

 Automatic Mediation between Incompatible Component Interaction Styles

Klaus-Peter Löhr
Institut für Informatik

Freie Universität Berlin
lohr@inf.fu-berlin.de

Abstract

Incompatibility of component interaction styles is
identified as a major obstacle to interoperability when
using off-the-shelf components or dealing with legacy
software in compositional development. It is argued
that a language for defining abstract interfaces – AID –
can serve as a basis for accommodating heterogeneous
interaction styles. AID is independent of any concrete
style, such as invocation, pipe-and-filter, event-based or
others. An AID text just specifies elementary input and
output events which happen at the boundary of a com-
ponent. Code that mediates between different styles can
then be generated automatically from an abstract inter-
face description.

The focus of this paper is on mediating between data-
flow and invocation interaction. The design of the me-
diation code for invocation-based interaction with mis-
matching push/pull modes is described in some detail.
How to accommodate event-based interaction is shown
in the context of the CORBA Notification Service. En-
terprise Java Beans are taken as an example of a com-
plex component model, and the problems of accommo-
dating the message-driven beans of EJB 2.0 are ana-
lyzed.

1. Introduction

The notion of component-based software develop-

ment is attractive because it suggests the end of pro-
gramming: just pick some reusable components off the
shelf and build a system by interconnecting them in the
right way. While the idea makes sense, we also know
that life is not that easy. There are several basic obsta-
cles to the vision of componentware. A prominent one
is the lack of a commonly accepted component model.
Several competing standards exist, and we can expect

more as our understanding of components matures. So
the precise technical definition of component remains a
moving target.

We may hope that the world will agree on one stan-
dard in due time. But this is not likely to happen, and
homogeneity in a world of components may not even be
desirable. At least when the bulk of legacy software is
considered, heterogeneity is a fact of life.

1.1. Heterogeneity of component interfaces

As a component should basically be a reusable black

box, the most important part of a component model is
the nature of component interfaces. Object-oriented
interfaces are popular with existing component models
[7,9,14,11]. But not only may a component be more
than a simple object (it may, e.g., feature event-based
interaction in addition to invocation-based interaction),
it can also behave quite different from an object. For
example, a program interacting with its environment
through input/output streams may certainly be useful as
a component of a larger system. So we should be pre-
pared to deal with different kinds of interaction styles
when composing a system from components; invoca-
tion-based interaction is only one of them. Each inter-
action style has its own way of how an interface is de-
scribed. The challenge therefore is to accommodate
interface heterogeneity.

1.2. The need for mediation

The environment of a component within a system in-
cludes other components and glue code that ties the
components together and regulates their interaction.
When assembling a system from components we may
encounter a component that does offer the desired se-
mantics but exhibits an interaction style that does not
meet the expectations of the environment. For example,

if we stick with simple interactions, a sorting program
like the Unix sort will not be able to interact directly
with a Java object: the interaction styles are incompati-
ble.

A large part of what has been termed architectural
mismatch [2] is due to incompatibility of interaction
styles. It may be possible to mediate between different
styles, using code that is often called wrapper (or me-
diator). But the manual construction of wrappers is a
tedious and error-prone task, in particular if different
type systems are involved.

1.3. Automatic mediation

Code for mediating between incompatible interac-

tion styles should be generated automatically by suit-
able tools. An approach based on Abstract Interface
Definitons – AID – has been suggested in [5]. Essen-
tials of this approach are 1) interface descriptions that
are not only independent of programming languages
(like traditional IDLs) but also of concrete interaction
styles; 2) separation of mediation code into two parts, a
component-side driver for the component and an envi-
ronment side proxy for the component. Proxy and
driver communicate by using a mediation protocol over
a channel established on some inter-process communi-
cation platform. Generators for proxies and drivers are
based on mappings between AID texts and concrete
interaction styles. This technique can be classified as a
generalization of well-known techniques for remote
invocation towards arbitrary remote interaction.

