dia-
grams; in addition, RetroVue features a thread view dia-
gram. Both kinds of diagrams come in a proprietary style.
The spaghetti problem is alleviated by a careful layout.
The zoom and pan features are very helpful for analyzing
large programs. The systems operate on byte code; this
has the advantage that no source code is touched – and the
disadvantage that it cannot be touched: static customiza-
tion of the visual appearance is not possible. Similar to
Jan, RetroVue allows the user to retrace the execution his-
tory using a stepback mechanism.

6. Conclusion and perspective

JAN is an acronym for Java animation. We see JAN as
a program understanding tool rather than as a visual de-
bugger. The user creates an animation by inserting tags
into the source code. These tags, together with default
settings, determine the general visual appearance. Techni-
cally speaking, defaults and tags control the generator in
producing the instrumented version of the program. Note
that an instrumented version is generated even from com-

instrumented

instrumented

pletely untagged source code, so Jan can be readily applied
to existing code. In this respect, it is similar to a debugger.

If program understanding is the objective, carefully
planned tagging is required in order to produce a highly
informative animation. The granularity of detail can be
chosen, irrelevant objects can be hidden, object types can
be associated with intuitive pictures, ranges can be set, etc.
When the program is executing in run mode, the object
structure is unfolded in a movie-like fashion. The speed
can be tuned, and the user can stop and start the movie.
Single step mode works forwards and backwards as de-
sired; so if the user gets lost, stopping and retracing the
execution will hopefully clarify the situation.

Whether used as a debugger or as a program under-
standing aid, JAN gives the user ample choices for interac-
tive manipulation of both object diagrams and sequence
diagrams. This can be considered both boon and bane.
On the one hand, the user can always modify the layout
and the level of detail chosen by the system. On the other
hand, the user has to manually intervene most of the time
because the system does not spend much effort on produc-
ing a clever layout. This is an area where improvement is
definitely possible. We would never trade, however, the
interaction features for an intelligent layout procedure; an
improved system should incorporate both.

Other items on the wish list are smooth changes as
known from algorithm animation and custom pictures for
the different object types (not just rectangles with a small
picture in the corner). These features are not easily added.
For the time being, development work for JAN concen-
trates on a range of minor to medium, and more or less
obvious, visual improvements and on streamlining the
interaction of the user with the system.

References

[1] B.Albahari, P.Drayton, B.Merrill, C# Essentials, O'Reilly

2001.

[2] K. Arnold, J. Gosling, The Java Programming Language,
Addison-Wesley 2000.

[3] B. Bokowski, A. Spiegel, “Barat – a front-end for Java”,
TR B-98-09, Fachbereich Mathematik und Informatik, Freie
Universität Berlin, December 1998. See also
http://sourceforge.net/projects/barat

[4] G. Booch, J. Rumbaugh, I. Jacobson, The Unified Modeling
Language User Guide. Addison-Wesley 1998.

[5] Borland Software Corp., JBuilder.
http://www.borland.com/jbuilder

[6] P. Crescenzi, C. Demetrescu, I. Finocchi, and R. Petreschi,
“Reversible execution and visualization of programs with
Leonardo”, Journal of Visual Languages and Computing
11(2), April 2000, pp. 125-150. See also
http://www.dis.uniroma1.it/~demetres/Leonardo

[7] E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Pat-
terns, Addison-Wesley 1995.

[8] D. Harel, “On visual formalism”, Comm. ACM 31(5), May
1988.

[9] K.-P. Löhr, A. Vratislavsky, “Object-oriented program
animation using JAN”, TR B-03-05, Fachbereich Mathe-
matik und Informatik, Freie Universität Berlin, February
2003. ftp://ftp.inf.fu-berlin.de/pub/reports/tr-b-03-05.pdf

[10] K. Mehner, “JaVis: a UML-based visualization and debug-
ging environment for concurrent Java programs”, in S.
Diehl (ed.): Software Visualization. Springer 2002.

[11] B. Meyer, Object-Oriented Software Construction, Pren-
tice-Hall 1997.

[12] netBeans, NetBeans development homepage,
http://www.netbeans.org

[13] R. Oechsle, Th. Schmitt, “Javavis: Automatic program
visualization with object and sequence diagrams using the
Java Debug Interface”, in S. Diehl (ed.): Software Visuali-
zation. Springer 2002.

[14] D.L. Parnas, D.P. Siewiorek, “Use of the concept of trans-
parency in the design of hierarchically structured systems”,
Comm. ACM 18(7), July 1975.

[15] B. Stroustrup, The C++ Programming Language. Addi-
son-Wesley 2000.

[16] VisiComp Corp.: RetroVue and VisiVue.
http://www.visicomp.com/product

[17] A. Vratislavsky, JAN website, January 2003,
http://www.inf.fu-berlin.de/~vratisla/JAN

[18] A. Zeller, „Datenstrukturen visualisieren und
animieren mit DDD“, Informatik - Forschung und
Entwicklung 16(2), June 2001, pp. 65-75. See also
http://www.gnu.org/software/ddd

Appendix: JAN applied to JAN – object diagrams
or visualizing JAN’s gui package f

These screenshots were taken while Jan was animat-

ing a simple application (whose nature is of no concern
here). Several of the objects shown are internal represen-
tations of GUI items, e.g., the RelationPanel ob-
ject. Both open objects and closed objects can be seen in

the pictures. An open object, e.g., the TraceList-
Model object, reveals its components. More details can
be seen in the second picture where the ob-
jectToFrame component has been exploded and the
ClassListModel object has been opened. Notice the
local references among the object’s components. Both
the components and the inter-component references are
hidden when the object is closed.

	Introduction
	Object diagrams with nested objects
	Components of Java classes
	User-defined classes
	Arrays and Collections

	Annotations for customized animation
	Semantic tags
	Selection tags

	System design
	Source code instrumentation
	Interface to the tracing system
	Decoupling application and visualization
	Visual representation
	Jan visualized by Jan

	Related work
	Conclusion and perspective

