
Exercise sheet 3.

Data structures SoSe 2020
László Kozma, Katharina Klost

Due 12:00, May 15th, 2020

Exercise 1 Sorted matrices 3 + 3 + 4 Points

Consider an m × n matrix M with distinct integer elements with the m rows in
increasing order left-to-right and the n columns in increasing order top-to-bottom.

(a) Given a value K, describe an efficient algorithm that finds out whether K
appears in M . Ideally, the running time should be O(m + n).

(b) Given a value K, describe an efficient algorithm to find rank(K), i.e. the
number of entries Mi,j of the matrix M such that Mi,j ≤ K. Ideally, the
running time should be O(m + n).

(c) Suppose now that the rows of M are sorted, but its columns are not. Show
that in O(m + k) time we can select the k-th smallest element in m.

Hint : This is almost the same as exercise 3 in the previous exercise sheet, but
now we have selection from heaps as a tool.

Bonus question: +5p: In question (c) if k is much larger than m, then O(m+k)
may be too wasteful. Try to find an alternative method that achieves a better
running time in this case, e.g. O(m log k) or even O(m log k

m
). You can use

any of the existing methods as subroutines.

Hint : Can you identify at least a constant fraction of the top-k elements? How
would that help?

Exercise 2 Selection from X + Y 4 Points

Given two (unsorted) sets X = {x1, . . . , xn} and Y = {y1, . . . , yn}, we want to find
the k-th smallest of all possible pairwise sums xi +yj. In the lecture we argued that
if we sort X and Y , we can reduce the problem to selection from sorted matrices,
and the overall running time is O(n log n + k).

We would like to improve the running time to O(n+k), so we must avoid the sorting
step. Find a way to reduce the problem directly to selection from heaps that yields
the given bound.

Hint : recall that building a binary heap from a list takes only linear time!

Another hint : it may be easier to build a heap of constant degree greater than 2.



Exercise 3 Subarray-selection 2 + 4 Points

We are given an array with nonnegative entries A = (a1, . . . , an). For two arbitrary
indices 1 ≤ ` ≤ j ≤ n, the subarray-sum between ` and j is defined as

∑j
i=` ai.

(a) Describe an O(n)-time preprocessing step, after which a`,j can be computed
in constant time for arbitrary `, j.

(b) Assuming that a`,j is available in constant time, give an efficient method to
compute the k-th smallest subarray-sum. What is the running time in terms
of n and k? Can you find the k-th largest subarray-sum more efficiently? You
can use any of the existing methods as subroutines.

Total: 20 points. Have fun with the solutions!