The basic language for describing abstract interfaces
in the AID framework covers sequential components
only: the behaviour of a component is modelled as a
simple state machine with input/output events. It is
possible to extend the basic model to cover complex
components – subsystems which are assembled from
components themselves: they exhibit concurrent behav-
iour, support sessions and expose subcomponents to
their environment.

An extended version of the AID language will be
presented in section 2. Generators have been built for
different concrete interaction styles, and section 3 will
discuss the design of proxies and drivers for those
styles. Event-based interaction in CORBA and the
message-driven beans of EJB 2.0 are addressed in sec-
tion 4. A discussion of related work follows in section
5.

2. Abstract interface definition using AID

The abstract interface of a component is a set of

event types which is described using a language AID.
Any concrete interaction of a component with its envi-
ronment involves data flow either into or out of the

component and is correspondingly modelled either as
an input event or as an output event. Synchronous
invocation is modelled by a pair of input/output events.
Note that the AID events are abstract events in the
sense that they are not necessarily related to any con-
crete “event-based systems” or “messaging systems”.

When constructing a system from components, we
have to distinguish component instances from compo-
nent types: a system may include several instances of
the same type. Often just the term component will be
used below; it should be clear from the context whether
“instance” or “type” is meant.

2.1. AID syntax and semantics

AID comes in different levels of complexity. The

simplest AID texts obey this syntax:

Interface = interface Identifier
 { EventType }
 end Identifier

EventType = InOut Identifier { Type }
InOut = in | out
Type = Identifier

Input event types are defined by in followed by

the event type name, optionally followed by parameter
type names. Output event types begin with out in-
stead of in. Matching event types, i.e., pairs of syn-
onymous input and output event types, are allowed;
otherwise, there must be no name clashes among event
types. The informal semantics of an AID text is as
follows:

1. Input event type without a matching output
event type: There will be events in the life of a
component instance where information consist-
ing of the name and the parameters of the event
flows from the environment into the compo-
nent.

2. Output event type without a matching input
event type: Like in 1., but with information
flowing from the component into the environ-
ment.

3. Input event type followed by a matching output
event type: Like in 1. and 2., with the proviso
that an input event a) establishes a transient
connection between the environment and the
component and b) will be followed by an out-
put event that is associated with, and termi-
nates, the connection.

4. Output event type followed by a matching input
event type: Like in 3., but with the output
event establishing the connection and the input
event terminating the connection.

We consider two simple examples. The abstract in-
terface of a program that filters a sequence of text lines,
suppressing some of them and reacting to an invalid
input line with an error line, is described as follows:

ained in 3.2.

interface LineFilter
 in stdin String
 out stdout String
 out stderr String
 end LineFilter

The names of the event types are borrowed from the

Unix standard I/O ports. String is one of the built-
in parameter types of AID (all of which begin with
upper-case letters). Note that the operating system,
when supporting the data flow through ports, is trans-
ferring just bytes; it may not know about “strings” or
“lines” separated by newline characters. The typed
abstract interface makes the static semantics of the
program explicit in stating that newline-terminated
strings – rather than single bytes – represent the event
parameters. We will come back to the typing of type-
less interaction in section 3.1. – Here is another inter-
face:

 interface PhoneBook
in enter String Integer
in lookup String
out lookup Integer
in count
out count Integer
out samenum String String Integer
end PhoneBook

An object featuring an invocation interface may hide

behind this abstract interface. The lookup and
count events would correspond to the obvious opera-
tions. in enter events would be implemented by
starting an asynchronous (!) execution of an enter
operation. Alternatively, though, the component could
be a program that uses I/O ports; section 3.1 will dis-
cuss how the mapping from abstract to concrete
interaction would take this into account. Conversely,
the LineFilter abstract interface can be
implemented by a component featuring both exported
and imported invocation interfaces, as expl

2.2. Parametrized interfaces

For enhanced reusability, components are usually

designed so that their semantics can be adapted to a
certain degree, e.g., through parameters to be passed at
instantiation time. AID allows instantiation parameters
to be specified as parameters of an input pseudo-event
with the reserved name init. So an AID text may start

 interface PhoneBook
 in init Integer
 ...

where the integer value might specify the maximum
size of a specific instance of the phone book compo-
nent.

