
Exercise sheet 4.

Data structures SoSe 2020
László Kozma, Katharina Klost

Due 12:00, May 22th, 2020

Exercise 1 Redundant counter 3+3+4 Points

Recall the redundant counter from the lecture that uses digits {0, 1, 2} and that
can be incremented in actual (worst-case) time O(1).

(a) Count from 1 to 20 using the increment method discussed in lecture for this
counter. (Recall: the last digit cannot be 2, and between any two 2s there
must be at least one 0.)

(b) Describe how two numbers can be efficiently added in this representation (so
that the rules are enforced).

(c) Modify the counter so that it also supports a decrement operation in time O(1).
Describe which digits you use, what rules the representation must satisfy and
sketch how an increment and decrement operation can be implemented.

Exercise 2 Binary search trees recap 3+3+2 Points

(a) The depth of a node x in a binary search tree is the number of edges on the
path from x to the root of the tree. Define the subtree-size of a node x to be
the number of nodes in the subtree rooted at x, not counting x itself (note
that this differs slightly from the definition in the lecture). The subtree-size of
a leaf is thus 0 and the subtree-size of the root is one less than the number of
nodes in the tree. Show that in any binary search tree, the average node-depth
over all nodes equals the average subtree-size over all nodes. (Check it on some
small examples first.)

(b) Recall the rotation operation in binary search trees. Show that given two arbi-
trary binary search trees T1 and T2 with nodes {1, . . . , n}, there is a sequence
of at most 2n rotations that transforms T1 into T2.
Hint : Rotate to some canonical state.

(c) A treap or Cartesian tree is a binary tree in which every node stores a pair
of values. The nodes of the treap satisfy the binary search tree order with
respect to the first value of each pair, and the (min)heap-order with respect
to the second value of each pair. Construct a treap with the following pairs
of values: (3, 5), (1, 4), (2, 8), (9, 1), (8, 3), (6, 2), (4, 7), (5, 9), (7, 6). Is the treap
unique?



Exercise 3 Augmented tree 4 Points

We would like to store a dynamic set of points in R2, supporting the operations of
adding a point to the set, deleting a point, and top-query(a, b), that reports the point
in the set with maximal y-coordinate, among those points whose x-coordinate is in
the interval [a, b]. We assume that no two points have the same x- or y- coordinate.

Design a data structure that implements all three operations in O(log n) time, where
n is the number of points currently stored. It is sufficient to sketch the details. In
particular, if you use augmented trees, describe:

(1) what data you need to store,

(2) how it can be maintained during updates, and

(3) how it can be used to serve the given queries.

Total: 22 points. Have fun with the solutions!


