Exercise 1 Ancestor queries in trees 2+3 Points

Consider a rooted tree T, with nodes of arbitrary degree. Recall the preorder and postorder traversal of a tree.

(a) Let x, y be two nodes of T. Show that x is the ancestor of y if and only if x precedes y in the preorder traversal but not in the postorder traversal.

(b) Using this observation, design a data structure that efficiently supports the following queries, starting from a tree consisting of a root r:

- $\text{insert}(x)$ creates a new node, linking it as the rightmost child of x, and returns a pointer to this node,
- $\text{delete}(x)$ removes node x if it is a leaf, otherwise reporting error, and
- $\text{ancestor}(x, y)$ returns true if x is the ancestor of y and false otherwise.

What is the running time of operations?

Hint: You can use the list labeling data structure from class as a black box.

More hint: Store a traversal of the tree from which you can get the ordering of nodes both by preorder and by postorder.

Exercise 2 List labeling 3 Points

Suppose we implement the algorithm for list labeling from class, but we set the overflow densities to the same constant value at every node. (Recall that the density of x is the fraction of leaves in the subtree rooted at x that are nonempty. The overflow density is the threshold above which the subtree is considered “too dense”.)

Sketch a small example that shows that this strategy can be very inefficient.

Exercise 3 Maintaining a partial order 3 Points

Suppose we store a directed acyclic graph with n vertices (initially there are no edges).

Maintain an integer label ℓ for each vertex, so that $\ell(x) < \ell(y)$, whenever y is reachable from x (by following directed edges). If neither of x and y is reachable from the other, then the labels may be in arbitrary relation.

The operation $\text{insert}(x, y)$ adds the directed edge $x \rightarrow y$ to the graph, updating the labels, and reporting an error if a cycle has been created.

Show how to implement m insert operations (assume $m > n$) in time $O(m^2)$ (easy).

$\text{Bonus} \ (+3p)$: Improve the running time to $O(mn)$ or better.
Exercise 4 Programming exercise

The programming exercise is due June 29th (30 points).

For this time, please write a brief summary (one paragraph) of your plan and/or progress so far.

Total: 12 points. Have fun with the solutions!