While this is fine, more power is gained from pa-
rametrizing the very interface in a macro-like fashion
which allows for describing different interfaces by one
AID text only:

Interface = interface Identifier { Parameter }
Parameter = Identifier

The interface name is followed by the formal pa-

rameter names. The actual parameters are submitted as
simple strings to the proxy/driver generator when a
proxy or driver is to be generated from an AID text.
Any applied occurrence of a formal parameter name
will then be textually replaced by the actual parameter
before the proxy/driver is generated from the modified
AID text. This can be used for supporting genericity,
as in

 interface dictionary Key Data
 in enter Key Data
 in lookup Key
 out lookup Data

end dictionary .

“Late naming” of event types is another application

of interface parametrization. A simple example is once
again found in the Unix repertoire of filters:

 interface tee copy
 in stdin Byte
 out stdout Byte
 out copy Byte
 end tee

The Unix command tee foo copies the standard

input to the standard output and to the file foo. Adopt-
ing the convention that a named pipe rather than a regu-
lar file be used, the component features two output
event types. More details will be given in 3.1.

2.3. Nested interfaces define sessions

The behaviour of complex components cannot al-
ways be modelled by simple state machines: 1) a
component is usually able to engage in several connec-
tions, or sessions, with its environment simultaneously;
2) more events than just one pair of matching events
(as introduced in 2.1) can usually occur during a ses-
sion. A session is modelled in a natural way as a tem-

porary instance of a component type that is managed
by a component instance of another type. If we would
restrict ourselves to the object-oriented world we could
define – in Java parlance – a session as an instance of a
non-static inner class of a certain object (of some
class). As we neither have classes nor want to stick
with object orientation, nesting abstract interfaces is
the natural way to model sessions. The syntax is ex-
tended accordingly:

Interface = interface Identifier { Identifier }

{ EventType | Interface }
 end Identifier

An Internet-style server can serve as an example: a

certain port is used to ask for the time, and a certain
other port is used for establishing connections; the kind
of dialogue that can be held over a connection is left
unspecified, but is assumed to be line-oriented:

 interface server
 in time
 out time Integer

 interface session
 in stdin String
 out stdout String
 end session
 end server

It is now possible to subsume the transient connec-

tions defined by matching input/output events under the
session concept: if we understand that an input/output
interaction means establishing a session for just one
input event and one output event, then

 in op .. interface op
 out op .. is equivalent to in arg ...

 out res ...
 end op

with standard identifiers arg and res.

3. Mediation architecture and code genera-
tion

Let us consider a composition scenario where a de-

cision about the nature of the glue code has been made,
presumably determined by the interaction style of sev-
eral readily available components. We would like to
incorporate another component but find that its interac-
tion style does not fit. It may (or may not) be possible
to write some wrapper code that mediates between the
two styles, as shown in Figure 1. But we want 1) to
have this code generated automatically and 2) to allow

this in the general case where the component has to live
in a separate address space (e.g., if different kinds of
component frameworks are involved).

 wrapper

Figure 1. Wrapping an alien component

If the alien component lives in a separate address

space, it will be represented by a component proxy on
the environment side; the environment will be repre-
sented by a component driver on the component side.
Proxy and driver are analogous to the client/server
stubs known from remote invocation (but keep in mind
that invocation is only one of several possible styles of
interaction). Proxy and driver communicate through a
mediation channel as shown in Figure 2. A mediation
protocol is used on top of a reliable transport service
(e.g., TCP or local pipes).

 proxy

 mediation channel

 driver

Figure 2. Component lives in a separate ad-
dress space

Both the proxy and the driver are generated from an
AID text. In principle, each interaction style has its
own proxy/driver generator. But a generator may also
work with different options, in order to account for
slight variations of the respective style.

