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Exercise 1 Cartesian trees 4 × 2 + 2 × 3 Points

Recall the Cartesian tree (treap) built from an array A, using indices 1, . . . , n as
search keys, and the corresponding array entries A[1], . . . , A[n] as min-heap priori-
ties.

(a) Which Cartesian tree corresponds to the array [1, 2, . . . , n]? What about the
array [1, 3, 5, . . . , 2n + 1, 2, 4, 6, . . . , 2n]?

(b) Give an array of size 15 whose Cartesian tree is a complete balanced tree.

(c) A left-to-right minimum of an array is an entry that is smaller than all pre-
ceding entries. Show how to find the left-to-right minima of an array A in the
Cartesian tree of A.

(d) Let rmq(i, j) denote the index of the smallest entry in A[i . . . j], and let lca(i, j)
denote the lowest common ancestor of i and j in the Cartesian tree of A. Show
that lca(i, j) = rmq(i, j). (We sketched this in the lecture.)

(e) Suppose now that the array A contains a permutation of the integers 1, . . . , n
chosen uniformly at random from the set of all permutations. Let T be the
Cartesian tree of A. Given i and j, what is the probability (depending on i
and j) that node (i, A[i]) is the ancestor of node (j, A[j])?

Hint : x is the ancestor of y if and only if x = lca(x, y). Use the correspondence
between lca and rmq.

(f) Show that in the Cartesian tree of the previous question the expected depth
of every node is O(log n).

Hint : Use the result of the previous question. The depth of a node is the
number of ancestors it has.

Exercise 2 Range sum queries 4 Points

Suppose we want to preprocess an array A of size n such as to be able to answer
queries range-sum(i, j), returning the sum A[i]+A[i+1]+ · · ·+A[j]. We have seen
how to do this with O(n) preprocessing and O(1) query time, using subtraction.
(We just compute all prefix sums of the array.)

Suppose now that we are not allowed to do subtractions, only one addition per
query. Show that we can store O(n log n) well-chosen partial sums, so that each
range-sum query can be answered with a single addition (i.e. by adding together
two of the stored partial sums).



Example: If A is of size 4, then it is sufficient to store A[1], A[2], A[3], A[4],
A[1] + A[2], and A[3] + A[4], and from these six partial sums an arbitrary range
sum can be computed with a single addition.

Bonus question +5p: Suppose now that we can do k additions for each query (for
some constant k > 1). How much can you reduce the number of partial sums that
need to be stored?

Exercise 3 Ancestors in a tree 4 Points

We are given a fixed tree of size n with nodes indexed 1 to n. Design a data structure
that stores one label for each node, so that for given i and j we can decide whether
i is the ancestor of j, just by examining the labels of i and j. Think of labels as
cells of an array A[1], . . . , A[n], where the data structure can answer a query (i, j)
by examining the cells A[i] and A[j], but no other cells. We would like to use as
little space as possible. Show that 2 log n bits per label are sufficient.

Total: 22 points. Have fun with the solutions!