3.1. Interaction styles without invocation

The conceptual gap between abstract events and

concrete interactions is small with all those interaction
styles that are based on the dataflow paradigm. Typical
examples are pipe-and-filter architectures (not only the
pipeline version supported by the Unix Shell), stream-
based interaction in non-strict functional languages (as
e.g., Haskell [3]), and event/message systems (e.g., the
CORBA Notification Service [10] or the Java Message
Service [15]). Creating proxies and drivers from an
AID text that specifies the abstract interface of a
component is rather straightforward in those cases
where the AID types are easily related to types in the
respective type systems.

I/O-port-based communication between binaries is
the prime example of typeless interaction. Here it is
necessary to embody knowledge about the syntax of the
byte streams into the AID text. In particular, a sensible
decision has to be made regarding event data bounda-
ries within a byte stream. Does input of a single byte
constitute a stdin event with a one-byte parameter?
Or does input of a sequence of bytes delimited by a
newline character constitute a stdin event with a
string parameter? Or maybe the string is meant as a
textual command, i.e., a sequence of words, separated
by blanks, the first word being an event name followed
by event parameters. Still other possibilities may exist,
and similar questions arise for output events.

The absence of a formal description of a typed con-
crete interface makes it inevitable to study the docu-
mentation of the component in question. Even with
simple Unix filters we have a spectrum of possibilities,
e.g., gzip is a component that operates on bytes,
grep operates on lines, ftp operates on commands.
The generators for filter proxies and drivers know
about the particulars to be obeyed here. For example,
they understand the event names stdin and stdout,
which means that these names will never be passed to,
or be expected from, a filter component. For an event
type in connect of an ftp component, however,
the name connect will be passed to the component;
and for the corresponding out connect the name
connect will not be expected from the component.

3.2. Invocation of exported and imported inter-
faces

For invocation-based interaction, an input event of a
component can either be the start of an operation of that
component or it can be the return from an operation of
another (previously invoked) component. In the former
case, the operation belongs to an exported interface, in
the latter case it belongs to an imported interface. Out-
put events can be classified in the same way. Here is a
simple Java example which alludes to a well-known
design pattern:

interface I { interface Observer {
A op(B b); void notify(A a);
} }

 class Z implements I {
 public Z(Observer o) {obs = o;}
 Observer obs;
 public A op(B b) {
 ... obs.notify(a); ...
 return a;
 }
 }

Both return a and obs.notify(a) are out-

put events, but of different kinds, as mentioned above.
The following abstract interface definition can be given
for component Z:

 interface comp

 in op B
 out op A
 out notify A
 in notify
 end comp

Now suppose a dataflow-style environment is to

employ this component, using one input channel (for
data of type B) and two output channels (for data of
type A). The environment would likely prefer to see an
interface such as

 interface comp’
 in input B
 out out1 A
 out out2 A
 end comp’

In a similar vein, suppose we do have an invocation-

style environment, but the notification is to be pulled
from the component, using an additional exported op-
eration, rather than pushed by the component, as seen

above. Here the proxy should be generated from an
interface such as

 interface comp*
 in op B
 out op A
 in getnote
 out getnote A
 end comp* ,

not from comp as given above.

There are two options for dealing with this situation:
1. a given abstract interface is extended with

additional information for the purpose of
proxy/driver generation;

2. the interface description is obeyed literally,
and a similarity relation among interfaces is
defined which allows a proxy to cooperate
with a driver if both were generated from
similar interfaces.

We have adopted the first approach for our experi-
mental implementation, and we are currently exploring
the second approach.

Note that incompatible push/pull modes among
component and environment imply non-trivial media-
tion even if both the environment and the component
are invocation-based. If the push/pull mode of an event
as featured by the component is different from what is
expected by the environment, proxy and driver will
accommodate this heterogeneity. Push/pull usage
modes are well-known from the event channels of the
CORBA Notification Service [10]. Here the notion is
used in a generalized way for arbitrary components
rather than for channels. It specifies whether an infor-
mation flow between component and environment is
instigated by the source or by the destination.

Two mismatching behaviours have to be accommo-
dated for inward flow, and two for outward flow:

 behaviour expected behaviour of

 by environment component

 inward: a) push in pull in
 b) pull in push in

 outward: c) pull out push out
 d) push out pull out

Cases a) and c) have in common that both sides are

active and want to trigger the flow. Cases b) and d)
have in common that each side is inactive and relies on
the other side to trigger the flow. Cases a) and c) are
handled easily: proxy and driver perform event buffer-
ing. Cases b) and d) require that proxy and driver play
the necessary active roles (using threads).

3.3. Status of implementation

Proxy and driver generators are available for port-

based (Unix-style) binary programs, for invocation-
based Java classes and for stream-based Haskell func-
tions, all for a Unix (Solaris) environment. The genera-
tors for Java recognize options for push/pull modes.
Generators for EJB components are preliminary ver-
sions that work for special cases, as explained in sec-
tion 4 below.

When a component is to be instantiated, the envi-
ronment instantiates a proxy. The proxy creates a new
process, gets hold of an input/output channel for that
process and causes the process to instantiate the com-
ponent and its driver. The input/output channel then
serves as the mediation channel mentioned above.
Process creation is local rather than remote in our pro-
totypical version of the mediation platform. So the
mediation channel is just a pair of simple pipes (or a
duplex pipe).

Several comments are in order. First, public com-
ponent instances (like public server processes) are not
considered here. A component is always instantiated
as a private entity of an instantiated program. In gen-
eral, if there is a mismatch among the interaction styles,
a component has to be instantiated in a separate address
space. This will usually, although not necessarily,
happen on the same machine. Placing the component
and its environment in one address space is possible in
those cases where the languages can coexist safely
(e.g., on the .NET platform [8], or if the languages are
identical); but this is not yet supported by our genera-
tors.

Secondly, component deployment over the network
is not addressed by the AID system. The issues of
mediation and deployment are considered orthogonal.
Obviously, it would be nice to generate the proxy (and
possibly the driver) for a downloaded component on
the fly. But this requires an accompanying interface
description and a non-trivial infrastructure.

The current version of the mediation protocol which
is used on top of the transport service supports simple
types only. Its design is ad-hoc. We refrained from
using XML (or even SOAP) because local, efficient
mediation were considered more important than
worldwide interoperability among generators from
different sources.

4. Issues in accommodating component
standards: CORBA and EJB

Typical examples of complex component models are

the Component Object Model, COM+ [7], Enterprise
Java Beans, EJB [14], and the CORBA Component
Model, CCM [9]. Interaction in all these models is

based on invocation. Even the event-based interaction
features of EJB 2.0 and CCM have a distinct invocation
flavour. This suggests that interaction style heteroge-
neity should not be a serious impediment to interopera-
bility with, or among, those components. Indeed, the
big problems result from the semantic richness of those
models. But the AID approach can still be helpful to a
certain degree.

4.1. Event-based interaction in CORBA

CORBA components use the CORBA Notification
Service for event-based interaction [10]. This service is
available through several interfaces (specified in IDL) ;
it allows clients to interact indirectly, by invoking op-
erations on Event Channels (which should not be con-
fused with our mediation channel). Dataflow between
a client and a channel object can be either in push mode
or in pull mode; mixed modes between suppliers and
consumers of events are possible.

Basic event supplying and consumption is generic:
the event notifications flowing through an Event Chan-
nel are not statically typed (i.e., their IDL type is
any); generic push and pull operations are used
for supplying and consuming events of type any1.

An event-style component proxy presents itself as a
regular event-supplying/consuming component to its
environment while clandestinely communicating with
some driver for the real component which may not
know anything about CORBA components and may
use a completely different interaction style.

The abstract event types to be specified in AID are
derived from four kinds of invocation events (shown
with their IDL signatures):

(input events:) push(in any data)

on consumer, called by an Event Channel;
 any pull()

on supplier proxy, called by consumer;

(output events:) push(in any data)
on consumer proxy, called by supplier;

 any pull()
on supplier, called by an Event Channel.

Each invocation involves a certain Event Channel.
Connections between channels and their clients can be
set up in different ways. For example, a client may
connect to a well-known, existing channel, using the
Naming Service. Let us assume that the connections
are established during an initialization phase and are
not changed afterwards. For this kind of behaviour, an

1 The Notification Service also supports Typed Events and Structured

Events; these will not be considered here.

abstract event type is associated with input events from
a named channel (or output events to a certain channel).
For example, the abstract interface Threshold of
an event filter that listens on a channel “sensor”
and generates new events on a channel “alarm”
would be specified as

interface Threshold
in sensor Any
out alarm Any

This abstracts from the modes – push or pull – that

the implementation actually uses for supplying and
consuming events. If indeed a proxy or driver for a
CORBA environment is to be generated from the inter-
face, the generator has to be instructed accordingly (as
explained in 3.2).

It is important to keep in mind that the interpretation
of AID event names such as sensor or alarm
depends on the style of setting up a configuration of
channels and their clients. Different styles require
different stub generators – or a generator that uses a
parameter indicating the style.

CORBA Components are examples of Notification
Service clients whose event-based interconnections are
set up by associating event sources and event sinks, as
specified by a component assembly descriptor. Speci-
fying event sources and event sinks as special ports of a
component enhances the flexibility of component us-
age. It also allows for a more direct correspondence
with an AID specification because event channels do
not have to be dealt with explicitly. So the IDL speci-
fication

component Threshold {
consumes SensorEvent temperature;
publishes AlarmEvent warning; };

would correspond to the AID specification

interface Threshold
in temperature SensorEvent
out warning AlarmEvent

We do not pursue the subject further; a complete

treatment of accommodating CORBA Components in
heterogeneous architectures is beyond the scope of this
paper.

4.2. JMS and message-driven beans

While EJB is compatible with CCM to a certain de-
gree (delineated by CORBA’s Basic Components), EJB
2.0 has incorporated event-based interaction along the

lines of the Java Message Service, JMS [15] which is
different from the CORBA Notification Service.

The Java 2 Enterprise Edition, J2EE, supports EJB
and JMS. JMS is a messaging middleware: reliable
inter-process communication between producers and
consumers of messages via message queues, or chan-
nels, is supported in a platform-independent manner.
Different channels, identifiable through the Name Ser-
vice, can be established; they are managed by the JMS
Server which is usually included in the EJB Applica-
tion Server.

Two types of channels are supported, Queue and
Topic. They are distinguished by the style of message
delivery: Queue implements point-to-point messaging,
i.e., a message will be delivered to exactly one con-
sumer (of possibly several consumers listening on the
channel). Topic implements publish-and-subscribe
messaging, i.e., a message will be delivered to all con-
sumers that have subscribed to the channel. A filtering
mechanism can be used to ignore messages whose
headers and properties do not match certain SQL-like
queries.

A message-driven bean is an instance of a class that
implements (at least) two interfaces, Message-
DrivenBean and Message-Listener (from
javax.ejb, .jms). MessageListener de-
fines the public operation

void onM sage

es (Message message);

this will be the message handler that is activated by the
container when a message is available on the channel.

The deployment descriptor of a message-driven bean
tells the container which channel the bean should listen
on and – for a Queue channel – how many instances of
the bean should be created. When a message is avail-
able the container tries to find an instance that is not
busy and makes a thread invoke that instance.

4.3. Accommodating message-driven beans

Message-driven beans are an example of compo-

nents with a well-defined interaction style. So it should
be possible, using a proxy and a driver, to accommo-
date a component featuring a different style in lieu of a
“real” bean. This should also work the other way
around, i.e., using a message-driven bean in an envi-
ronment that does not know anything about beans and
bean interaction.

Using an alien component instead of a bean makes
sense if that component has the desired message-
processing semantics: there should be an in-event type
and zero or more out-event types. The proxy generator
for the message-driven-bean style must generate proxy
code that correctly represents a message-driven bean.
In particular, it must implement the operation onMes-

sage, irrespective of the component’s in-event name.
It also has to perform a type conversion from the pre-
scribed argument type Message to the input type of
the component. While the name problem is easily
solved, the type conversion problem cannot be solved
in a satisfying, general way for all cases. We settle for
a solution that ignores the head and properties of the
message and works for those types of the message’s
payload that are easily converted to the component’s
input type.

Note that the proxy’s environment does not directly
address (invoke) the proxy. Its functionality is used by
sending a message to a certain channel. The proxy has
to listen on that channel; so the proxy generator will
construct the deployment descriptor accordingly.

The output generated by the component must be
output by the proxy bean “in bean style”. For instance,
the bean could produce messages, in addition to con-
suming messages. Code for this can also be generated
automatically.

While generating a proxy bean for an alien compo-
nent is feasible, generating a driver for a given bean is a
problem with no satisfactory solution yet. Imagine this
situation: when composing a system using a certain
non-EJB style you discover the need for a certain func-
tionality and remember “that powerful message-driven
bean” that would do the job. The bean must live in a
container and should be accompanied by the driver.
Now an EJB container has a rich functionality and
many conventions – and restrictions – the programmer
has to obey. It turns out that these restrictions make it
hard to come up with a general solution for the driver
generation problem.

5. Related work

Accommodating mismatching push/pull modes in

imperative code is a subject with a long history, dating
back to Jackson’s program inversion [4]. But there is
also rather recent work on the problem: automatic pro-
gram transformation has been suggested as a technique
for coping with mismatches [3]. This approach is at-
tractive from a performance point of view: it avoids the
execution overhead of mediation code. On the other
hand, it is limited to rather restricted scenarios: it ap-
plies to a specific language, and the program sources
have to be available. The mediation approach, being
independent of language (and even of source code), has
the advantage of being applicable to any kind of legacy
software.

Techniques for accommodating incompatible inter-
action protocols have been studied in [16]. In-
put/output events of components are modelled in a way
similar to AID, but the interaction behaviour (event
sequences) is the object of study. Adapters are used for

mediation between mismatching behaviours. In simple
cases, these adapters can be generated automatically,
but manual intervention is often required. The ap-
proach is not suited for automatic generation of media-
tion code for different interaction styles. Similar kinds
of adapters have recently been suggested for concur-
rent components with incompatible synchronization
properties and have been applied to imperative compo-
nents [13,1].

It is important to demarcate the AID terminology
from similar but only weakly related terminology in the
literature. Extending object-oriented languages with a
construct called pluggable composite adapters is sug-
gested in [6]. Here a component resembles an encapsu-
lated ensemble of classes. Component adaptation ex-
tends a given component in such a way that it will be
adapted to a certain collaboration with other compo-
nents. Composite adapters are object-oriented language
constructs, intended to support behavioral adaptation.
They are different from the adapters of Yellin and
Strom, and quite different from automatically generated
wrappers or proxies and drivers.

6. Conclusion and future work

Specifying the interface of a component by an AID

text hides the actual interaction style of the component
behind a façade of abstract input/output events. If a
component’s style does not meet the expectations of the
environment, a proxy for the component will be used.
The proxy communicates with its counterpart, the
driver, which interacts with the component according to
the component’s style. The messages exchanged over
the mediation channel are the real-world representa-
tions of the abstract event data.

The mediation protocol is of course the basis for the
mutual understanding between proxy and driver. It can
be viewed as a common denominator of different
styles. If adopted by a certain group of people, it would
serve as a “standard”. Now our motivation as stated in
the introduction was accommodation of different stan-
dards. Does it make sense to postulate another standard
for the purpose of accommodating different standards?
No answer is given here. But it is helpful to compare
the issue with what Microsoft has done for its .NET
platform [8]. Different programming language stan-
dards have been accommodated by the introduction of
the Common Language Runtime: CLR is a new stan-
dard – but on a different level than the other ones.

Much further work is needed to develop AID and its
generators into a production system. Extending the
type system beyond simple types is an important con-
cern. In addition, we would like to support a more
flexible mapping between abstract and concrete inter-
faces. For example, several abstract event types should

be mappable to one concrete operation with an argu-
ment typed as a variant record, or the other way around.
Of paramount importance are further studies on the
feasibility of accommodating complex component
models such as COM, EJB, CCM and OSGi.

Acknowledgement

This paper has benefited in many ways from discus-

sions with Karsten Otto and Volker Siegel. Volker has
recently started to work on extensions to the implemen-
tation described in section 3.3. Their contributions are
gratefully acknowledged.

References

[1] A. Bracciali, A. Brogi, C. Canal: Dynamically adapt-
ing the behaviour of software components. Proc. 5. Int. Conf.
on Coordination Models and Languages, COORDINATION
2002. Springer LNCS 2315, 2002, 88-95

[2] D. Garlan, R. Allen, J. Ockerbloom: Architectural

mismatch: why reuse is so hard. IEEE Software 12.6,
November 1995, 17-26.

[3] D. Heuzeroth, W. Löwe, A. Ludwig, U. Assmann:

Aspect-oriented configuration and adaptation of component
communication. Proc. 3. Int. Conf. on Generative and
Component-Based Software Engineering (GCSE), Springer
LNCS 2186, 2001, 58-69

[4] M.A. Jackson: Principles of Program Design.

Academic Press 1975.

[5] K.-P. Löhr: Towards automatic mediation between

heterogeneous software components. Proc. SC 2002 –
Workshop on Software Composition, Grenoble, April 2002.
Electronic Notes in Theoretical Computer Science 65.4.
http://www.elsevier.nl/locate/entcs/volume65.html

[6] M. Mezini, L. Seiter, K. Lieberherr: Component

integration with pluggable composite adapters. In M. Aksit
(ed.): Software Architectures and Component Technology.
Kluwer 2002, 325-356.

[7] Microsoft Corporation: COM Development.

 http://www.microsoft.com/com

[8] Microsoft Corporation: .NET Development.

 http://www.microsoft.com/net

[9] Object Management Group: CORBA Components.

March 1999.
 ftp://ftp.omg.org/pub/docs/orbos/99-02-05.pdf

http://www.elsevier.nl/locate/entcs/volume65.html
http://www.microsoft.com/com
http://msdn.microsoft.com/net
ftp://ftp.omg.org/pub/docs/orbos/99-02-05.pdf

[10] Object Management Group: CORBA Notification
Service. June 2000.
http://www.omg.org/technology/documents/formal/notificatio
n_service.htm

[11] Open Services Gateway Initiative: OSGi Services

Specification.
 http://www.osgi.org

[12] S. Peyton Jones et al.: Haskell 98: a non-strict,

purely functional language.
http://www.haskell.org/onlinereport

[13] H.W. Schmidt, R.H. Reussner: Generating adapters

for concurrent component protocol synchronisation. Proc. 5.
IFIP Int. Conf. on Formal Methods for Open Object-Based
Distributed Systems. Kluwer 2002.

[14] Sun Microsystems: Enterprise JavaBeans 2.0 Speci-

fication.
 http://java.sun.com/products/ejb

[15] Sun Microsystems: Java Message Service.

http://java.sun.com/products/jms

[16] D. Yellin, R. Strom: Protocol specifications and

component adaptors. ACM TOPLAS 19.2, March 1997, 292-
333.

http://www.osgi.org/
http://www.haskell.org/onlinereport
http://java.sun.com/products/ejb
http://java.sun.com/products/jms

	Automatic Mediation between Incompatible Component Interaction Styles
	
	
	
	Abstract

	For invocation-based interaction, an input event of a component can either be the start of an operation of that component or it can be the return from an operation of another (previously invoked) component. In the former case, the operation belongs to
	5. Related work
	
	Acknowledgement
	References

